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ABSTRACT

In this paper the generality of the theory of dual integral equations derived earlier is explored. It
is found that many integral equations and potential metheds can be deduced from the dual equations
and regarded as special cases of the theory. Some useful new formulatiuns are also invented therefrom,
These two eguations sre independent and totallty have four kernel functions, which make it possible a
snifiad thaory encompassing different schemes and various derivations and interpretations.
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INTRODUCTION In References [3, 8] Hong and Chen derived a
theory of dual integral equaiions of elasticity, The
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derivation wus rigorouss in that it was completed from
siy routes and the sesults of the six were proved the
same, The six routes comsisted of three approuches:
Retti's law, the weighted residual method, and the
theory of potential, and of two operations, traction and
trace, in different orders of application. [t was pointed
out that a single integral equation of elasticity, even
with two kernels, such as the Somigliana identity is oo
slim to solve peneral elastic pioblems, especinlly those
with degenerate geometry which enclosts an area or
volume, The observation led the anthors to seek an
additional integral equation, ending wp with the so
calfed dual integral equations,

In this paper the theory iself & examined more
ckosely and its gensrality is demonstrated through eight,
existing or newly established, specisl formulations
derived from the theory. The eight methods are {1}
single layer potential method ~ indirect boundary
element method of the first kind, () double layer
potential method - indirect boundary slement method
of the second kind, {3} mixed laver poiential method -
indirect bhoundary elemeni method of the third kind,
{4} direct boundary clement method of the first kind,
{5} direct boundary element method of the second kind,
{6} displacement discontinuity method of the constant
slement type, {7} displacement discontinuity mathod of
the knear element type, and {8) dislocation model
methad. Among all the methads, the direct and indirect
methads are popularly referred.  The displacement
diseontinuity method is based on a special Green's
function which may be determingd by the Neuber.
Papkovitch potential. In a similar way the dislocation
mudel reliey ifself on 2 complex stress function and also
has 4 special Green's function which may also be deter.
mined from the Neuber-Papkovitch potential. In the
present study il Js found that both Green’s functions of
the last two methods can be obtsined from the dual
integral eguations by integrating kemel funclions over
certain intervals,

DERIVATION OF DUAL DOMAIN
INTEGRAL EQUATIONS

For completeness and later convenience in refl
erence 4 brief derivation of dual integral equations
developad in [8] i3 given helow. For more details the
readers are referred o the work cited.

t. By Betii's law

Let (by, t;, u) and (bT, tf, ui) be two equilibrium
states in a linearly elastic body where bi, bj are the
bo&y* forces, 1, t? are the boundary traciions, and
g, vy are the displacements. Berti's law of reciprocaiity

Fv0os
S Lt - ufb)aV = o/ (] - ut) dB n

where [} is 4 domain with boundary B. It can be recast
into the theory of self-adjoint operator £simply as

(Lu/vy= {0/ Ev) (2}

where

[ - D & }
4 -B
H the Hnearly slastic material is Isotropic, the operator
13 is expressed explicitly as

Djj = (A + G} & 3y + G by Dy (4)
while B the traction operator

By = Ay & ¥ G{ﬁj a4 5@21};3;(} {5}
where A dnd (G are Lame’s constants, nj are direction
cosines of the unit owtward normal to the boundary,
§ﬁ is Kronscker symbol and 8y is the partial differential
opevator, For an anisotropic material the expressdons
for Dij and By can be found readily, too. Note that
the equations of equilibrium

Dijuj +hy= 0 (da}

Dyjuj't by =0 {4h)

in P2 and the Cauchiy fonmutae

B‘ii ui = ii {Sa)
Bijﬁ;“ tf {Sb}

an B and u}" =i have been used in arriving at Eq. (2)

Te elaborate By, (2), we state explicitly:

I Do R™ {n=1, 2, 3) is a regular or other ap-
propriately conditioped domain with adeguately con-
ditioned boundary B, and _if the functions wix) and
vi{x) are elements of CH(D} N C(D) or appropriate
Sobolev space and have bounded support,

f{) {v; Dygug ~ uiyv)dVv =
J'B (v Bjju; - wiByvidB {6)

I B is usbounded, the condition of bounded support
can be replaced hy g radiation condition,
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Now ehoose specifically:

1100 = Byev(x) = By Uggx, 83 e;(i)

=T, ) o () M
bi' () = ~Dygevilx) = Dy Uy, 8} & (s

= 8i(x, 5} ﬁ; {s} %)
] ()= wfx) = Uz, 9 () )

where Uij(x, 3) and Tjj(x. ) are the free space Green’s
functions {or fundamental seluifons) of displacerment
and traction, respectively, doe o a congentraied load
in the j direction at the point s, and ej(s) represents
ant arbitrary concentrated unit load at the points. Then
we have Somighana’s identity [1] i bi=0:

f B(Uﬁ(x, (%) - Ty, shuyfx) ydB(x}

W) e )

which, for later comparison purposes, s changed to

Iy {Upifs. %) tyels) - Typls. xug sy ydB(s}

m{ m{x) xe€b (1

0 x kD

In doriving Bq. {10} we have omdtted the snii vector
ef from both sides of the equations because of its
arhitrariness, Now in order o have an additiomal,
independent equation, we apply the traction operalor
B to Eq. (11} and define

Bpi(®, m) {Ugg 6,30} = Lip &%) (2)

Bpi (8, nx) { Tki (. X}} = Mkp (s, %) (13
then it follows that

) 2 { Licp(s, x)trds) - Mgcpls, xJuxds) ¥y dBEs)

_ { tpix} xe D

o 6D (14)

Egs. {11} and {14}, are the dual sguations {2} for any
point x in the domain.

2. By physical meaning

The method to be presented is bused on the
superposition principle due to the Bnear operator theory

and can be understood easily in physical sense. # may
be cataloped under the theory of potential. In BIEM
wrminology it is frequently called the indirect method.
First we determine four free spage Green's functions or
fundamental soluiions as shown in Table 1,

Table 1. Meanings of Fundamenial Solutions; {§) means

in the j Direction.
Fundaﬁfmmi Sqn_ree Type Fie:id Type
solution  {Point point
{Eg {x, 8} 4 toad f) x  jdisplacement (B
U;j {x, 5} ] dislocation () x |displacewment {1
'1‘;3 X, 5 4 toad {f} x  itrpctiondi}
TE{K‘ 5) s [distecation ()] x| tesctionid

Then invoking the supsrposition principle, we have

i) = B Uiy (%, 5) ¢y (s)dB{s)

*fy Ui (2. 8) Wy (53 dBs) (15}

t{x)= IB Tik {x, s} gy (s} dB(s)
N Tix (%, 5) Yy (5) AB(s) (16)

Here the load $k(s) on the boundary B must be under-
stood 1o be the relative traction; that is, the difference
hotween the fraction applied on the boundary {o the
domain Dy under consideration and that applied to the
gxterior D), which is complement to the considered
domain, f the traction applied to the exterior s ag
sumed to vanish as shown later In the right-hand side
of Bq. {17);, the Joad ¢y(s} of Eq. (15) turns out to
be the traction t(y) applied to the domain considered.
Similarly, in Egs. (15) and {16) the dislocation s}
on the houndary is synonymous to the relative displace.
sent and can be interpreled to be the displacement
uglss of the points of the hounding boundary of the
domain which is being considered if the displacerment
of the boundary bounding the exterior is taken to be
zero as to be dong in the right-hand side of Eg. {18);.
Hence

I U6 9 () GBG) + £ U, (x, o) dBs)

- { u; (x) x & B

7
L xe Dy a7
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f B T {x, ) tp{s)dB(s} + fB Tiic X, £ updshdBes)

. fi {X) xe 91
0 %€ By
We note that the kemel functions of Bqs. (11},
{14}, {15) and {16} appear to be Jdifferent in the orders
of subscripts and argaments; however, we shall soon
see in the following section where four Important
theorems are proved, that they are eguivalent in essence,

FOUR LEMMAS AND CONSISTENCY
OF THE DERIVATIONS

To show the vonsistencies of Egs. (11} and {15}
and of {14} and {16}, which are derived from different
approaches, we have to prove the following four lemmas,

Lemma (2} U {x s} = U lsx)
Lemmadh)  Up (0 = Ty {8, %)
Temma (¢} T x5} = Ly fs,x}
Lemma{d}  Th 0,8} = ~My (s x)

Lemnys (2} and {b) can be proved using Bettl's faw,
{envma (a3} iy well known.
To prove Lemma (b}, we refer to Table 2 and
recall Bettl's law, having
Ly (5) + ”s (T30, ) (x)- Ty (x, ) (), dS¢x)
= i Hx)ufx)dSix)
Set
ey o F i
g =uy () - vy ()

then

i (8) =~/ Tjj (x.8) g () dS (x)

When

g (0 = G {x-x")

wo have

4 () = T (X', 9 = Uy s, x)

Hence Lemyna (b) is proved. After the proof of Lenmas
{(3) and (b}, wo are in 2 position o prove Lemmas {c)
and {d}. By definition of Eq. (12) and vsing Lemma {a),
w2 have

Tablg 2. Proof of Lemma {b),

Systom ¥

Damain infinite

Figure

Boundaty b S o, 87, 87 Seee 87,87
Fores unit farce at s Tji {x. g iy on 5.8
Pisp. BEx), X on S*, s ;{sh ﬂ; {x}h ﬁj‘{x}

Lgp{.x) = Bpi {8 ngd {Ups (5, %)}
= Bpi {3, 0, Ui dx s}
= Tpk{x~ 3
Similazly, by dofiniton of Eq. {13) snd Lemma (b,
Myn (s, x} = By (3,0, { Ty s w3 }
= B (2 ny) { U fx, 33}
MT';k(x. S

Thiz compleigs the proof of the four Lemnus.

It is worthy noting that, in real caleulations, only
theee kemels need to be determinad beowuse of Lenmima
{2} We also note that from above it can be shown that

Bpi (3. 1Y { Ui (x, 5) } o= Tpk {x, 5}

Bpk (3. ng) {Up(x,8)} = ~Ui=';, (x, 5)

Thiy subtle result cautions us that tie traction derivative
of an influence Tunction with sespest 1o the conrdinate
of the field point %, indeed, represents another influence
function, which describes the state of a differont re-
sponse due fo the same spularity source, On the cone
trary, the traction derivative of an influence function
with yespect 10 g sourge point coordinate is another
influence function of the same responss ws the original
influence function but due 10 a different sigularity
soures |71,

SPECIAL CASES

In thix sestion. we shall show that st of the

.........4_»—\
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currently available methods can be deduced from
exploiting the four kernel functions of the dual cqua-
rions.

1. Single layer potential method - Indirect boundary
element method of the first kind (IBEM-1)

Conventional indirect boundary element pro-
cedures unanimously employ only one type of potential,
either the single layer potential and its derivative, or
the double laver potential and its derbvative. Thelr
basic ides conzists of superimposing singular sohutions
of fundamemntal squations of the theory of elastichty
for the infinite medium or the half space in a suitable
fashion in erder to generate an clastic state of deforma-
tion coinciding with that in 4 real, clastic body, For
explanatory purposes, we record the formulation here,

uj{x) = J'B Ui (x, 5) ¢ (s} dB (19)
y{x} = fB Ty (x. sy g (s)dB {20

where gy Iz the unknows single layer density fanction.
As the point x approsches and finally locstes on the
boundary,

uj{x) = IB Ujg €, 8) ¢y (s) dB
G = B0
+CPYVv. fB Tip (%, 8) ¢y (s)dB

Although it I8 not shvays Bopossible to attach
some phiysical imerprelation to ¢y, the layer source b
iz sometimes called the “flctiticns souzce™ in Hierature
feg..4]. the method hence called the fictitious stress os
traction methad,

We observe that Eqs, (19) - {20) can be obtained
from Egs. (13) ~ (18) by setting the double layer func-
tion Y to be zero.

2. Double layer potential method - Indirect boundary
element method of the second kind (IBEM-2)

The formulation of (e double laver potentisl
method i3

uj (xp= f B Uik (%, ) Y (s) dB (s)
0O = Tii (%, 8) Yy (5) dB{s)

where ¥y s the unknown duuble kayer potential func-
tion. Taking the trace process, we have

wi(r= B Y+ CPV. S Ul (. 51 ¥ (579B ()
t{x)= HP.V. fB Tii (. 8} ¥ (s)dB(s)

1L is easy 1o see that the method is merely a special cuse
of the theory of the dual integral equations, Eq. (15)
and {16), by setting ¢y 1o be zero,

When applying this method 1o selve crack prob-
lers in the infinite domain, the fictitious source g
has the physical mesning of displacement discontinuity
or relative displacement of the upper and lower crack
surfaces (Y = Al = wy — ug). Inreferences of mathe.
matical physics {5, 9, 10}, the single layer potentiul
methed is employed to solve Neumman {or traction)
problems. On the other hand, Dirichlet {er displace-
ment} problems are often solved by the double layer
potential method. Nevertheless, we would like to add
that either the 1BEM-1 or the IBEM-2 cun be ulilized
by itself to svlve any uncracked elasticity problems,
o matler how boundary conditions are prescribed.
However, the IBEM-Z can zolve crack problems, buot
the {BEM-1 can nol.

3. Mixed layer potential method - Indirect boundary
element method of the third kind {(IBEM-3)

For crack problems as in Fig, 1, it is possible to
combine the merits of the IREM.] and the IREM-2 by
developing the single layer density ¢n on the outer
boundary § and the deuble layer density . on the
crack surface I where 8+ T'= B, Hence

wix}= fs Uy (03 ¢y (34B ()

Tig. 1. A crack problem,

— B o
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i Uik (%, 9) Wy (5)48(9)
GO =S Tidx s) by () dB ()

g Tiiex, 8} g {5) ABs)

where x is In the exterior,
outer boundary 5.

H % is pushed o on the

up{x) = f' Ui {x, 33 ¢y (3348 {s)
iy LUk (%.9) Y () dB{s)

GO0 = By 3+ CRPVLT ,'»?ik %, 8 dy {8} dB{s)
+ { T;k {28 ¥y, (5)0B)

If x is moved 1o pn the crack boundary I')

wi{x)= f s Uik (s x) () 4B OAS TR EEY
+ ORV. ; ,ktfx 3} ¥ {s) 8B 5}

f{xy= f .S Tig 0, 83 Ay dB {s)+ HPY.

I T €%, 8) P €s) dB s

The above four equations are sufficieni 1o solve any
crick problem and the method using them is called the
mixed layer potential method or the indirect boundary
slement method of the third kind.

If we use both density functions g and . on
all the boundaries. thon ¢y and ¥y can be identified
with the true values of the tzaction and the displacement
6], And this general merhod makes no diffarence, as
had beent demonstrated on the occasion of the proof of
the fowr Jemmas and the consistency of the derivations,
with the general direct boundury clement methods,
special cases of which are the next topics we are to
pruceed to.

4. Direct boundary element method of the fint kind
{DREM.1)

It is apparcent that the first one of the dual integral
equations, Bas. (11} and {14}, is the very formulstion
of the conventional direct boundary elememt method
prosented in references, and it Is suitable for solving
boundary value problems of elasticity without cracks.
i1 can be deemed 2s a special case of bur theory of dual
integral equations, For reasons to be clear soon, we
call this method the direct boundury element meothod of
the first kind {BBEM-1}, which is not suited to solve

erack problems.

5. Direct boundary clement method of the second kind
{DREM.2)

There is no reason why when we take the first
squation 1o des! with elasticity problems, we can not
employ the second (Eq. (14)) 1o solve the same problem,
We call this fstter method the direct boundary slement
mothod of the second kind (DBEM-2).  Tndeed, the
DBEM-2 gives a better convergence owing {0 stronger
singuiarities of Kemels, since singular integral aquations
with strongly singular keranels may be desirable because
they lead to u diagonally dominant system of Jinear
algebraic squations which wan be solved by iteration
techniques as opposed to direct eliminution schemes,
This might provide a computational saving. However, in
a domain with degenerate geometry (such as fine cracks
or crack surfaces), the special methods such as the
DBEM-1 or DBEM-2 are not available; the general
methad congisting of hoth the dual equations must be
used to consider &l boundary conditions of the lower
and upper surfaces of cracks,

6. Displacement discontinuity method of the constant
slemen fype (DD-1})

Here we use the kemnel functions ﬁﬁ\ {x, s} angd

,k {x. s} of the dual equations and take advantage of

the concept of constant finite slements, interpolating

the double layer density function Y by a multipie-step

function, Hence for 2 constant element with nodal
vabues (D, Dy, as in Fig, 2, we bave

Oy = ; Li,;(x @f}gdw;

{)n(x s}D},ds

Fig. 2. Constent nodal values of Dy und Dy,

—
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a . d

uy= [ U3y(x,5)Dxds+ [ Uza(x, s)Dyds
-a -a
[ . a =

tx= [ Ti(x.s}Dxds+ [ Tialx,s}Dyds
-4 -3
T a _ =

ty=f . Tz1{x.8)Dxds + [ Typa(x, s} Dyds
- -a

Carrying out the integration over the interval -a to a
by MACSYMA, we have

ux = |2(1-0)f, vy« y f,xx] Dy +
[-(1-21)f,x - y f.xy] Dy
uy = [{(1-2¢)f,x -y £xy] Dx +

(2(1-2}. y - y f.yy] Dy

in which f (x. y) = {arctan (y/x-a) - arctan(y/

_‘l_ {
an(1-v)
xt8) J= (=n)Iny/ G2+ y7+ (eta)in v (x+a)” Y]
Taking n = (0. 1) and n = (1, 0}, we have

= 2G[2 f.xy +y f,xyy| Dy +
2G[f,yy +y f,yyy| Dy

Oxx

Oxy = Oyx = 2G[f.yy + ¥y fLyyy}Dx
+2G[-y f,xyy| Dy

Oyy = 2G[-y f,xyy|Dx + 2G[f,yy - ¥ f. yyy] Dy

For definileness, we give a numerical example of
the infinite elastic medium (shear moduius G, Poisson
ratio ¥ = 0.1) with a line crack of length 2b=20 where
a uniformly distributed pressure p=0.001*G is exerted
to open up the surfaces. as in Fig, 3. The exact solution
of the crack profile is

Fig. 3. A pressured line crack in infinite domain.

uy (x} = -(1-») pb v/ (1-x*{b* }/G

Numerical experiments are performed with results
shown on Fig. 4. From the above figures and table,
we find that the result is in general satisfactory. The
convergence can be shown to be in the L, sense. Never-
theless, il is questionable why the numerical data are
greater than the ¢xacl solutions on all collocation points
and why convergence at the tip element behaves poorly
regardless of the increase of element number. The first
teason may be that the subsidiary (auxiliary) condition
is not used., The second reason may be that the DD-1
employs discontinucus functions to fit continuons
ones so that Gibbs phenomena occur. This may explain
that an error of 25% remains at the tip even the element
number increases.

—
T

—
z
[FE]
=
L)
Q
<
-
L
0
(]

X—AXIS {ecm)

Fig. 4. Crack Profile of Numerical and Analytical
Solutions (P/G = 107%)

Crouch [4] obtained exactly an idcntical result
by employing the Neuber-Papkovitch potential function
and called his procedure the displacement discontinuity
methed. One of the most important applications of the
methed in recent years was to geological materials
with cracks, inclusions, joints and faults.

it is obvious that there are no reason we stick to
constani elements when we possess so a general theory
of dual integral equations, Hence we proceed to the
next algorithm.

7. Displacement discontinuity method of the linear
element type (DD-2)

As the same procedure of the DD-1 bhut now
using piecewise linear interpolations, we propose the
displacement discontinuity method of the linear element
type.

Numerical resuits are shown in Fig. 5, where
collocation points are placed at the centers of the
elements.  Although severe oscillation is present, the
values at the collocation peints seem to be accepiable

._7._
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DISPLACEMENT

| B S S N B S S S

10
X—AXiS (cm)

Fig. 5. Crack profile of linear elements colocated fo
element centers (N = 10),

while the values at other locations, especially at the
nodes, are totally intolerable. In view of the nature of
the L, convergence, we improve the algorithm substan-
tially by collocating to nedal points, instead. Surpris-
ingly excellent results ate obtained and shown in Fig. 6.

l—
z
Ll
=
i
%]
<
o
@
ra]

[
T Fr 1T 1. ¢¥ 1T 1 1 F t "*

10
X—AXIS (em)

Fig. 6. Crack profile of linear elements colocaied to
nodes (N = 10).

8. Dislocation model method {DMM)

A similar algorithm to the DD-1 and the DD-2,
but assuming constunt element from O to + oo, instead
of -a to a, can be proposed to determine the following
special Green's functions,

ux = ?((}]_—p) {{2(1—v) arctan{y/x) +
xy /x> 4 y)] Dy + [ (1-20)
log (x* +y?) +y?/(x? +y*)| Dy}

G 1 2
vy = Zraoy (07 (-2 e YD)

-x?(x? +yH) Dy + [-2(1-v)
arctan (y/x) ~ xy/(x* + y*)| Dy }

u; = -2']1-], arctan (y/x)D

Oxx = g,(%;) {[-2y 3x* +y")i(x* +¥*)* | Dx
+ [2x(e? - y)/F +3%) 1Dy}

oy = Gy A2y (67 -y +3?Y)Dx
¢ 6+ 363 £y Dy )

o= Ty {[X02 - ¥I63 + ¥ P 1Dy
2y (& -y +y*)?) Dy |

-»G

%22 T F(1-p)
rG

w(l-v)

yix? +y*)Dx +

x/(x* +y*)Dy

where Dy, Dy and Dy are Burgur's vectors.

These equations were also presented by Lardner,
but his differs from the above by a datum which rep-
resents the rigid body motion. He ohtained the Green’s
functions from the complex stress function method.

CONCLUDING REMARKS

In this paper, we was able to not only broaden
the application of the BIEM but alse present an in-
tegrated theory which emcompasses many different
thoughts and schemes in the fields of elasticity, linear
elastic fracture mechanics, integral equatioms, and
(vector) potential theory.

CONCLUDING REMARKS

It has been shown that the theory developed can
encompass many existing schemes of integral equations
and potential theories in the fields of elasticity and
linear elastic fracture mechanics. Also from the unified
view of the theory the relationships of the methods
were made clear and, moreover, new methods of IBEM-
3, DBEM-2, and DD-1 were thereby invented. Other
new methods suitable for particular classes of problems
may also be derived and will be presented elsewhere,

NOMENCLATURE

The following symbols are used in this paper.

AN P the intersection of A and B
b, by body forces
B boundary

— 8 —
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seld
sgD
Ti{x, s}

*
Tij(x, 5}

%
1, 1
Ujj{x. )

Ui tx, 5)

Bpi{3, nx}
Dj

£
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the boundaries with prescribed displace-
ment and traction, respectively,

traction operator with respect to x

Cauchy principal value

domain

the ¢losure of D

the displacement discontinuity in x, y, 2
direction

Young's modulus

shear modulus

relative displacement in the j direction at x
Hadamard principal vajue

kernel function of the second of dus
integral equations

kemet function of the second of dual
integral equations

normal vector of s

normal vector of X

pressure at vrack surface

the considered n-dimensional domain

the boundary near the boundary S

the infinite boundary

sisan elementof D

sknotan element of D

the 1 component traction at x due to the
epneentrated § direction load at s

the i comprment traction at x due to thej
direction dislocation at s

tractions

the i component displacement at x due to
the concentrated j direction load at s

the i component displacement at x due to
the j direction dislocation at s

fraction operator in classical elasticity
Hnear operator in classical slasticlly
weif-adjoint operator in classical elasticily
partial differentintion with respect to |
compaonent

Kronecksr delta

ump terms

the concentrated source at s in the j
direction

X

Yk

v

B,

. Banerjee, P.K,

. Hewse, i

Lame's constant
Poisson™s ratio
single layer density
double layer density
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