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In this paper, the eigensolutions are derived by using seven determinants of the direct-searching
approach. Seven determinants include the complex valued, real and imaginary parts of determinant
using the complex-valued kernel as well as the determinant by using the real-part, and imaginary-part
kernels and the multiple reciprocity method (MRM). It is found that spurious eigensolutions of the real-
part BEM match well with those of the MRM for the one-dimensional case. To satisfy the time-domain
causal constraint, it is found that the real-part and imaginary-part kernels are not fully independent but
are governed by the Hilbert transform. The idea of the combined Helmholtz exterior integral equation
formulation method (CHEEF) in conjunction with the singular value decomposition (SVD) technique can
be applied to suppress the occurrence of spurious eigenvalues. Updating terms and updating documents
are employed to extract out the true and spurious eigenvalues. Possible failure CHEEF points are also
examined. Also, the SVD structure of four influence matrices are examined. It is found that true and
spurious eigenvectors are imbedded in the right and left unitary vectors in the SVD. Two- and three-
dimensional cases are straightforward to be extended. The Hilbert transform pair for real and imaginary
kernels was also examined.

© 2008 Published by Elsevier Ltd.

1. Introduction

The application of eigenanalysis is gradually increasing for
vibration and acoustics. The demand for eigenanalysis calls for an
efficient and reliable method of computation for eigenvalues and
eigenmodes. Over the last three decades since 1974, several
boundary element formulations have been employed to solve the
eigenproblems [1], e.g., determinant searching method, internal
cell method, dual reciprocity method, particular integral method
and multiple reciprocity method. In this paper, we will focus on
the direct determinant searching method with emphasis on
spurious eigenvalues due to the real-part BEM and the multiple
reciprocity method (MRM).

Spurious and fictitious frequencies stem from non-uniqueness
solution problems. They appear in different aspects in computa-
tional mechanics. First of all, hourglass modes in the finite
element method (FEM) using the reduced integration occur due to
the rank deficiency [2]. Also, loss of divergence-free constraint for
the incompressible elasticity also results in spurious modes. In the
other side of numerical solution for the differential equation using
the finite difference method (FDM), the spurious eigenvalue also

* Corresponding author at: Department of Harbor and River Engineering,
National Taiwan Ocean University, Keelung 20224, Taiwan.
E-mail address: jtchen@mail.ntou.edu.tw (J.T. Chen).

0955-7997/$ - see front matter © 2008 Published by Elsevier Ltd.
doi:10.1016/j.enganabound.2008.07.003

appears due to discretization [3-5]. In the real-part BEM [6] or the
MRM formulation [7-12], spurious eigensolutions occur in solving
eigenproblems. Even though the complex-valued kernel is
adopted, the spurious eigensolution also occurs for the multiply
connected problem [13] as well as the appearance of fictitious
frequency for the exterior acoustics [14]. Spurious solutions and
fictitious frequencies in the integral formulation belong to
spectral pollution since it cannot be suppressed by mesh
refinement. The origin of spurious modes arises from an improper
approximation of null space of the integral operator [15]. In this
paper, a simple case of one-dimensional (1-D) rod will be
demonstrated to see how spurious eigensolutions occur and
how they can be suppressed. Although the 1-D case is simple
[16-20], it provides the insight to understand how the spurious
eigenvalue behaves and how they can be suppressed from the
education point of view.

In the literature review, we can find seven alternatives to solve
eigenproblems by using the direct-searching scheme. Tai and
Shaw [21] employed the determinant of complex-valued BEM. De
Mey [22] revisited this problem in 1976. Later, De Mey [23]
proposed a simplified approach by using only the real-part or
imaginary-part kernel where he found that spurious solutions
were imbedded as well as the ill-posed matrix appeared. In a
similar way of using the real-part kernel, Hutchinson [24,25]
solved the free vibration of plate. Also, Yasko [26] as well as Duran
et al. [27] employed the real-part kernel approach. It is interesting
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Table 1
Literature review for eigenproblems using the direct searching scheme in BEM

1974 1976 1977 1985 1997 1999 2000 2001 Present
Indicator 1 Tai and Shaw De Mey Duran et al. I
det[C]
Indicator 2 De Mey %4
Abs{det[C]}
Indicator 3 Tai and Shaw v
Im{det[C]}
Indicator 4 Tai and Shaw v
Re{det[C]}
Indicator 5 Tai and Shaw De Mey Kang et al. v
det[I]
Indicator 6 Tai and Shaw De Mey Hutchinson and Wong Yasko Duran et al. 174
det[R]
Indicator 7 Chen and Wong Yeih et al. v
MRM

to find that Kang et al. [28] proposed an imaginary-part kernel
approach using the collocation approach as commented by Chen
et al. [29]. Yeih et al. [9] found that the MRM is nothing but the
real-part BEM. This is the reason why spurious eigenvalues are
inherent in the two methods. The chronology list of the literature
survey is shown in Table 1. All the indicators in the determinant
searching method will be employed to solve a simple 1-D problem
in this paper.

In the recent years, the singular value decomposition (SVD)
technique has been applied to solve problems of continuum
mechanics [30] and fictitious-frequency problems [14]. Two ideas,
updating term and updating document [14], were successfully
applied to extract the true and spurious solutions, respectively.
Also, the CHIEF [31] and combined Helmholtz exterior integral
equation formulation method (CHEEF) [32] methods were
employed to suppress the occurrence of fictitious frequency and
spurious eigenvalue, respectively. Based on these successful
experiences, the SVD updating technique in conjunction with
the CHEEF concept will be employed to study the spurious
eigenvalue of the 1-D eigenproblem.

In this paper, eigenproblems of 1-D case will be explored by
using seven indicators for the direct-searching scheme in details.
Spurious modes in the real-part BEM formulation will be derived
through the SVD technique and will be suppressed by using the
CHEEF idea. The SVD structure for the four influence matrices in
the dual BEM will be examined. Although a 1-D case is studied
analytically, two- and three-dimensional (2-D and 3-D) cases will
be straightforward extended by only changing the degenerate
kernel.

The rest of this paper is organized as follows. In Section 2, we
propose a dual formulation for the eigenproblem of a rod. In
Section 3, seven indicators for the direct-searching scheme are
employed to solve eigenproblems. The occurrence of spurious
eigenvalues are suppressed by using the SVD technique in
conjunction with the CHEEF idea in Section 4. Section 5 shows
the updating terms and updating document to extract out true
and spurious eigenvalues. Besides, SVD structure of the influence
matrices are examined. Section 6 extends the 1-D case to 2-D and
3-D cases. Finally, a conclusion is made.

2. Dual formulation for one-dimensional eigenproblems

Consider the eigenproblems of free vibration for a rod subject
to boundary conditions as shown in Figs. 1(a)-(c) with the

a
u(0)=0 u(L)=0
b
| |
#(0)=0 #(L)=0
C
|
u(0)=0 t(L)=0

Fig. 1. (a) A rod subject to the Dirichlet BC (fixed end), (b) a rod subject to the
Neumann BC (free end) and (c) a rod subject to the mixed-type BC.

following governing equation:

d? u(x)
dx?

where u(x) is the axial displacement of the rod, k is the wave
number, D is the domain of 0<x<L.
Three cases of boundary conditions are considered in Figs.

1(a)-(c) as follows:

Case 1: u(0) = 0 and u(L) = 0 (Dirichlet BC),

Case 2: t(0) = 0 and t(L) = 0 (Neumann BC),

Case 3: u(0)=0 and t(L)=0 (mixed-type BC)where
t(xo) = du(x)/dx|,_y,. By introducing the auxiliary system of the
fundamental solution, we have

+Kku(x)=0, xeD, (1)

*U(x,s)
0x?2
where ¢ is the Dirac-delta function, x is the field point, and s is the

source point, U(x,s) is a complex-valued fundamental solution as
shown below:

+K*U((X,5) = d(x —5), —oo<X<o00, (2)

U, s) = ;—i}(e*“""*s‘ (3)
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and can be expressed in terms of degenerate kernel

J.T. Chen et al. / Engineering Analysis with Boundary Elements 1 (1iin) nn-am 3
[M(O, 0" —M(L, 0*)} { u(O)}
1 ix el x<s M(@©,L7) —M(L,L7) | [ ud)
Uxs) = { 2% (4) 1-10,09  1L0Y) |(LO) (0 .
58 e, x>s. —LO,L7) 1+LLILH|[\tD [ o (a7

By employing the Green’s third identity and integrating by
parts, we derive the dual boundary integral equations as [33-36]

x=L

u(s) = {GU(x,s) ux) — U(x,s)t(x)} , O<s<L. (5)
Ox x=0

Then we exchange x with s to each other of Eq. (5), and obtain
s=L

ux) = {auéss’ X) u(s) — U(s,x)t(s)} , O<x<L. (6)
s=0

By differentiating Eq. (6) with respect to the field point x, the
dual boundary integral equations are shown below:

u(x) = [T(s, X)u(s) — U(s,x)t(s)]|zj), O<x<L, (7)
t(x) = [M(s,0u(s) — LS, 0t =,  0<x<L, (8)

where the four kernels are shown in Table 2 and are defined as

T(s,x) = %, (9)

L(s,x) = aUa(i’x), (10)
ou

M(s, x) = afa’sx), (11)

Conventionally, collocation of the field point x close to the
boundary 0" and L~ for Egs. (7) and (8) yields

[1 + T(0,0")u(0) — T(L,0")u(L)
— U(0,0")t(0) + U(L,0M)t(L) = 0, (12)

T(0, L )u(0) + [1 — T(L, L)Ju(L)
— U(0,L7)t(0) + U(L, L)L) = 0, (13)

M(0, 0" )u(0) — M(L,0M)u(L)
+[1 — L(0,07)]t(0) + L(L,0")t(L) = 0, (14)

M(0, L™ )u(0) — M(L, L )u(L)
—L(0,L7)t(0) + [1 + L(L,L)]e(L) = 0. (15)

By assembling the former two Eqs. (12) and (13) and the latter
two Egs. (14) and (15) into a matrix form, we have

1+T(0,0%) —T(L,0%) 7 ( uO)
{ T(0,L") 1—T(L,L)]{u(L)}

~U(0,0%) U(L.0%)] ( t(0) 0
+ < y = , (16)
[—U(o,L ) UL )Ht(m} {0}

Table 2
Degenerate kernels for the free vibration of rod

Domain Kernels
U(s,x) T(s,x) L(s,x) M(s,x)
-1 . 1 . 1 . ik -
X<S T aik(x—s) = pik(x—s) _  aik(x—s) IR ik(x—s)
2ik© 2°¢ 2¢ 2°¢
-1 1 1 ik
X>S T a-ik(x—s) _ 2 a—ikx—s) 2 a—ik(x—s) IR a—ik(x—s)
2ik © 2¢ 2¢ 2°¢

Substituting the appropriate kernel functions shown in Table 2
into Eqgs. (16) and (17), we have

1 1 .
2 2| [uo
l—ikL 1 u(L)
¢ 2
1 1
N 2ik 2ik t(0) _ 0 (18)
ie—ikL 1 e[ \of
2ik 2ik
ik ik
2 2° u(0)
%e ikL B u(L)
2 2
1 1 —ikL
2 3 t0) 0 (9)
* _1e—ikL 1 t [ lof”
2 2

After substituting boundary conditions of the three cases into
Egs. (18) and (19), we have the dual matrices of UT and LM
equations.

For the case 1 with u(0) = 0 and u(L) = 0, we have
UT equation:

o1 1 ik

2k 2ik (0 (0 20,
w1 (L) _{0}'
| 2ik 2ik

LM equation:

1 1 —ikL

2 2 €0\ 0 1)
L) 1 t(@) _{0}'
) 2

For the case 2 with t(0) = 0 and t(L) = 0, we have
UT equation:

1 L) ") .
2 2
L) 1 { u(l) } = {0 } (22)
2 2

LM equation:

ik ik

2 22| [uo g0 -
ik o _ik uly [~ 1o S (23)
2 2

For the case 3 with u(0) = 0 and ¢(L) = 0, we have
UT equation:

1

; _1e—ikL f(O) 0
2ik 2
1 e—ikL 1 { U(L)} - {0 } (24)

2ik 2

LM equation:
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1 ik Table 3
2 _je t(0) 0 (25) Possible eigenequations using seven indicators
1 i ik ul) [~ 10J° — :
—je - Possible eigenequations

Owing to the introduction of degenerate kernels of Eq. (4), dual
BIEs for the domain point can be expressed as

u(x) = [T(s,x)u(s) — U, x)t(s)]|5 o Xe€[0.1], (26)
t(X) = [M(s,0)u(s) — L(s, )tG)IZ5, X € [0,1] (27)
and the null-field BIEs is
= [T(s,x)u(s) — U, x)t(s)]|5 o X €(—00,0]U[L, ), (28)
= [M(s, x)u(s) — L(s, x)t(s)]\s 0 X €(=00,0]U[L, 00), (29)

where U, T, L and M kernels must be represented in a correct form
using the expression of degenerate kernels of Eq. (4). The
collocation point can locate on the real boundary two end points
for four Egs. (26)-(29). Mathematically speaking, the domain of
Egs. (26)-(29) is a closed set instead of an open set in the
conventional BEM formulation of Egs. (7) and (8) using the closed-
form fundamental solution.

3. Direct-searching scheme for the eigenvalues using seven
indicators

According to Egs. (20)-(25), we use seven determinants to
obtain the eigenvalue. Seven indicators to find the eigenvalue by
using determinants in the direct-searching scheme are shown
below:

Indicator 1; Complex determinant using the complex-valued
kernel BEM.

Indicator 2: Absolute value of determinant using the complex-
valued kernel BEM.

Indicator 3: Imaginary-part of determinant using the complex-
valued kernel BEM.

Indicator 4: Real-part of determinant using the complex-
valued kernel BEM.

Indicator 5: Determinant using the imaginary-part kernel BEM.
Indicator 6: Determinant using the real-part kernel BEM.
Indicator 7: Determinant using the MRM [7].

Based on the seven indicators, the true and spurious eigensolu-
tions are shown in Table 3 and the corresponding boundary
eigenvectors are summarized in Tables 4-9. Tables 4 and 5 are the
results for the case 1 by using UT and LM equations, respectively,
while Tables 6 and 7 are those for the case 2. The results of case 3
are shown in Tables 8 and 9. The first column of each table
denotes the indicator for the direct-searching determinant. The
second column shows the rank of the influence matrix for the true
and spurious eigenvalues. True and spurious eigenvalues are
found in the third and sixth columns and their corresponding
boundary eigenvectors are listed in the fourth and seventh
columns, respectively. Then their analytical solutions are listed
in the fifth (true) and eighth (spurious) columns. The last column
shows the treatment once the spurious eigenvalue appears.

According to Tables 4-7, for cases 1 and 2, we find that
indicator 3 (imaginary part of determinant using the complex-
valued kernel) results in spurious eigenvalues. Its treatment is
using either the absolute value (indicator 2) or the real-part
(indicator 4). For Tables 8 and 9 of the case 3, we find that the
indicators 4 and 7 also results in spurious eigenvalues. Since the
MRM is nothing but the real-part BEM [7-12], this is the reason

Case 1
ut (1) {sin(kL)}[sm(kL J+i{sin(kL)}[ cos(kL)] =
(2) {sin(kL)} =
3) {sin(kL)}[cos(kL 1=0
(4) {sin(kL)}[sin(kL)] = O
(5) {sin(kL)}[sin(kL)] = O
(6) and (7) {sin(kL)}[sin(kL)] = O
LM (1) {sm(kL)}[sm(kL)] i{sin(kL)}[cos(kL)] = O
(2) {sin(kL)} =
(3) {sm(kL)}[cos(kL)] =0
(4) {sin(kL)}[sin(kL)] = O
(5) {sin(kL)}[sin(kL)] = O
(6) and (7) {sin(kL)}[sin(KL)] = O
Case 2
urt (1) {sin(kL)}[sin(kL)]+i{sin(kL)}[cos(kL)] = O
(2) {sin(kL)} = 0
3) {sin(kL)}[cos(kL)] = O
(4) {sin(kL)}[sin(kL)] = O
(5) {sin(kL)}[sin(kL)] = O
(6) and (7) {sin(kL)}[sin(kL)] = O
LM (1) {sin(kL)}[sin(kL)]+i{sin(kL)}[cos(kL)] = O
(2) {sin(kL)} = 0
3) {sin(kL)}[cos(kL)] = O
(4) {sin(kL)}[sin(kL)] = O
(5) {sin(kL)}[sin(kL)] = O
(6) and (7) {sin(kL)}[sin(kL)] = O
Case 3
uT (1) [sin(kL)]{cos(kL)}+i[cos(kL)]{cos(kL) = O}
(2) {cos(kL)} =0
3) [cos(kL)]{cos(kL)} = O
(4) [sin(kL)]{cos(kL)} = O
(5) [sin(kL)]{cos(kL)} = O
(6) and (7) [sin(kL)]{cos(kL)} = O
LM (1) [sin(kL)]{cos(kL)}+i[cos(kL)]{cos(kL) = O}
(2) {cos(kL)} =0
3) [cos(kL)]{cos(kL)} = O
(4) [sin(kL)]{cos(kL)} = O
(5) [sin(kL)]{cos(kL)} = O
(6) and (7) [sin(kL)]{cos(kL)} = O

Where the equations inside { } and [ ] denote the true and spurious eigenequations,
respectively.

why indicators (6) and (7) both result in the same spurious
eigenvalue as shown in Tables 8 and 9. We employ the SVD
technique in conjunction with the CHEEF idea to suppress the
occurrence of spurious eigenvalues as elaborated on later in the
next section.

4. SVD technique for filtering out spurious eigenvalues in the
real-part BEM by using the CHEEF concept

Because the real-part BEM lacks for the constraining condition
of imaginary-part information, spurious eigenvalues appear in the
case 3 using the indicator 6 in Tables 8 and 9. In order to filter out
spurious eigenvalues, we employ the CHEEF concept and the SVD
technique. A point, ¢, in the complementary domain, which is
called a CHEEF point as shown in Figs. 2(a) and (b) is selected to
provide a constraint. Therefore we have the null-field equation of
case 3 using the indicator 6. The constraints of UT and LM
equations respectively, for the CHEEF point are

0 = Ug(0, O)t(0) + Tr(L, u(l), ¢ e (—o0,0)U (L, 00), (30)

0 = Lg(0, 0)t(0) + Mg(L,0)u(L), ¢ € (—o00,0)U (L, 00), (31)

where Ug(0,c), Tr(L,c), Lg(0,c) and Mg(L,c) are the real-parts of
U(0,c), T(L,c), L(0,c) and M(L,c), respectively. By assembling Egs.
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Table 4
Eigensolutions for the case 1: u(0) = 0 and u(l) = 0 (Dirichlet BC) (UT equation) using seven approaches 67
Rank of True True boundary True analytical Spurious Spurious boundary Spurious analytical Treatment
[U(k)] (T.S)  eigenvalue . t(0) solution u(x) eigenvalue (k) . t(0) solution uy(x) 69
(ko) eigenvector {t(l)} eigenvector {t(l)}
71
1 (1,NA) g 1 Sin(ﬂx) NA NA NA NA
1y L 73
2 (1NA) 7 1 sin(”_”x) NA NA NA NA 75
L 1y L
77
3 (1,2) (s 1 sin(n—nx) @n-1_ x Rank = 2 x Rank = 2 Taking the
L (=1 L 2L absolute value 79
4 (1,NA) 1Y 1 il NA NA NA NA
L 1y ( L ) 81
nn ; 83
5 (1,NA) =z { 1 } x Null equation NA NA NA NA
1"
85
6 (O,NA) "T“ x Null matrix x Null matrix NA NA NA NA
87
7 (O,NA) nTn x Null matrix x Null matrix NA NA NA NA 39
. . R . . 91
Indicator 3 results in spurious eigensolutions.
93
Table 5
Eigensolutions for the case 1: u(0) = 0 and u(l) = 0 (Dirichlet BC) (LM equation) using seven approaches 95
Rank of True True boundary True analytical Spurious Spurious boundary Spurious analytical Treatment
[U(k)] (TS) eigenvalue . [ t(0) solution u(x) eigenvalue (ks) . t(0) solution uy(x) 97
(ko) eigenvector § ) eigenvector ¢ a)
99
1 (1,NA) L7 1 Sin(”lx) NA NA NA NA
D" ! 101
2 (1,NA) i 1 i NA NA NA NA
L (—1y" (T*) 103
nm . nm 2n—1 . 105
3 (1.2) (i 1 sm(—x) @n-1) x Rank = 2 x Rank = 2 Taking the
L (=) L 2L absolute value
107
4 (1,NA) 27 1 Sin("jx) NA NA NA NA
L 1y L 109
5 (O,NA) W x Null matrix Null matrix x null  NA NA NA NA m
L equation
6 (1,NA) nn 1 sin("x) NA NA NA NA 112
L 1y L
113
7 (1,NA) 7y 1 Sin(”lx) NA NA NA NA
L 1" i 114
115
Indicator 3 results in spurious eigensolutions.
116
(24) and (30) as well as Egs. (24) and (31) into the matrix form, LM equation:
and by selecting a right (c>L) CHEEF point, we have 117
UT equation: 1 k sin(kL)
D) 2 - 0 118
cos(k t(0)
0 _ _cos(kL) ~Jo
y 2 o 0 5 0 uly (= 0 (L<c<o0), (33) 119
__sin(kL) 1 L= 0 (L<c<oo),  (32) cos(ck)  k sin[(c — L)k]
) 2k 2 u(l) 0 2 2 120
sin(ck) cos[(c — L)k]
2k 2 If the CHEEF point c is selected in the left side (c<0). We have,
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Table 6
Eigensolutions for the case 2: t(0) = 0 and t(I) = 0 (Neumann BC) (UT equation) using seven approaches

Rank of True True boundary True analytical Spurious Spurious boundary Spurious analytical Treatment
[T(k)] (T,S)  eigenvalue . . u(0) solution u(x) eigenvalue (k) . . u(0) solution uy(x)
(ko) eigenvector u(l) eigenvector u(l)
1 (1,NA) % { 1 cos (? x) NA NA NA NA
"
2 (1,NA) "T“ { 1 @5 ("T” x) NA NA NA NA
1"
3 (1,2) 0 1 cos (njx> @n-1 x Rank = 2 x Rank = 2 Taking the
L (=1 L 2L absolute value
4 (1,NA) ? { 1 CDS(?X) NA NA NA NA
="
5 (O,NA) ”Tn x Null matrix Null matrix x null ~ NA NA NA NA
equation
6 (1,NA) % { 1 cos (% x) NA NA NA NA
="
7 (1,NA) "T“ { 1 @5 ("T“ X) NA NA NA NA
1"
Indicator 3 results in spurious eigensolutions.
Table 7
Eigensolutions for the case 2: t(0) = 0 and t(I) = 0 (Neumann BC) (LM equation) using seven approaches
Rank of True True boundary True analytical Spurious Spurious boundary Spurious analytical Treatment
[T(k)] (T,S) eigenvalue ) u(0) solution u,(x) eigenvalue (ks) ) u(0) solution uy(x)
(k) eigenvector § ) eigenvector § a
1 (1,NA) "T” { 1 s (”T“ X) NA NA NA NA
="
2 (1,NA) "T” { 1 cos (”T” X) NA NA NA NA
="
3 (1,2) T 1 oS (EX) @n-1 x Rank = 2 x Rank = 2 Taking the
L (—1y" L 2L absolute value
4 (1,NA) e 1 @ (”j X) NA NA NA NA
L 1y L
5 (1,NA) ”T” { 1 x Null equation NA NA NA NA
"
6 (O,NA) % x Null matrix x Null matrix NA NA NA NA
7 (O,NA) ”T” x Null matrix x Null matrix NA NA NA NA
Indicator 3 results in spurious eigensolutions.
UT equation: LM equation:
0 cos(kL) 1 k sin(kL)
sin(kL) 12 t(0) 8 cozs(kL) > t(0) 8
Y 5 ul (= 0 (—oo<c<0). (34) - 0 ul [ = (L<c<oo), (35)
sin(ck) cos[(c — L)k] cos(ck)  k sin[(c — L)k]
2k 2 2 2
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Table 8
Eigensolutions for the case 3: u(0) = 0 and t(I) = 0 (mixed-type BC) (UT equation) using seven approaches 67
Rank of True True boundary True analytical Spurious Spurious boundary Spurious analytical Treatment
[U(k),T(k)] (T.S) eigenvalue t(0) solution u(x) eigenvalue (k) t(0) solution uy(x) 69
(ke) eigenvector eigenvector
t u(1) u(1)
71
1 (1,NA) @n-1 @n-1)_ sin ((Zn - 1)m<) NA NA NA NA
2L 2L 2L 73
(_1)n+1
2n —1 -1 75
2 (LNA) ¢ n Ve (2n22 D, sin (( n )ﬂx> NA NA NA NA
(=1 77
3 (1NA) @, (2n22 n - ((211 - )nX) NA NA NA NA 79
(—'l)"“ 81
4 (12) @n-1_ @n-1 - Sin((2n - 1)m<> ”T” x Rank = 2 x Rank = 2 Taking the 83
2L 2L 2L absolute value
(71)n+1
85
5 (1,1) @n-1) @n-1 x Null equation ”T” {0} x Null equation CHEEF g7
2L 2L 1
( 1)n+1
89
_ _ _ nm nm
6 (1,1) (2n2L 1)71 (2n2L D Sin((Zn 2L1)7zx) i {(])} Sm( ” x) CHEEF
(71)n+1 91
— _ _ nm . (T 93
7 (1,1) (2Tl2L 1)7'5 (2n2L ])TETE sin ((211 2L1 )nx) = { (]) } S (Tx) CHEEF
(= 95
97
Indicators 4-7 result in spurious eigensolutions.
99
Table 9
Eigensolutions for the case 3: u(0) =0 and t(I) = 0 (mixed-type BC) (LM equation) using seven approaches 101
Rank of True True boundary True analytical Spurious Spurious boundary Spurious analytical Treatment
[L(k),M(k)] (T,S) eigenvalue solution u,(x) eigenvalue (ks) t(0 solution us(x) 103
©)
(k) eigenvector eigenvector
t u(]) u(l)
105
1 (1NA) @n=1_ (2n - sin ((2'1 - 1)7r><) NA NA NA NA
2L 2L
) 107
( ])n+
109
2 (1,NA) @n-1 (2n - sin ((211 - 1)7TX) NA NA NA NA
2L 2L
(- n+1 111
3 (1NA) @n-1_ { } sin ((211 - 1)nx> NA NA NA NA 112
2L 2L
113
4(12) @n-1) sin((zn = 1)7“‘) W x Rank = 2 x Rank = 2 Taking the
2L 2L L absolute value 114
115
5 (1,1) @n-1) x Null equation 121 0 x Null equation CHEEF
2L L 1 116
2n—1 1 nr 5 - 117
6 (11) ( "22 ) - sin (( n ;L )nx) o { 0 } @S (T X) CHEEF
( ])n+1 118
_ _ _ nm nm 11
7 (11) (2n2L 1) (2n . . ((211 ZLl)nX) n {(])} cos (") CHEEF 9
(- ])”+1 120

Indicators 4-7 result in spurious eigensolutions.
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It is interesting to find that the left (—oo <c<0) and right
(L<c< o) CHEEF points yield the same row but negative to each
other due to the CHEEF point as shown in Egs. (32)-(35).

Based on the SVD technique, we have

(K] = [®Z]Y¥T", (36)

where [K] is the influence matrix in Eqgs. (32)-(35), [®] is a left
unitary matrix constructed by the left singular vectors (¢1,¢2,¢3),

a
| X
1(0)=0 H(L)=0
oo 0 L ¢ o
b
X |
u(0)=0 1#(L)=0
oo . 0 I -

Fig. 2. (a) A CHEEF point, , in the right side of case 3 (c>L) and (b) a CHEEF point,
¢, in the left side of case 3 (c<0).

a
c
3 . °
failure CHEEF point failure CHEEF point
2.8 E E
26 L b
! Spurious :’ Spurious
24 E 5
20 True i True E True
failure CHEEEF point failure CHEEF point
. N Kk
@0 L2 " 3m . am Sm
2 2 2
b
c
3 . °
failure CHEEF point failure CHEEF point
2.8 E E
26 5 |
! Spurious ‘Spurious
24 E 5
29 True i True ; True
failure CHEEF point | failure CHEEF point
. ¢ k
(2,0) L n 3n 2 5m
2 2 2

Fig. 3. (a) Contour plot of the minimum singular value o versus (k,c) by using the
UT equation (zero nodal line only) and (b) contour plot of the minimum singular
value g versus (k,c) by using the LM equation (zero nodal line only).

[2] is a diagonal matrix which has singular values ¢; and o,
allocated in a diagonal line as

a2 0
21=|0 o1}, (37)
0o o0

in which ¢, >4, 65 and o are the functions of ¢, k and L, and [¥]T
is the transpositional matrix of a right unitary matrix constructed
by the right singular vectors (1,)/2). As we can see in Eq. (37),
there exist at most 2 nonzero singular values. The rank of
influence matrices are equal to 2 at most. Since the boundary
eigenvector is nontrivial, the rank of influence matrices must be
one. Therefore the minimum singular value ¢; must be zero.

We show two contour figures of case 3 for g; versus (k,c) by
using the UT and the LM equations that are shown in Figs. 3(a) and
(b). The length L of a rod is 1. The k-axis is the wave number and
the c-axis is the location of CHEEF point in Figs. 3(a) and (b). It is
found that no matter what value c is, g, is always zero for the true
eigenvalue of kr = ((2n — 1)/2L)x, n € N. For the spurious eigen-
value of ks =nm/L, neN, failure CHEEF points appear when
kc = nm, n € N. Since the CHEEF constraint is trivial which canpot
filter out spurious eigenvalues. True and spurious modes of the
case 3 by using the UT equation are shown in Figs. 4 and 5,
respectively. It indicates that a true eigenvalue results in a true
mode in the domain and null field in the complementary domain,
while the spurious case has a nontrivial field in the complemen-
tary domain. The location of zero response in the complementary
domain happens to be that of the failure CHEEF point.

5. Updating terms and updating documents to extract out true
and spurious eigenvalues

Now we arrange Egs. (18) and (19) for the case 3 by using the
indicator 6, we have

£0) u(0)
£(0) u(0)
af o} -0 } (39)

where [A], [B], [C] and [D] are influence matrices of Egs. (18) and
(19), and can be shown below:

[ 0 —% cos(kL)
M= ; .| (40)
| 2k sin(kL) 5
r 1 1 .
— —=-sin(kL)
[Bl= |4 2 2k , (41)
2 cos(kL) 0
[ % —g sin(kL)
€= : (42)
- cos(kL) 0
r 1
0 5 cos(kL)
D= | ] (43)
2 sin(kL) -

In order to extract out true and spurious eigenvalues, we utilize
updating terms and updating documents, respectively. Therefore,
we combine [A] with [C] and [A] with [B], which can be written as

Elem (2008), doi:10.1016/j.enganabound.2008.07.003
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up (%) true mode

1

0.5
null field null field
1 1 X
-3 6
-0.5
-1
@ true node
Fig. 4. True mode of case 3 by using the UT equation (kr = 4.57, L = 3).
non null filed w ) spurious mode non null filed
S
L r
05\
{ X
-3 _1 9 N 3 E 3 8 2 4 2 6
5 5 os b 5 5 5 5
1 F
X failure CHEEF point
Fig. 5. Spurious mode of case 3 by using the UT equation (ks = 57, L = 3).
[ 0 1 cos(kL)_
2
_ L ik 1 ¢'[C D] =0, k=ks (49)
A 2k 2 ~
cl= 1 k. " , (44)
5 ) sin(kL)
_% cos(kL) 0 6. Extension to 2-D and 3-D eigenproblems
i i Following the simple example of 1-D rod, it is straightforward
0 1 cos(kL) 1 1 sin(kL) to extend 2-D and' 3-D cases as shown in Figs. 7(a)—(c): The
[A B]= 2 2 2k degenerate kernels in Eq. (4) for the 2-D circular case here is
—% sin(kL) % %cos(kL) 0 .
Ui, = =20 S emJm(kp)HD(KR) cos(m(@ — §)),  R=>p,
(45) 2 m=0

By employing SVD for lAl and [A B], respectively, the
minimum singular values versus k can be obtained. The figures
of minimum singular values versus k are shown in Figs. 6(a) and
(b) for the unit length rod. The k-value at drops in Figs. 6(a) and
(b) show the true and spurious eigenvalues, respectively.

It is interesting that the SVD structure for the four influence
matrices are shown in Table 10. We find that the common ¢ and v
exist for the true and spurious eigenvalues such that

A

|:C:| l{{ = Q, k= kT, (46)
|:[B):| lk = Q, k= kT, (47)
¢'[A B] =0, k=ks, (48)

U(s,x) = oo
Vs =3 > emHi(kp)(kR) cos(m(® — ). p>R

(50)

where x = (p,¢) and s =(R0), J, and H;}) are the mth order
cylindrical Bessel function and the cylindrical Hankel function of
the first kind, respectively, the superscripts “i” and “e” denote the
interior and exterior cases for the kernel expressions, respectively,
and ¢, is the Neumann factor

1,
Em = 2

For the three-dimensional spherical case, the degenerate kernel
is shown below

m:O,

m=1,2,...,00. (1)
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&)

min | |

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1 1 1 1 1 k
6 36 26 56 36760 46906 506
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c
0.6
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S o6 362635063670 4690 50

min
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Fig. 6. (a) Extraction of true eigenvalue using SVD updating terms and (b) ex- Fig. 7. (2) One-dimensional case (rod), (b) two-dimensional case (circle membra-
traction of spurious eigenvalue using SVD updating documents. ne) and (c) three-dimensional case (spherical cavity).

Table 10
The SVD structure of the four influence matrices for a rod in the dual BEM

ky=m _}E 0.707107, -0.707107}[0 0}[50.8435645 -0.537029T [ 0.707107: -0.707107][0 o][-o.537029: —O.843564]T

-0.707107; -0.707107 |0 o 50.5370295 0.843564 —0.707107 ; —=0.707107 |0 o 0.843564 ; —0.537029
_________________________________________________ v . AYB

ko=m | [ 0707107} -0.707107][0 0 10.843564! —0.537029] | | 0707107} —0.7071071[0  07[-0.537029 ; ~0.8435647"
> 11-0.707107! 07071070 & [}0.537029!  0.843564 1-0.707107} -0.707107 |0 o ||| 0.843564 | —0.537029

L | : _______ H : i | i |
A ' A

k, ==
24
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Determinants for the 2-D circular membrane subject to the Dirichlet BC

11

Equation
Exact sol.

ur
Jn(ka)=0

LM
Jn(ka) =

Indicator 1
Det[C]

Indicator 2
Abs{det[C]}

Indicator 3
Im{det[C]}

Indicator 4
Re{det[C]}

Indicator 5
det[/]

Indicator 6
det[R]

Mo - . Jn-1)2JnGo(@1 - - An1)?
xq, 0i00+257 " 00 _

n4nazn.’0(ll --»]n71)2]n%(41 ---%4)2% =0

7@®o(l; . a1 01 - - -Gn-1)’
*Qy Sin(0o +23 4 O+ 0n) = 0

@Yoy . Jn1 )zfn%(ch <-Gn >
%y, cos(0 + ZZZ;: O + 0n) =

]0]0(]1]1]2]2 oo ~]n—l]n—1 )Zann =0

]OYOUI Yi2Ya...Jn1Yn1 )2]nYn =0

oIy .. Jn 1) P01 - - - Pn1)?

. n-1
XDy e‘((90+22k:|“’k+'""’ )

7IAHkZH‘IZHIO(Il o )Zjnpo(pl --Pn-1 )an =0

"o . Jn 1) JnPoPr - - -P1)?

XPy Sin(wg + ZZ::wk +wp)=0

oIy .. J 1) P01 - - - Pr1)?

il
XPy COS((p + ZZZ:1 Wy +wp) =0

J U Ao 2 IS n1)Jn¥Yn =0

JoY'oUrY'1J2Y'2. Jn-1Y'n-1)JnYn = O

where Y, is the nth order Bessel function of the second kind, q, = \/jﬁ + Yﬁ, On =tan~'(Yy/J), Pn = \/]’ﬁ + Y’ﬁ, and w,

Table 12

Determinants for the 2-D circular membrane subject to the Neumann BC

tan=1(Y}, /J,)-

Equation
Exact sol.

ur

J'n(ka) =

LM
Jn(ka) =

Indicator 1
Det[C]

Indicator 2
Abs{det[C]}

Indicator 3
Im{det[C]}

Indicator 4
Re{det[C]}

Indicator 5
det[I]

Indicator 6
det[R]

@Yo Sy 1) G0 - Gnr)?

- n-1
xqy ei0o+23 3 0t0n) _

" o) 1. S n-1) nGo(q1 .- Gn-1)’qn = O

e 02"]6(1,1 soalfp) )2];1%(‘11 R | )’

xqy sin(@p + ZZ:;: O +0,)=0

L S (O A ol T (P Y

xqy, cos(0p + 22:;:6’,{ +0,)=0

]ﬂ]/OUL’/ 1.’2’/2 o0 -.In—].,/n—l )ZJnYn =0

JoYoU'1Yd 2Yz..  n1Yn-1)*JnYn =0

Tk o(J'1 ... no1)* wDo(P1

Aoy Sy )2Po(Ps - Pat)?

A n-1
XDn el(UJD+22k:1 Wy+on) _ 0

Ko - Sy )P ThPo (P - Pt

. —1
Py, Sin(wo + 22:11 Wi +wyp) =0

TR - Sy )PTaPo®s - Pa1)?

XPy, COS(wp + ZZ:;: Wy + W) =0

Jd'oUd Jd 2 S nAn-1)Jn¥Yn =0

JoY'oU Y 2Y2 S n1Yn 1) nYn =0

~-Pn-1 )zpn =0

Where g, = /J2 + Y2, 0p = tan=' (Y /J,), P = \/J2 + Y2, and o, = tan=' (Y}, /J.,).

Table 13

Eigenequations for the 2-D circular membrane subject to the Dirichlet BC

Equation ur LM
Exact sol. J J
True Spurious True Spurious
Indicator 2 JoU1--Jn-1)Jn None JoU--Jn-1)Jn None
Abs{det[C]}
Indicator 3 JoU1--Jn-1)Jn sin(0 + 25021 0y + 0n) JoUr--Jn-1)Jn sin(wo + 23021 @y + wn)
Im{det[C]}
Indicator 4 JoUr--Jn-1)Tn cos(0o + 25121 0y + 0n) JoU1--Jn-1) cos(wo + 2501wy + wn)

Re{det[C]}
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Table 13 (continued )

J.T. Chen et al. / Engineering Analysis with Boundary Elements 1 (11in) nnn-am

Equation ur LM
Exact sol. J J
True Spurious True Spurious
Indicator 5 Jn i=12..n Jn i=12..n Jn i=12...n Ji i=12...n
det[l]
Indicator 6 Jn i=12..n Y, i=12..n Jn i=12..n Ji i=12..n
det[R]
Where g, = \/J2 + Y2, 0, = tan= (Yo /J,), . P = \/J 2 + Y'2, and @, = tan=' (Y}, /J,,).
Table 14
Eigenequations for the 2-D circular membrane subject to the Neumann BC
Equation ur LM
Exact sol. J J
True Spurious True Spurious
Indicator 2 JoU - I n-1VT'n None JoU S n-1VT'n None
Abs{det[C]}
Indicator 3 JoU'r-Tn-1YTn sin(@p + 250710 + 0n) JoU'r-Tn-1Tn sin(@g + 23421 @y + wn)
Im{det[C]}
Indicator 4 JoU .- I n-1)I'n cos(0o + 25021 0y + 0n) JoU'r-- n1Vd'n cos(wo + 25 021wy + wn)
Re{det[C]}
Indicator 5 Ji i=12...n Jiw i=12...n Ji i=12...n Ji i=12..n
det[I]
Indicator 6 Ji i=12...n Y, i=12...n Ji i=12...n Y, i=12...n
det[R]
Where g, = \/J2 + Y2, 0, = tan= (Yo /J,), P = \/J2 + V', and @, = tan= (Y}, /J).
Table 15(a)
Occurring mechanism of 1-D true and spurious eigenequations by using the real-part and imaginary-part BEMs
Dirichlet Neumann Mixed-type
UT (imaginary-part) {sin(kL)}[sin(kL)] = O {sin(kL)}[sin(kL)] = O {cos(k)}[sin(k)] = O
LM (imaginary-part) {sin(kL)}[sin(kL)] = O {sin(kL)}[sin(kL)] = O {cos(k)}[sin(k)] = 0
UT (real-part) {sin(kL)}[sin(kL)] = O {sin(kL)}[sin(kL)] = O {cos(k)}[sin(k)] = 0
LM (real-part) {sin(kL)}[sin(kL)] = O {sin(kL)}[sin(kL)] = O {cos(k)}[sin(k)] = O
Where the equations inside { } and [ ] denote the true and spurious eigenequations, respectively.
o0
TR z —m)! 7 t0) = cos(nf) + q,, sin(nb)), 54
U'=ik > 2n+1) Y &mmcosim(¢ — d)] © g[p" (6) + gy sin(n0)] (54)
n=0 m=0
xP™M(cos )P (cos 0)j,(kp)h'P(kp), p>p, for the 2-D case, and
Us,x) = y ey . (52)
U=ik> (2n+1 em B cos[m(¢p — SN
2D 2 em Gy COSIM(P = P u®,) =33 tmnPMcosO)][cosme, (55)
AN - 2 - n=0 m=0
xP™(cos 0)P™(cos 0)j,(kp)h'P (kp), p>p,
o0 o0
- = _ m
where x = (p,¢,0) and s = (5, $.0), j, and h'? are the nth order (0 ¢) = > tmaPycos(O)][cos(map)], (56)
n=0 m=0

spherical Bessel function of the first kind and the nth order
spherical Hankel function of the second kind, respectively, and P}
is the associated Lengendre polynomial. By extending the
boundary densities of u(0), u(L), t(0) and t(L) for the 1-D case to
2-D and 3-D cases, we have

00

u(0) = [an cos(nd) + by sin(no)], (53)
n=0

for the three-dimensional case, where a,, b, p, and q,, are Fourier
coefficients, u,, and t,,, are unknown spherical coefficients.
Following the success of 1-D experience, true and spurious
eigensolutions using the six indicators for the 2-D cases are
shown in Tables 11-14. Tables 11 and 13 are for the results of
Dirichlet problem, while Tables 12 and 14 show those of Neumann
problem. The former two tables show the determinants using six
indicators, the latter two give the eigensolution. It also indicates
that spurious eigensolution occurs for both cases (Dirichlet and
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Table 15(b)
Occurring mechanism of 2-D true and spurious eigenequations by using the real-
part and imaginary-part BEMs

Dirichlet Neumann
UT (imaginary-part) =0 {Jil=o0
LM (imaginary-part) r1=o0 il=o0
UT (real-part) {3jy]=0 {JiyYl=0
LM (real-part) Byl1=o0 {Jiyl=0

Where the equations inside { } and [ ] denote the true and spurious eigenequations,
respectively.

Table 15(c)
Occurring mechanism of 3-D true and spurious eigenequations by using the real-
part and imaginary-part BEMs

Dirichlet Neumann
UT (imaginary-part) {}il=0 {"ili1=0
LM (imaginary-part) {ii'l=0 {ii’'1=0
UT (real-part) {lyl=0 {"lyl=0
LM (real-part) (ilyl1=0 {iy1=0

Where the equations inside { } and [ ] denote the true and spurious eigenequations,
respectively.

Table 16
Hilbert transform pair for the frequency-domain fundamental solutions

Real Imaginary
cos(kr) sin(kr)
Jo(kr) Yo(kr)
sin(kr) 1 — cos(kr)
r —

Neumann) when only real-part kernel is used. True and spurious
eigenequations for 1-D rod, 2-D circle and 3-D sphere are
summarized in Tables 15(a)-(c), once the real-part BEM is
employed. It is interesting to find that only sine and cosine
functions occur in the 1-D case of Table 15(a), while J, Y,J, Y' and j,
¥,j’,y' appear for the 2-D and 3-D cases of Tables 15(b) and (c). The
reason is that cosine and sine are not only the Hilbert transform
pair but they are also differentiation pair. Also the Jo and Yy are the
Hilbert transform pair. For the three-dimensional case, we have
cos(kr)/r and sin(kr)/r as the Hilbert transform pair. The Hilbert
transform pairs in Table 16 follow from the requirement of causal
effect in the time-domain. Since the frequency-domain funda-
mental solution is the Fourier transform of time-domain funda-
mental solution, the causal function in the time-domain implies
the Hilbert transform pair in the frequency domain. Therefore,
using the complex-valued kernel seems uneconomical. This is the
reason why the real-part BEM by adding one CHEEF point can save
the computation time.

7. Conclusions

A simple example of 1-D eigenproblem was demonstrated to
show that seven indicators of determinant by using the direct-
searching scheme can obtain the possible solution. Spurious
eigensolutions in the real-part BEM as well as the MRM have been
studied analytically. The CHEEF concept in conjunction with the
SVD updating technique was applied to filter out spurious
eigenvalues. Possible failure points were also examined. Also,
the four influence matrices in the dual BEM were all decomposed
into SVD form. Common true and spurious eigenvectors were
found in the unitary vectors of four matrices. It is interesting that

true and spurious eigenvectors are imbedded in the right and left
unitary vectors in the SVD, respectively. Extensions to 2-D and 3-D
cases were also made. The Hilbert transform pair for the real and
imaginary kernel was also examined. The sequence of 1-D
examples gives a real good insight in the topic of spurious
eigensolutions.

Uncited reference

[37].
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