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Abstract

In this paper, the method of fundamental solutions (MFS) of single and double-layer potential approaches for solving the eigenfrequencies

of multiply connected membranes is proposed. By employing the fundamental solution, the coefficients of influence matrices are easily

determined. The spurious eigensolution accompanied by the true eigensolution appears. It is found that the spurious eigensolution using the

MFS depends on the location of the inner boundary where the sources are distributed. To verify this finding, the true and spurious eigenvalues

in an annular domain are analytically studied using the degenerate kernels and circulants for an annular membrane. In order to obtain the true

eigensolution, the singular value decomposition (SVD) updating techniques and the Burton and Miller method are utilized to filter out the

spurious eigensolutions. Two examples are demonstrated analytically and numerically to see the validity of the present method.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The method of fundamental solutions (MFS) is a

numerical technique as well as finite difference method

(FDM), finite element method (FEM) and boundary element

method (BEM). It is well known that the MFS can deal with

engineering problems when a fundamental solution is

known. This method was attributed to Kupradze in 1964

[1]. The MFS has been applied to potential [2], Helmholtz

[3], diffusion [4], biharmonic [5] and elasticity problems

[1]. The MFS can be seen as one kind of meshless method.

The basic idea is to approximate the solution by a linear

superposition of fundamental solution with sources located

outside the domain of the problem. Moreover, it has some

advantages over boundary element method, e.g. no

singularity, no boundary integrals and mesh-free model.
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In the last decades, Tai and Shaw [6] first employed the

complex-valued BEM to solve membrane vibration pro-

blem. De Mey [7], Hutchinson and Wong [8] employed only

the real-part kernel to solve the membrane and plate

vibrations, respectively. Although the complex-valued

computation is avoided, they faced the occurrence of

spurious eigenequations. One has to investigate the mode

shapes in order to identify and reject the spurious ones. If we

need to look for the eigenmode as well as eigenvalue, the

sorting for the spurious eigenvalues pay a small overhead by

identifying the mode shapes. Chen et al. [9] commented that

the detection of spurious modes may mislead the judgment

of the true and spurious ones, since the spurious mode may

have the same nodal line of the true one by observation. This

is the reason why Chen and his co-workers have developed

many systematic techniques, e.g. dual formulation [9],

domain partition [10], SVD updating technique [11],

CHEEF method [12], for sorting out the true and the

spurious eigenvalues. However, it is true only for the case of

problem with a simply connected domain. For multiply

connected problems, spurious eigenvalues still occur even
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though the complex-valued BEM is utilized. This occur-

rence of spurious eigenvalues and their treatments in BEM

have been studied in the membrane and acoustic problems

[13,14].

In meshless method, the multiply connected problem has

been discussed in [15]. Although the MFS has been applied

to solve many engineering problems, its validity for solving

the eigensolutions of multiply connected problems was not

addressed in the literature to the authors’ knowledge. We

may wonder whether the spurious solution occurs as BEM

does. For the purpose of analytical derivation, some

mathematical techniques are utilized, e.g. degenerate kernel

and circulants [16]. Recently, circulant was utilized to deal

with some problems in MFS [17–19]. Here, an annular case

is considered to examine the appearance of true and

spurious eigensolutions.

In this paper, the MFS for solving the eigenfrequencies of

multiply connected membrane is proposed. The occurring

mechanism of the spurious eigensolution of an annular

membrane and its treatment in MFS are studied analytically

and numerically instead of that of BEM in the published

papers [11,12,14]. The degenerate kernels and circulants are

employed to derive the spurious eigensolution. In order to

filter out the spurious eigenvalues, singular value decompo-

sition updating techniques and Burton and Miller method

are utilized. To demonstrate the validity of our proposed

methods, two numerical examples are presented.
2. Formulation of multiply connected eigenproblems

using the method of fundamental solutions

The governing equation for membrane vibration in Fig. 1

is the Helmholtz equation as follows

ðV2 Ck2ÞuðxÞ Z 0; x2D; (1)

where V2 is the Laplacian operator, D is the domain of

interest and k is the wave number.

The fundamental solution U(s,x) is considered as

Uðs; xÞ ¼ iHð1Þ
o ðkrÞ; (2)

where H
(1)

o is the zeroth order Hankel function of the first

kind. According to the dual formulation [20], we have the

four kernels
Fig. 1. Figure sketch for an annular problem.
Uðs; xÞ Z iJ0ðkrÞKY0ðkrÞ; (3)

Tðs; xÞ Z
vUðs; xÞ

vns

ZKk
iJ1ðkrÞKY1ðkrÞ

r
yini; (4)

Lðs; xÞ Z
vUðs; xÞ

vnx

Z k
iJ1ðkrÞKY1ðkrÞ

r
yi �ni;

Mðs; xÞ Z
v2Uðs; xÞ

vnxvns

Z k
kðKiJ2ðkrÞCY2ðkrÞÞ

r2
yiyjni �nj

�

C
iJ1ðkrÞKY1ðkrÞ

r
ni �ni

�
; ð6Þ

where r hjsKxj is the distance between the source and

collocation points; ni is the ith component of the outnormal

vector at s; �ni is the ith component of the outnormal vector at

x, Jm and Ym denote the first kind and second kind of the mth

order Bessel function, respectively, and yihsiKxi, iZ1, 2,

are the differences of the ith components of s and x,

respectively. Based on the indirect method using the dual

formulation, we can represent the field solution by

Single-layer potential approach

uðxiÞ Z
X

j

Uðsj; xiÞfj; (7)

tðxiÞ Z
X

j

Lðsj; xiÞfj: (8)

Double-layer potential approach

uðxiÞ Z
X

j

Tðsj; xiÞjj; (9)

tðxiÞ Z
X

j

Mðsj; xiÞjj: (10)

The matrix forms of Eqs. (7)–(10) are

Single-layer potential approach

fuig Z ½Uij�ffjg; (11)

ftig Z ½Lij�ffjg: (12)

Double-layer potential approach

fuig Z ½Tij�fjjg; (13)

ftig Z ½Mij�fjjg; (14)

where {fj} and {jj} are the generalized unknowns by using

the single and double-layer potential approaches, respect-

ively. For the purpose of deriving the exact eigensolution,

we consider the problem with an annular domain. The radii

of inner and outer circles are a and b for the real boundary,

respectively. The source strengths are distributed on the

inner and outer fictitious circular radii a 0 and b 0 in Fig. 2,



Fig. 2. Figure sketch for node distribution.
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respectively. For simplicity, the boundary condition is the

Dirichlet–Dirichlet (clamped–clamped) type, �uZ0 on all

the boundaries. We distributed 2N collocation points at each

real boundary and 2N source points at each fictitious

boundary. By matching the boundary condition, the

equations can be obtained using the single-layer potential

approach of Eq. (7) as shown below

f0g Z U11
ij

� �
f1

j

� �
C U12

ij

� �
f2

j

� �
; (15)

f0g Z U21
ij

� �
f1

j

� �
C U22

ij

� �
f2

j

� �
; (16)

where the first superscript and second superscripts in Uij

denotes the collocating boundary and source boundary

(first superscript: 1 for B1 and 2 for B2; second

superscript: 1 for B0
1 and 2 for B0

2), f1
j

� �
and f2

j

� �
are

the unknown coefficients on the inner and outer

boundaries, respectively. By assembling Eqs. (15) and

(16) together, we have

SM1

� � f1
j

f2
j

( )
Z

U11
ij U12

ij

U21
ij U22

ij

" #
f1

j

f2
j

( )
Z

0

0

( )
: (17)

The determinant of the matrix must be zero to obtain

the nontrivial eigensolution, i.e.

det½SM1� Z 0: (18)

By plotting the determinant versus the wave number,

the curve drops at the positions of eigenvalues.
3. Mathematical analysis of the true and spurious

eigenvalues for an annular membrane in MFS

For an annular membrane, we can express xZ(r,f)

and sZ(R,q) in terms of polar coordinate. The U kernel

can be expressed in terms of degenerate kernels as

shown below
Uðs; xÞ Z

UIðq;fÞ Z
XN

mZKN

JmðkrÞ½iJmðkRÞKYmðkRÞ�cosðmðq KfÞÞ; ROr;

UEðq;fÞ Z
XN

mZKN

JmðkRÞ½iJmðkrÞKYmðkrÞ�cosðmðq KfÞÞ; R!r;

8>>><
>>>:

(19)
where the superscripts ‘I’ and ‘E’ denote the interior

(ROr) and exterior domains (R!r), respectively.

Since, the rotation symmetry is preserved for a

circular boundary with uniform nodes, the four

influence matrices, [U11], [U12], [U21] and [U22] are all

symmetric circulants. By superimposing 2N lumped

strength along each boundary, we have the influence

matrix

U11
� �

Z

a0 a1 a2 / a2NK2 a2NK1

a2NK1 a0 a1 / a2NK3 a2NK2

a2NK2 a2NK1 a0 / a2NK4 a2NK3

« « « 1 « «

a1 a2 a3 / a2NK1 a0

2
6666664

3
7777775
;

(20)

where the elements of the first row are obtained by

ajKi Z U11ðsj; xiÞ: (21)

The matrix [U11] in Eq. (20) is found to be a

circulants [16] since the rotational symmetry for

the influence coefficients is considered. By using the

degenerate kernel and the orthogonal property, the

eigenvalue of the matrix [U11] can be obtained as

follows [21]

l½U
11�

m Z 2NJmðka0Þ½iJmðkaÞKYmðkaÞ�; (22)

where mZ0;G1;G2;.;GðNK1Þ;N. Similarly, the eigen-

value of matrices, [U12], [U21] and [U22] are shown

below:

l½U
12�

m Z 2NJmðkaÞ½iJmðkb0ÞKYmðkb0Þ�; (23)

l½U
21�

m Z 2NJmðka0Þ½iJmðkbÞKYmðkbÞ�; (24)

l½U
22�

m Z 2NJmðkbÞ½iJmðkb0ÞKYmðkb0Þ�: (25)

By using the similar transformation, we can decom-

pose the [U11] matrix into

U11
� �

Z FS½U11�F
H ; (26)

where S½U �Zdiagðl½U
11�

0 ; l½U
11�

1 ; l½U
11�

K1 ;.; l½U
11�

ðNK1Þ; l
½U11�
KðNK1Þ;

l½U
11�

N Þ and ‘H’ is the Hermitian conjugate, and
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F Z
1ffiffiffiffiffiffi
2N

p

1 ðe2pi=2NÞ0 ðeK2pi=2NÞ0 / ðeK2ðNK1Þpi=2NÞ0 ðe2Npi=2NÞ0

1 ðe2pi=2NÞ1 ðeK2pi=2NÞ1 / ðeK2ðNK1Þpi=2NÞ1 ðe2Npi=2NÞ1

1 ðe2pi=2NÞ2 ðeK2pi=2NÞ2 / ðeK2ðNK1Þpi=2NÞ2 ðe2Npi=2NÞ2

« « « 1 « «

1 ðe2pi=2NÞ2NK2 ðeK2pi=2NÞ2NK2 / ðeK2ðNK1Þpi=2NÞ2NK2 ðe2Npi=2NÞ2NK2

1 ðe2pi=2NÞ2NK1 ðeK2pi=2NÞ2NK1 / ðeK2ðNK1Þpi=2NÞ2NK1 ðe2Npi=2NÞ2NK1

2
666666666664

3
777777777775
: (27)
Similarly, [U12], [U21] and [U22] can be decomposed.

Eq. (17) can be decomposed into

½SM1� Z
F
P

½U11� FH F
P

½U12� FH

F
P

½U21� FH F
P

½U22� FH

" #

Z
F 0

0 F

" #
S½U � S½U �

S½U � S½U �

" #
F 0

0 F

" #H

: (28)

Since, F is unitary, the determinant of [SM1] is

det SM1

� �
¼ s0ðs1s2;/; sNK1Þ

2sN ¼ 0; (29)

where

sm Z l
½U11�
m l

½U22�
m Kl

½U12�
m l

½U21�
m

Z 4N2Jmðka0Þ½KiJmðkb0ÞCYmðkb0Þ�

!fJmðkbÞYmðkaÞKJmðkaÞYmðkbÞg; (30)

for the annular membrane with the Dirichlet–Dirichlet

boundary conditions by using the single-layer potential

approach. After comparing with the analytical solution [14],

we can obtain the true and spurious eigenequations in Eq.

(29). Since, the middle bracket ½KiJmðkb0ÞCYmðkb0Þ� of Eq.

(30) is never zero for any k, the spurious eigenequation of

Jmðka0ÞZ0 and the true eigenequation JmðkbÞYmðkaÞK
JmðkaÞYmðkbÞZ0 are also obtained. Similarly, we can

obtain the true and spurious eigenequations for different

boundary conditions and using different formulations. All

the results are derived analytically as shown in Table 1. It is

found that the occurrence of spurious eigenvalues depends

on the formulation and the location of inner source point

instead of the specified boundary condition, while the true
Table 1

The true and spurious eigenequations for different boundary conditions by using

Inner–outer boundary Single-layer potential app

Dirichlet–Dirichlet True Jm(kb)Ym(ka)KJm(ka)Ym

Spurious Jmðka0ÞZ0

Dirichlet–Neumann True J 0
mðkbÞYmðkaÞKJmðkaÞY 0

m

Spurious Jmðka0ÞZ0

Neumann–Dirichlet True JmðkbÞY 0
mðkaÞKJ 0

mðkaÞYm

Spurious Jmðka0ÞZ0

Neumann–Neumann True J 0
mðkbÞY 0

mðkaÞKJ 0
mðkaÞY 0

m

Spurious Jmðka0ÞZ0
eigenequation is independent of the formulation and is

relevant to the specified boundary condition. For the

multiply connected membrane, the single-layer potential

approach produces spurious eigenvalues which are associ-

ated with the interior eigenvalue with the essential

homogeneous boundary conditions, while the double-layer

potential approach produces spurious eigenvalues which are

associated with the interior eigenvalue with the natural

homogeneous boundary conditions.
4. Treatments of spurious eigenvalues

4.1. SVD updating techniques

4.1.1. SVD updating document

In order to extract out the true eigenvalues, the SVD

updating document is utilized. Other than the single-layer

potential approach to obtain Eq. (17), we can also select the

double-layer potential approach and obtain

SM2

� � j1
j

j2
j

( )
Z

T11 T12

T21 T22

" #
j1

j

j2
j

( )
Z 0f g: (31)

By employing the relation in the degenerate kernels

between the direct and indirect methods [22], the SVD

updating document (Indirect method) to extract out the true

eigenequation is equivalent to the SVD updating term

(Direct method). We have

½C� Z
ðSM1Þ

H

ðSM2Þ
H

" #
: (32)

Where, the rank of the matrix [C] must be smaller than

4N for true eigenvalues. By using the property of Eq. (26),
the single- and double-layer potential approaches

roach Double-layer potential approach

(kb)Z0 Jm(kb)Ym(ka)KJm(ka)Ym(kb)Z0

J 0
mðka0ÞZ0

ðkbÞZ0 J 0
mðkbÞYmðkaÞKJmðkaÞY 0

mðkbÞZ0

J 0
mðka0ÞZ0

ðkbÞZ0 JmðkbÞY 0
mðkaÞKJ 0

mðkaÞYmðkbÞZ0

J 0
mðka0ÞZ0

ðkbÞZ0 J 0
mðkbÞY 0

mðkaÞKJ 0
mðkaÞY 0

mðkbÞZ0

J 0
mðka0ÞZ0
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the matrix can be written as

½C� Z

F 0 0 0

0 F 0 0

0 0 F 0

0 0 0 F

2
66664

3
77775

SU11 SU21

SU12 SU22

ST11 ST21

ST12 ST22

2
66664

3
77775

FKH 0

0 FKH

" #
:

(33)
Fig. 3. (a) The determinant versus the wave number by using the single-layer pot

double-layer potential approach. (c) The determinant versus the wave number by

number by using the SVD updating term. (e) The determinant versus the wave n
Based on the equivalence between the SVD technique

and the least-squares method [22], we can obtain the true

eigenequation (JmðkbÞYmðkaÞKJmðkaÞYmðkbÞZ0). This

indicates that only the true eigenvalues for the annular

membrane are imbedded in the SVD updating matrix.

4.1.2. SVD updating term

In order to sort out the spurious eigenvalues, the SVD

updating term is utilized. For the Neumann problem using
ential approach. (b) The determinant versus the wave number by the using

using the SVD updating document. (d) The determinant versus the wave

umber by using the Burton and Miller method.



Table 2

The former five true eigenvalues are compared with the different methods with an annular boundary

k1 k2 k3 k4 k5

Analytical solution [14] 2.05 2.23 2.66 3.21 3.80

FEM (ABAQUS) [14] 2.03 2.20 2.62 3.15 3.71

BEM (CHIEF) [14] 2.05 2.23 2.67 3.22 3.81

MFS (single-layer potential approach) 2.05 2.22 2.66 3.21 3.80

MFS (double-layer potential approach) 2.04 2.21 2.65 3.20 3.79

MFS (SVD updating document) 2.05 2.22 2.65 3.20 3.79

MFS (Burton and Miller) 2.04 2.20 2.64 3.20 3.78
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the single-layer potential approach, we have

SMN

� � f1
j

f2
j

( )
Z

L11 L12

L21 L22

" #
f1

j

f2
j

( )
Z 0f g: (34)

In order to obtain an overdetermined system, we can

combine [SM1] and [SMN] matrices by using the SVD

updating term. We have

½D� Z
SM1

SMN

" #
: (35)

Where the rank of the matrix [D] must be smaller than 4N

for spurious eigenvalues. By using the property of Eq. (26),

the matrix can be written as

½D� Z

F 0 0 0

0 F 0 0

0 0 F 0

0 0 0 F

2
66664

3
77775

SU11 SU12

SU21 SU22

SL11 SL12

SL21 SL22

2
66664

3
77775

FKH 0

0 FKH

" #
:

(36)

Based on the equivalence between the SVD technique

and the least-squares method [22], we can obtain the

spurious eigenequation (Jmðka0ÞZ0). This indicates that

only the spurious eigenvalues for the annular membrane are

imbedded in the SVD updating matrix.
Fig. 4. Sketch of the multiply connected problem.
4.2. Burton and Miller method

By employing the Burton and Miller method for dealing

with fictitious frequencies, we extend this concept to

suppress the appearance of the spurious eigenvalue of the

annular membrane in the MFS.

By assembling the Eqs. (17) and (31) with an imaginary

number, we have

½SM1�C i½SM2�
� � 41

42

� �
Z f0g; (37)

where the 41 and 42 are the mixed densities. Thus, only the

true eigenequation (Jm(kb)Ym(ka)KJm(ka)Ym(kb)Z0) is

obtained by using the Burton and Miller method.
5. Numerical examples

We consider two Dirichlet eigenproblems with the

multiply connected domain. The fundamental solution we

used is the U(s,x)ZiJ0(kr)KY0(kr). The treatments, SVD

updating techniques and Burton and Miller method, are also

employed to filter out the spurious eigenvalues.
5.1. Case 1: an annular case

The inner and outer radii of an annular membrane are

0.5 m and the outer radius of 2 m, respectively. The

fictitious sources are distributed at a0Z0:4 and b0Z2:2 m.

Thirty-six concentrated singularities locate uniformly at the

outer and inner fictitious boundaries as shown in Fig. 2,

respectively. Fig. 3(a) and (b) shows the determinant versus

the wave number by using the single-layer potential

approach and double-layer potential approach, respectively.

The drop location indicates the possible eigenvalues. As

predicted analytically, the spurious eigenvalue of kZ6.01

ðJmðka0ÞZ0; mZ0Þ and kZ4.61 ðJ 0
mðka0ÞZ0; mZ0Þ

appear for the single and double-layer potential

approaches, respectively. It indicates that spurious eigen-

values using the single and double-layer potential approach

happen to be the true eigenvalues of the Dirichlet

(clamped) and Neumann (free) circular membranes with

a radius a0Z0:4, respectively. Fig. 3(c) shows the

determinant versus the wave number by using the SVD

updating document where only true eigenvalues are sorted

out. Fig. 3(d) shows the determinant versus wave number

by using the SVD updating term where the contaminated

spurious eigenvalues are extracted out. Fig. 3(e) shows the

determinant versus the wave number by using the Burton



Fig. 5. Figure sketch for node distribution.

Fig. 6. (a) The determinant versus the wave number by using the single-layer pot

double-layer potential approach. (c) The determinant versus the wave number by

number by using the SVD updating term. (e) The determinant versus the wave nu
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and Miller method for the annular membrane where only

the true eigenvalues are drawn out. It is found that the

spurious eigenvalues are effectively suppressed by using

the SVD updating document and the Burton and Miller

approaches. Only the true eigenvalues occur in Fig. 3(c)

and (e), and only the spurious eigevalues appear in Fig.

3(d). The former five true eigenvalues using the MFS are

compared with those using FEM and BEM as shown in
ential approach. (b) The determinant versus the wave number by the using

using the SVD updating document. (d) The determinant versus the wave

mber by using the Burton and Miller method.



Table 3

The former five true eigenvalues are compared with the different methods with an inner square and outer circle boundary

k1 k2 k3 k4 k5

FEM (ABAQUS) [14] 2.19 2.33 2.67 2.76 3.22

BEM (CHIEF) [14] 2.19 2.33 2.69 2.76 3.24

MFS (single-layer potential approach) 2.18 2.33 2.68 2.76 3.24

MFS (double-layer potential approach) 2.17 2.32 2.67 2.75 3.23

MFS (SVD updating document) 2.18 2.32 2.67 2.76 3.23

MFS (Burton and Miller) 2.17 2.31 2.67 2.76 3.22
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Table 2. After comparing the results with the analytical

solution, good agreement is made.

5.2. Case 2: inner square and outer circle

A multiply connected domain composed of an inner

square and outer circle boundaries is considered in Fig. 4.

Thirty-eight singularities are uniformly distributed on the

fictitious outer circle boundary and inner square boundary

with a length c as shown in Fig. 5. Fig. 6(a) and (b) show the

determinant versus wave number by using the single-layer

potential approach and double-layer potential approach,

respectively. The drop location indicates the possible

eigenvalues. The expected spurious eigenvalue of kZ5.55

(lmn Zp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2Cn2

p
=c, mZ1 and nZ1) [23] and kZ3.93

(lmn Zp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2Cn2

p
=c, mZ0 and nZ1 or mZ0 and nZ1)

[23] appear in Fig. 6(a) and (b) by using the single and

double-layer potential approaches, respectively. Both the

figures show that spurious eigenvalues using the single and

double-layer potential approaches happen to be the true

eigenvalues of the Dirichlet (clamped) and Neumann (free)

square membranes with a length of 0.8 m, respectively.

Fig. 6(c) and (d) show the determinant versus the wave

number by using the SVD updating document and term,

respectively. Only the true eigenvalues are presented in

Fig. 6(c). Only the spurious eigenvalues appear in Fig. 6(d).

Fig. 6(e) shows the determinant versus the wave number by

using the Burton and Miller method for the multiply

connected membrane where all the spurious eigenvalues are

extracted out. It is found that the spurious eigenvalues are

effectively suppressed by using the SVD updating document

and the Burton and Miller approaches. The former five true

eigenvalues using the MFS are compared with those using

FEM and BEM as shown in Table 3. Both cases show

consistency that single and double-layer potential

approaches result in the spurious eigenvalues which are

the associated interior eigenvalues of the Dirichlet

(clamped) and Neumann (free) membranes bounded by

the inner fictitious sources, respectively. Also, the validity

of the regularization techniques, SVD updating and Burton

and Miller approaches, is demonstrated.

The mathematical study for the spurious eigensolution is

suitable for the annular case only. In order to verify the

validity of our proposed method, the general case was given

and the numerical data can support the existence of spurious
eigensolution. The treatments, SVD updating techniques

and Burton and Miller method were successfully used to

deal with spurious eigenvalues in case 1. The proposed

method also works well for the noncircular case as shown in

case 2.

For the special case of very small interior region, e.g.

a/b for annular membrane, the present method fails since

no place to distribute singularities can be found. A similar

problem has been studied in [24].
6. Conclusions

We have proved that the spurious eigenvalues for annular

problems occur by using degenerate kernels and circulants

when the MFS is used. The positions of spurious

eigenvalues for the annular problem depend on the location

of inner fictitious boundary where the sources are

distributed. The spurious eigenvalues appearing in the

single and double-layer MFS were found to be the interior

eigenvalues of subject to the Dirichlet (clamped) and

Neumann (free) boundary conditions, respectively. The

spurious eigenvalues in the multiply connected problem are

found to be the true eigenvalues of the associated simply

connected problem enclosing by the inner boundary.

Finally, we have employed the SVD updating techniques

and Burton and Miller method to filter out the spurious

eigenvalues successfully.
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