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Abstract

In this paper, a dual multiple reciprocity method (MRM) is employed to solve the natural frequencies and natural modes for an Euler–
Bernoulli beam. It is found that the conventional MRM using an essential integral equation results in spurious eigenvalues and modes. By
using the natural integral equation of dual MRM, the spurious eigendata can be filtered out. Four numerical examples are given to verify the
validity of the present formulation. In one of these four examples, fixed–fixed supported beam, it is found that the boundary eigenvector
cannot be determined by either the essential or natural integral equation alone since the rank of the corresponding leading coefficient matrix is
insufficient. The singular value decomposition method is then used to solve the eigenproblem after combining the essential and natural
integral equations. This method can avoid the spurious eigenvalue problem and possible indeterminancy of boundary eigenvectors at the
same time.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Dual BEM has been applied in boundary value problems with a degenerate boundary [1–5], corner problem [6], exterior
problem [7] and error estimation for adaptive mesh generation. By combining the singular integral equation in conventional
BEM and the hypersingular integral equation, many problems can be solved more directly and efficiently. The roles of the
hypersingular integral equation in BEM were reviewed in Ref. [8,18].

For a Helmholtz equation, the complex fundamental solution has been employed to solve eigenproblems [11]. To avoid
computation in the domain of a complex number, the multiple reciprocity method (MRM) has been employed to solve the
Helmholtz problem in the real domain [12–14]. In this algorithm, the Helmholtz equation is treated as a Poisson equation with
an external source; therefore, the fundamental solution of the Laplace equation is considered. However, the domain integral is
present due to the integration of the external source. MRM can transform this domain integral into boundary integrals
iteratively such that the domain cell is not necessary when the remainder term of the domain integral can be neglected. In
the literature, the conventional singular integral equation (essential integral equation) was used only in MRM [12]. In Ref. [8],
the role of the hypersingular integral equation (natural integral equation) in MRM was discussed and applied to deal with
spurious eigenvalues and modes for a rod. The terms of essential and natural integral equations are named according to the
nature of the field quntities concerned, where the equation with the primary field is named as the essential integral equation and
the equation with the secondary field is named as the natural integral equation. This will be explained in detail later. Kamiya et
al. [11] found, using a two dimensional case, that the kernels in MRM were no more than real parts of the kernels in the
complex-valued formulation. Yeih et al. [15] proved that MRM can be constructed such that it is fully equivalent to complex-
valued formulation by adding a complex constant into the zeroth fundamental solution for the Laplace operator when the
radiation condition is satisfied. Further, they clearly explained why the spurious eigenvalue problem is encountered in the
conventional dual MRM.

In this paper, the role of the hypersingular integral equation for the natural frequencies and modes of an Euler–Bernoulli
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beam using dual MRM is examined. The spurious eigenvalue problem is also encountered in this probelm, and combined use
of equations derived from dual MRM can help us to filter out the spurious eigenvalues in a way similar to that in the work of
Chen et al. [8]. Further, there exist more equations than unknowns when one determines the boundary eigenvectors under the
framework of the dual MRM. Unfortunately, either the essential integral equations or the natural integral equations may fail in
some special cases since the rank of the leading coefficient matrix is insufficient. To solve the eigenproblem more efficiently,
the singular value decomposition method (SVD) is adopted. The SVD method can avoid the spurious eigenvalue problem and
find the boundary eigenvector more efficiently in the sense of the least square error. Four examples will be solved using the
dual MRM to demonstrate the validity of the current research. The reason why we select a one-dimensional structure as the
beginning point of our study is that the analytical solution of 1D structures can be easily obtained, thus one can easily check
the numerical solutions with analytical ones. Phenomena such as spurious eigenvalues can be easily checked out and explained
in the one-dimensional structure, which may not be so easy to notice when one begins with 2D or 3D complicated strctures. A
way to filter out the spurious eigenvalues proposed in this paper is based on the theory of linear algbra; therefore, this method
can be easily applied to 2D or 3D structures without any difficulty. Although only a one-dimensional beam problem is used to
show the validity of the proposed method, the extension from 1D cases to 2D or 3D cases has no difficulty theoretically. Some
extension work of the proposed method to solve the natural eigenfrequencies and judge their multiplicities for the membrane
was carried out [9,10,19] at the same time. This study can be viewed as the prelude of future extended work to higher
dimensional structures.

2. Problem statement and analytical derivations

Consider a one-dimensional Euler–Bernoulli beam vibration problem with the following governing equation:

d4u�x�
dx4 2 lu�x� � 0; 0 # x # 1 �1�

wherel andu(x) denote the eigenvalue and eigenmode, respectively. Without loss of generality, it is assumed that the beam
has a unit length.

Four examples are considered as follows:

Case 1: A simply supported beam. Boundary conditions are given asu(0) � 0, u00(0) � 0, u(1) � 0 andu00(1) � 0, where0

denotes differentiation with respect tox.

Case 2: A cantilever beam. Boundary conditions are given asu(0) � 0, u0(0) � 0, u00(1) � 0 andu0 00(1) � 0.

Case 3: A fixed-roller supported beam. Boundary conditions are given asu(0) � 0, u0(0) � 0, u(1) � 0 andu00(1) � 0.

Case 4: A fixed-fixed supported beam. Boundary conditions are given asu(0) � 0, u0(0) � 0, u(1) � 0 andu0(1) � 0.
Consider an auxilliary system with a fundamental solution satisfying

d4U�x; s�
dx4 � d�x 2 s�; 2∞ , x , ∞ �2�

whereU(x,s) is a fundamental solution expressed as

U�x; s� � 1
12

ux 2 su3 � U�0��x; s� �3�

In the above expression,U(0)(x,s) is called the zeroth-order fundamental solution.
By integrating by parts, we have

Z1

0
74U�0��x; s�u�x�dx�

Z1

0
U�0��x; s�74u�x�dx

1 u�x� d
3U�0��x; s�

dx3 2
du�x�

dx
d2U�0��x; s�

dx2 1
d2u�x�

dx2

dU�0��x; s�
dx

2
d3u�x�

dx3 U�0��x; s�
" #

ux�1
x�0 �4�
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By transforming the domain integral term on the right hand side of the equal sign in Eq. (4), we have

D�0� �
Z1

0
U�0��x; s�74u�x�dx�

Z1

0
74U�1��x; s�b�0�dx�

Z1

0
U�1��x; s�74b�0�dx

1 b�0�
d3U�1��x; s�

dx3 2
db�0�

dx
d2U�1��x; s�

dx2 1
d2b�0�

dx2

dU�1��x; s�
dx

2
d3b�0�

dx3 U�1��x; s�
" #

ux�1
x�0 �5�

where

74U�1��x; s� � U�0��x; s�

b�0� � 74u�x� � lu�x�
By transforming the domain integral term on the right hand side of the equal sign in Eq. (5) again, we have

D�1� �
Z1

0
U�1��x; s�74b�0�dx�

Z1

0
74U�2��x; s�b�1�dx�

Z1

0
U�2��x; s�74b�1�dx

1 b�1�
d3U�2��x; s�

dx3 2
db�1�

dx
d2U�2��x; s�

dx2 1
d2b�1�

dx2

dU�2��x; s�
dx

2
d3b�1�

dx3 U�2��x; s�
" #

ux�1
x�0 �6�

where

74U�2��x; s� � U�1��x; s�

b�1� � 74b�0� � l�74u�x�� � �l�2u�x�
Repeating the above process, many boundary terms appear except for one remainder of the domain integral as follows:

D�0� �
XN
j�0

b�j�
d3U�j11��x; s�

dx3 2
db�j�

dx
d2U�j11��x; s�

dx2 1
d2b�j�

dx2

dU�j11��x; s�
dx

2
d3b�j�

dx3 U�j11��x; s�
" #

ux�1
x�0 1 RN11 �7�

whereRN11 is a remainder term, and the body source term and remainder term are found to be

b�j��x� � �l��j11�u�x� �8�

db�j��x�
dx

� �l��j11�u0�x� �9�

RN11 ;
Z1

0
U�N11��x; s�74b�N�dx �10�

The primary fields,u(s) andu0(s), and secondary fields,u00(s) andu000(s), can be expressed as

u�s� �
(

u�x� 2
3U�0��x; s�

2x3 2
du�x�

dx
22U�0��x; s�

2x2 1
d2u�x�

dx2

2U�0��x; s�
2x

2
d3u�x�

dx3 U�0��x; s�

1
XN
j�0

"
b�j�

23U�j11��x; s�
2x3 2

db�j�

dx
22U�j11��x; s�

2x2 1
d2b�j�

dx2

2U�j11��x; s�
2x

2
d3b�j�

dx3 U�j11��x; s�
#)

ux�1
x�0 1 RN11 �11�

u0�s� �
(

u�x� 2
4U�0��x; s�
2x32s

2
du�x�

dx
23U�0��x; s�

2x22s
1

d2u�x�
dx2

22U�0��x; s�
2x2s

2
d3u�x�

dx3

2U�0��x; s�
2s

1
XN
j�0

"
b�j�

24U�j11��x; s�
2x32s

2
db�j�

dx
23U�j11��x; s�

2x22s
1

d2b�j�

dx2

22U�j11��x; s�
2x2s

2
d3b�j�

dx3

2U�j11��x; s�
2s

#)
ux�1
x�0 1 R0N11 �12�
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u00�s� �
(

u�x� 2
5U�0��x; s�
2x32s2 2

du�x�
dx

24U�0��x; s�
2x22s2 1

d2u�x�
dx2

23U�0��x; s�
2x2s2 2

d3u�x�
dx3

22U�0��x; s�
2s2

1
XN
j�0

"
b�j�

25U�j11��x; s�
2x32s2 2

db�j�

dx
24U�j11��x; s�

2x22s2 1
d2b�j�

dx2

23U�j11��x; s�
2x2s2 2

d3b�j�

dx3

22U�j11��x; s�
2s2

#)
ux�1
x�0 1 R00N11 �13�

u000�s� �
(

u�x� 2
6U�0��x; s�
2x32s3 2

du�x�
dx

25U�0��x; s�
2x22s3 1

d2u�x�
dx2

24U�0��x; s�
2x2s3 2

d3u�x�
dx3

23U�0��x; s�
2s3

1
XN
j�0

"
b�j�

26U�j11��x; s�
2x32s3 2

db�j�

dx
25U�j11��x; s�

2x22s3 1
d2b�j�

dx2

24U�j11��x; s�
2x2s3 2

d3b�j�

dx3

23U�j11��x; s�
2s3

#)
ux�1
x�0 1 R000N11 �14�

whereR0N11, R00N11 andR0 00N11 are the first, second, and third derivatives ofRN11 with respect tos, and the explicit forms for the
kernel functions are shown in Table 1 and defined as

U�j11�
x �x; s� � 2{ U�j11��x; s�}

2x
�15�

U�j11�
xx �x; s� � 22{ U�j11��x; s�}

2x2 �16�

U�j11�
xxx �x; s� � 23{ U�j11��x; s�}

2x3 �17�

U�j11�
s �x; s� � 2{ U�j11��x; s�}

2s
�18�

U�j11�
xs �x; s� � 22{ U�j11��x; s�}

2x2s
�19�
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Table 1
Explicit forms for the kernel functions

Kernel x . s x , s Kernel x . s x , s

U(j11)(x,s)
1
2

r �4j17�

�4j 1 7�! �j $ 0� 2
1
2

r �4j17�

�4j 1 7�! �j $ 0� 22U�j11��x; s�
2s2

1
2

r �4j15�

�4j 1 5�! �j $ 0� 2
1
2

r �4j15�

�4j 1 5�! �j $ 0�

2U�j11��x; s�
2x

1
2

r �4j16�

�4j 1 6�! �j $ 0� 2
1
2

r �4j16�

�4j 1 6�! �j $ 0� 23U�j11��x; s�
2x2s2

1
2

r �4j14�

�4j 1 4�! �j $ 0� 2
1
2

r �4j14�

�4j 1 4�! �j $ 0�

22U�j11��x; s�
2x2

1
2

r �4j15�

�4j 1 5�! �j $ 0� 2
1
2

r �4j15�

�4j 1 5�! �j $ 0� 24U�j11��x; s�
2x22s2

1
2

r �4j13�

�4j 1 3�! �j $ 0� 2
1
2

r �4j13�

�4j 1 3�! �j $ 0�

23U�j11��x; s�
2x3

1
2

r �4j14�

�4j 1 4�! �j $ 0� 2
1
2

r �4j14�

�4j 1 4�! �j $ 0� 25U�j11��x; s�
2x32s2

1
2

r �4j12�

�4j 1 2�! �j $ 0� 2
1
2

r �4j12�

�4j 1 2�! �j $ 0�

2U�j11��x; s�
2s

2
1
2

r �4j16�

�4j 1 6�! �j $ 0� 1
2

r �4j16�

�4j 1 6�! �j $ 0� 23U�j11��x; s�
2s3 2

1
2

r �4j14�

�4j 1 4�! �j $ 0� 1
2

r �4j14�

�4j 1 4�! �j $ 0�

22U�j11��x; s�
2x2s

2
1
2

r �4j15�

�4j 1 5�! �j $ 0� 1
2

r �4j15�

�4j 1 5�! �j $ 0� 24U�j11��x; s�
2x2s3 2

1
2

r �4j13�

�4j 1 3�! �j $ 0� 1
2

r �4j13�

�4j 1 3�! �j $ 0�

23U�j11��x; s�
2x22s

2
1
2

r �4j14�

�4j 1 4�! �j $ 0� 1
2

r �4j14�

�4j 1 4�! �j $ 0� 25U�j11��x; s�
2x22s3 2

1
2

r �4j12�

�4j 1 2�! �j $ 0� 1
2

r �4j12�

�4j 1 2�! �j $ 0�

24U�j11��x; s�
2x32s

2
1
2

r �4j13�

�4j 1 3�! �j $ 0� 1
2

r �4j13�

�4j 1 3�! �j $ 0� 26U�j11��x; s�
2x32s3 2

1
2

r �4j11�

�4j 1 1�! �j $ 0� 1
2

r �4j11�

�4j 1 1�! �j $ 0�



U�j11�
xxs �x; s� � 23{ U�j11��x; s�}

2x22s
�20�

U�j11�
xxxs �x; s� � 24{ U�j11��x; s�}

2x32s
�21�

U�j11�
ss �x; s� � 22{ U�j11��x; s�}

2s2 �22�

U�j11�
xss �x; s� � 23{ U�j11��x; s�}

2x2s2 �23�

U�j11�
xxss �x; s� � 24{ U�j11��x; s�}

2x22s2 �24�

U�j11�
xxxss�x; s� � 25{ U�j11��x; s�}

2x32s2 �25�

U�j11�
sss �x; s� � 23{ U�j11��x; s�}

2s3 �26�

U�j11�
xsss �x; s� � 24{ U�j11��x; s�}

2x2s3 �27�

U�j11�
xxsss�x; s� � 25{ U�j11��x; s�}

2x22s3 �28�

U�j11�
xxxsss�x; s� � 26{ U�j11��x; s�}

2x32s3 �29�

Eqs. (11) and (12) with Eqs. (13) and (14) comprise the dual equations for MRM. The first two are called the essential
integral equations, the last two, the natural integral equations. The terms of essential integral equations and natural integral
equations are named according to the field qunatities concerned, equations with primary field quantities,u(s) andu0(s), are
called the essential integral equations and in the same way equations with secondary field quantities,u00(s) andu000(s), are called
the natural integral equations.

By moving the field point close to the boundary, the dual BEM can be derived as follows:

U�0�xxxu 2 U�0�xx ux 1 U�0�x uxx 2 U�0�uxxx�
XN
i�1

�U�i�xxx�l�u 2 U�i�xx�l�ux 1 U�i�x �l�uxx 2 U�i��l�uxxx� �30�

U�0�xxxsu 2 U�0�xxsux 1 U�0�xs uxx 2 U�0�s uxxx�
XN
i�1

�U�i�xxxs�l�u 2 U�i�xxs�l�ux 1 U�i�xs�l�uxx 2 U�i�s �l�uxxx� �31�

U�0�xxxssu 2 U�0�xxssux 1 U�0�xssuxx 2 U�0�ss uxxx�
XN
i�1

�U�i�xxxss�l�u 2 U�i�xxss�l�ux 1 U�i�xss�l�uxx 2 U�i�ss�l�uxxx� �32�

U�0�xxxsssu 2 U�0�xxsssux 1 U�0�xsssuxx 2 U�0�sssuxxx�
XN
i�1

�U�i�xxxsss�l�u 2 U�i�xxsss�l�ux 1 U�i�xsss�l�uxx 2 U�i�sss�l�uxxx� �33�

whereu, ux, uxx anduxxx are the column vectors of the boundary data.
The explict forms of the two groups of equations, the essential integral equation constructed by means of Eqs. (30) and (31)
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and the natural integral equation constructed by means of Eqs. (32) and (33), can be found to be

1 1 U�0�xxx�0;01� 2U�0�xxx�1;01� 2U�0�xx �0;01� U�0�xx �1;01�
U�0�xxx�0; 12� 1 2 U�0�xxx�1;12� 2U�0�xx �0;12� U�0�xx �1;12�
U�0�xxxs�0;01� 2U�0�xxxs�1; 01� 1 2 U�0�xxs�0;01� U�0�xxs�1; 01�
U�0�xxxs�0;12� 2U�0�xxxs�1; 12� 2U�0�xxs�0;12� 1 1 U�0�xxs�1;12�

26666664

37777775
u�0�
u�1�
ux�0�
ux�1�

8>>>>><>>>>>:

9>>>>>=>>>>>;

1

U�0�x �0; 01� 2U�0�x �1;01� 2U�0��0;01� U�0��1;01�
U�0�x �0; 12� 2U�0�x �1;12� 2U�0��0;12� U�0��1;12�
U�0�xs �0; 01� 2U�0�xs �1;01� 2U�0�s �0;01� U�0�s �1;01�
U�0�xs �0; 12� 2U�0�xs �1;12� 2U�0�s �0;12� U�0�s �1;12�

26666664

37777775
uxx�0�
uxx�1�
uxxx�0�
uxxx�1�

8>>>>><>>>>>:

9>>>>>=>>>>>;

�
XN
j�0

�l�j11

2U�j11�
xxx �0; 01� U�j11�

xxx �1;01� U�j11�
xx �0;01� 2U�j11�

xx �1;01�
2U�j11�

xxx �0; 12� U�j11�
xxx �1;12� U�j11�

xx �0;12� 2U�j11�
xx �1;12�

2U�j11�
xxxs �0; 01� U�j11�

xxxs �1;01� U�j11�
xxs �0;01� 2U�j11�

xxs �1;01�
2U�j11�

xxxs �0; 12� U�j11�
xxxs �1;12� U�j11�

xxs �0;12� 2U�j11�
xxs �1;12�

26666664

37777775
u�0�
u�1�
ux�0�
ux�1�

8>>>>><>>>>>:

9>>>>>=>>>>>;

1
XN
j�0

�l�j11

2U�j11�
x �0;01� U�j11�

x �1; 01� U�j11��0;01� 2U�j11��1;01�
2U�j11�

x �0;12� U�j11�
x �1; 12� U�j11��0;12� 2U�j11��1;12�

2U�j11�
xs �0;01� U�j11�

xs �1; 01� U�j11�
s �0;01� 2U�j11�

s �1;01�
2U�j11�

xs �0;12� U�j11�
xs �1; 12� U�j11�

s �0;12� 2U�j11�
s �1;12�

26666664

37777775
uxx�0�
uxx�1�
uxxx�0�
uxxx�1�

8>>>>><>>>>>:

9>>>>>=>>>>>;

�34�

and

U�0�xxxss�0;01� 2U�0�xxxss�1;01� 2U�0�xxss�0;01� U�0�xxss�1;01�
U�0�xxxss�0;12� 2U�0�xxxss�1;12� 2U�0�xxss�0;12� U�0�xxss�1;12�
U�0�xxxsss�0; 01� 2U�0�xxxsss�1;01� 2U�0�xxsss�0;01� U�0�xxsss�1;01�
U�0�xxxsss�0; 12� 2U�0�xxxsss�1;12� 2U�0�xxsss�0;12� U�0�xxsss�1;12�

26666664

37777775
u�0�
u�1�
ux�0�
ux�1�

8>>>>><>>>>>:

9>>>>>=>>>>>;

1

1 1 U�0�xss�0; 01� 2U�0�xss�1;01� 2U�0�ss �0;01� U�0�ss �1; 01�
U�0�xss�0;12� 1 2 U�0�xss�1;12� 2U�0�ss �0;12� U�0�ss �1; 12�
U�0�xsss�0; 01� 2U�0�xsss�1;01� 1 2 U�0�sss�0;01� U�0�sss�1; 01�
U�0�xsss�0; 12� 2U�0�xsss�1;12� 2U�0�sss�0;12� 1 1 U�0�sss�1;12�

26666664

37777775
uxx�0�
uxx�1�
uxxx�0�
uxxx�1�

8>>>>><>>>>>:

9>>>>>=>>>>>;

�
XN
j�0

�l�j11

2U�j11�
xxxss�0; 01� U�j11�

xxxss�1;01� U�j11�
xxss �0; 01� 2U�j11�

xxss �1; 01�
2U�j11�

xxxss�0; 12� U�j11�
xxxss�1;12� U�j11�

xss �0; 12� 2U�j11�
xxss �1; 12�

2U�j11�
xxxsss�0;01� U�j11�

xxxsss�1;01� U�j11�
xxsss�0; 01� 2U�j11�

xxsss�1; 01�
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According to Eqs. (34) and (35), it is found that only seven different series are present as shown below:XN
j�0

�l�j11

�4j 1 1�! ;
XN
j�0

�l�j11

�4j 1 2�! ;
XN
j�0

�l�j11

�4j 1 3�! ;
XN
j�0

�l�j11

�4j 1 4�! ;
XN
j�0

�l�j11

�4j 1 5�! ;
XN
j�0

�l�j11

�4j 1 6�! and
XN
j�0

�l�j11

�4j 1 7�!
For clarity, we define

A�N� ;
XN
j�0

�l�j11

�4j 1 1�! �36�

B�N� ;
XN
j�0

�l�j11

�4j 1 2�! �37�

C�N� ;
XN
j�0

�l�j11

�4j 1 3�! �38�

D�N� ; 1 1
XN
j�0

�l�j11

�4j 1 4�! �39�

E�N� ; 1 1
XN
j�0

�l�j11

�4j 1 5�! �40�

F�N� ; 1 1 2
XN
j�0

�l�j11

�4j 1 6�! �41�

G�N� ; 1 1 6
XN
j�0

�l�j11

�4j 1 7�! �42�

WhenN approaches infinity, the following equations are obtained:

a ; lim
N!∞

A�N� � �l�
3
4 �sinh

��
l4
p

1 sin
��
l4
p �

2
�43�

b ; lim
N!∞

B�N� � �l�
1
2 �cosh

��
l4
p

2 cos
��
l4
p �

2
�44�

c ; lim
N!∞

C�N� � �l�
1
4 �sinh

��
l4
p

2 sin
��
l4
p �

2
�45�

d ; lim
N!∞

D�N� � �cosh
��
l4
p

1 cos
��
l4
p �

2
�46�

e ; lim
N!∞

E�N� � �sinh
��
l4
p

1 sin
��
l4
p �

2�l� 1
4

�47�

f ; lim
N!∞

F�N� � �cosh
��
l4
p

2 cos
��
l4
p �

�l� 1
2

�48�

g ; lim
N!∞

G�N� � 3�sinh
��
l4
p

2 sin
��
l4
p �

�l� 3
4

�49�

W. Yeih et al. / Engineering Analysis with Boundary Elements 23 (1999) 339–360 345



It is interesting to find that the four terms are present as follows: sinh
��
l4
p

, sin
��
l4
p

, cosh
��
l4
p

and cos
��
l4
p

. Substituting the values
of the kernel functions shown in Table 1 into Eqs. (30)–(33), we have
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3. Solving the eigenproblem by means of the essential and natural integral equations

For simplicity, a simply supported beam is studied in the following. After substituting the boundary conditions of the simply
supported beam into Eqs. (50) and (51), the dual BEM has the following essential integral and natural integral equations:

essential integral equation
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0
1
2

C 0
1
2

E

21
2

C 0
21
2

E 0

0
21
2

B
1
2

21
2

D

21
2

B 0
21
2

D
1
2

266666666666664

377777777777775

u0�0�
u0�1�
u00 0�0�
u0 00�1�

8>>>>><>>>>>:

9>>>>>=>>>>>;
�

0

0

0

0

8>>>>><>>>>>:

9>>>>>=>>>>>;
�53�

W. Yeih et al. / Engineering Analysis with Boundary Elements 23 (1999) 339–360 347

Fig. 1. Direct search of eigenvalues using the essential and natural integral equations for the simply supported beam case.



To solve the eigenproblem of Eqs. (52) and (53), the direct search method [8] can be employed to find the eigenvalues. The
result obtained using the direct search method is shown in Fig. 1 for both the essential and natural integral equation methods. It
is found that both methods find close eigenvalues numerically. Several methods, e.g. the Newton–Raphson method, can be
adopted for solving the nonlinear eigenequation as we encounter here; however, for knowing the full spectrum response the
direct search method is used in this research. Analytically speaking, eigenequations derived from both methods are the same.
However, some of these eigenvalues are spurious. To filter out the spurious eigenvalues, the essential and natural integral
equations should be used together in a way similar to the method used in [8]. After finding the eigenvalue, no matter whether it
is true or spurious, one can obtain the corresponding boundary eigenvector. Then, the eigenmode can be determined by
substituting boundary data into Eq. (11). Comparing the eigenmodes obtained by these two methods, one can find that the true
eigenvalue will result in the same eigenmodes for both methods, but that the spurious eigenvalue will result in different
eighenmodes as shown in Fig. 2. In other words, for the spurious eigenvalue, the boundary eigenvector obtained by the
essential integral equation cannot satisfy the constraints of eigenequations derived by the natural integral equation and vise
versa (although the spurious eigenvalues obtained by these two methods are very close). That is to say, only the null vector is
satisfied.

Although only the coefficient matrix for a simply supported beam has been examined, the coefficient matrix for other cases
can be found in Table 2.

For cases (1), (2) and (3), the essential and natural integral equations can successfully find the eigenvalues shown in Tables
3–5, respectively, and the spurious eigenvalues can be filtered out by the algorithm as stated above. Further, it is found that
both methods obtain the same spurious eigenvalues. An explaination for this will be given analytically in the next section and
rechecked by means of numerical experiments. The first two modes obtained by both methods are illustrated in Figs. 3–5. In all
these figures, the normalized eigenmode is plotted; i.e. the absolute value of the maximum displacement response is set to be 1.
It is seen that the numerical results show good agreement with the analytical solutions.

However, it is found that neither the essential nor the natural integral equation can successfully find the boundary eigen-
vectors for the fixed-fixed supported beam (case 4) although they can find true eigenvalues as shown in Table 6. It can easily be
seen that after substitution of boundary conditions into the equations, there are only four boundary unknowns, but there are
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Fig. 2. The first spurious eigenmodes determined using the essential and natural integral equations for the simply supported beam case.



eight equations in all. Therefore, there is no preferred choice of equations for solving this eigenproblem. Dividing the equations
into two groups, essential and natural equations, is merely a natural division in the derivation stage. Theoretically, any four
equations among these eight equations can be adopted, provided that the rank of the leading coefficient matrix is sufficient to
obtain the boundary eigenvector. (The rank should be 3 for the eigenvaluel.) The essential and natural integral equations fail to
find the boundary eigenvectors since the rank of both leading coefficient matrices from the two integral equations is only 2 for
the obtained eigenvalues. However, other equations can find the eigenvalues and boundary eigenvectors at the same time as
shown in Table 6. The first two eigenmodes obtained by the appropriate equations in Table 6 are illustrated in Fig. 6. Again,
good agreement between the numerical result and analytical solution is obtained. For the reader’s reference, the analytical
results for the eigenvalues, boundary eigenvectors and eigensolutions for all four cases are shown in Tables 7–10.

4. Analytical derivations for the eigenequation obtained using the dual MRM

According to Eqs. (43)–(49) for the case ofN! ∞, Eqs. (52) and (53) for a simply supported beam can be expressed as
follows.
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Table 2
Coefficient matrices for the essential and natural equations

Essential integral equation Natural integral equation

Simply supported beam 0
1
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1
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Essential integral equation:

0
1
2

e 0
1
12

g

21
2

e 0
21
12

g 0

1
2

21
2

d 0
21
4

f

21
2

d
1
2

21
4

f 0

266666666666664

377777777777775

u0�0�
u0�1�
u000�0�
u000�1�

8>>>>><>>>>>:

9>>>>>=>>>>>;
�

0

0

0

0

8>>>>><>>>>>:

9>>>>>=>>>>>;
�54�

In order to obtain a nontrivial solution for the boundary eigenvector, the determinant should be zero. Therefore, we have the
eigenequation

2
1

32�l�3=2 sin
��
l4
p

sinh
��
l4
p �1 2 cosh

��
l4
p

cos
��
l4
p � � 0 �55�
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Table 3
Eigensolutions for the simply supported beam case

Analytical
solution

First mode Spurious mode Second mode Spurious mode

Eigenvalues Boundary mode Eigenvalues Eigenvalues Boundary mode Eigenvalues
97.409 See Table 7 N.A. 1558.545 See Table 7 N.A.

Essential integral equation
N � 1 97.565 — N.A. 1341.535 — N.A.
N � 2 97.405 — 501.445 1439.015 — 2530.745
N � 3 97.405 — 500.565 1556.145 — 3568.315
N � 4 97.405 — 500.565 1558.535 — 3797.745
N � 5 97.405 u0�0�
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4
p � � 0

Spurious eigen equation: sinh� ���
ln

4
p �{1 2 cosh� ���

ln
4
p �cos� ���

ln
4
p �} � 0

Natural integral equation
N � 1 95.650 — N.A. N.A. — N.A.
N � 2 97.450 — 490.750 N.A. — N.A.
N � 3 97.450 — 500.450 1558.750 — N.A.
N � 4 97.450 — 500.550 1558.750 — 3858.451
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Natural integral equation:
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In the same way, we have

2
�l�1=2

2
sin

��
l4
p

sinh
��
l4
p �1 2 cosh

��
l4
p

cos
��
l4
p � � 0 �57�

The eigenequation for the simply supported beam should be sin
��
l4
p � 0. Comparing this with the one we derive from the dual

MRM, the eigenequation derived from the dual MRM has supurious eigenvalues resulting from�1 2 cosh
��
l4
p

cos
��
l4
p � � 0 as

found in either Eq. (55) or Eq. (57). It is interesting to find that both the essential and natural integral equations obtain the same
spurious eigenvalues because they have the same spurious eigenequation. The reason why the spurious eigenvalues occur has
been explained by Yeih et al. [15]. Further, only the analytical derivation for a simply supported beam is illustrated here. The
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Table 4
Eigensolutions for the cantilever beam case

Analytical
solution

First mode Second mode Spurious mode Spurious mode

Eigenvalues Boundary mode Eigenvalues Boundary mode Eigenvalues Eigenvalues
12.360 See Table 8 485.481 See Table 8 N.A. N.A.

Essential integral equation
N � 1 12.365 — — N.A. N.A.
N � 2 12.365 — 483.715 — 500.755 N.A.
N � 3 12.365 — 485.505 — 500.565 3716.855
N � 4 12.365 — 485.515 — 500.565 3802.135
N � 5 12.365 u�1�
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4
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4
p �cos� ���
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4
p �2 1� 0

Natural integral equation
N � 1 12.365 — — N.A. N.A.
N � 2 12.365 — 483.715 — 521.075 N.A.
N � 3 12.365 — 485.505 — 500.755 2883.855
N � 4 12.365 — 485.515 — 500.565 3716.825
N � 5 12.365 u�1�
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corresponding eigenequations and spurious eigenequations are shown in Tables 3–6. It should be noted here that no spurious
eigenvalue problem occurs in the fixed-fixed supported beam case.

After obtaining the boundary eigenvector, the representation for the displacement can be expressed as follows:

u�s� � �H1�s� H2�s� H3�s� H4�s� H5�s� H6�s� H7�s� H8�s� �

u�0�
u�1�
u0�0�
u0�1�
u00�0�
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u000�0�
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8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
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where

H1�s� ;
1
2

cosh
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p �2s�1 cos
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p �2s�

2
2 1

 !
�59�
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Table 5
Eigensolutions for the fixed-roller supported beam case

Analytical
solution

First mode Spurious mode Second mode Spurious mode

Eigenvalues Boundary mode Eigenvalues Eigenvalues Boundary mode Eigenvalues
237.721 See Table 9 N.A. 2496.487 See Table 9 N.A.

Essential integral equation
N � 1 241.050 — 521.080 N.A. — N.A.
N � 2 237.750 — 500.760 N.A. — N.A.
N � 3 237.730 — 500.570 2473.925 — 3716.860
N � 4 237.730 — 500.570 2496.240 — 3802.140
N � 5 237.730 u0�1�

u00�0�
u000�0�
u000�1�

8>>>>><>>>>>:

9>>>>>=>>>>>;
�

3:80× 1022

22:05× 1021

8:06× 1021

25:54× 1021

8>>>>><>>>>>:

9>>>>>=>>>>>;

500.570 2496.500 u0�1�
u0�0�
u000�0�
u000�1�

8>>>>><>>>>>:

9>>>>>=>>>>>;
�

1:15× 1022

1:15× 1021

28:10× 1021

5:75× 1021

8>>>>><>>>>>:

9>>>>>=>>>>>;

3803.570

True eigen equation: cos� ���
ln

4
p �sinh� ���

ln
4
p �2 cosh� ���

ln
4
p �sin� ���

ln
4
p � � 0 ‘

Spurious eigen equation: cosh� ���
ln

4
p �cos� ���

ln
4
p �2 1� 0

Natural integral equation
N � 1 219.450 — N.A. N.A. — N.A.
N � 2 237.450 — 498.580 N.A. — N.A.
N � 3 237.730 — 500.560 N.A. — 3792.960
N � 4 237.730 — 500.565 2499.24 — 3816.940
N � 5 237.730 u0�1�

u00�0�
u000�0�
u000�1�

8>>>>><>>>>>:

9>>>>>=>>>>>;
�

3:80× 1022

22:05× 1021

8:06× 1021

25:54× 1021

8>>>>><>>>>>:

9>>>>>=>>>>>;

500.570 2496.51 u0�1�
u0�0�
u000�0�
u000�1�

8>>>>><>>>>>:

9>>>>>=>>>>>;
�

1:15× 1022

1:15× 1021

28:10× 1021

5:75× 1021

8>>>>><>>>>>:

9>>>>>=>>>>>;

3803.680

True eigen equation: cos� ���
ln

4
p �sinh� ���

ln
4
p �2 cosh� ���

ln
4
p �sin� ���

ln
4
p � � 0

Spurious eigen equation: cosh� ���
ln

4
p �cos� ���

ln
4
p �2 1� 0



H2�s� ;
1
2

cosh
��
l4
p �1 2 s�1 cos

��
l4
p �1 2 s�

2
2 1

 !
�60�

H3�s� ;
21
2

sinh
��
l4
p �2s�1 sin

��
l4
p �2s�

2�l1=4� 2 1

 !
�61�

H4�s� ;
21
2

sinh
��
l4
p �1 2 s�1 sin

��
l4
p �1 2 s�

2�l1=4� 2 1

 !
�62�

H5�s� ;
1
4

cosh
��
l4
p �2s�2 cos

��
l4
p �2s�

l1=2 2 1

 !
�63�

H6�s� ;
1
4

cosh
��
l4
p �1 2 s�2 cos

��
l4
p �1 2 s�

l1=2 2 1

 !
�64�

H7�s� ;
21
12

3�sinh
��
l4
p �2s�1 sin

��
l4
p �2s��

l3=4 2 1

 !
�65�

H8�s� ;
21
12

3�sinh
��
l4
p �1 2 s�1 sin

��
l4
p �1 2 s��

l3=4 2 1

 !
�66�

It is interesting to find that only five independent functions are provided according to Eqs. (59)–(66).
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Fig. 3. The first two eigenmodes determined using the essential and natural integral equations for the simply supported beam case.



5. Determination of the eigenproblem using the SVD method

After substituting the homogeneous boundary conditions for both the essential and natural integral equations, the eigen-
problem in general can be expressed as

�A�l��4×4x4×1 � 0 �67�
where A(l) is the leading coefficient matrix function ofl, and x is the boundary eigenvector. Whenl is equal to the
eigenvalue, the determinant ofA is zero, which means that the rank ofA must be at most equal to 3 in order to have a
nontrivial solution. We should remember that we have in total eight equations. Therefore, the boundary eigenvectors should
satisfy all eight equations although we obtain the eigenvalues from four selected equations. It has been mentioned above that
the spurious boundary eiegnvectors corresponding to the spurious eigenvalues cannot satisfy the remaining eigenequations.
This means that the only eigensolution corresponding to the spurious eigenvalues is a null vector since the matrix ofA8×4 has a
rank of 4. In another words, a selection of four equations which has a rank of 4 is possible. However, when we select a special
group of equations, the rank of the system of equations may be reduced by one order, which may mislead us and cause us to
believe it is a true eigenvalue. It is quite interesting to ask ourselves a question: can one determine the true eigenvalues using all
eight equations without information from the eigenmodes? This question will be answered in this section.

To determine the boundary eigenvectorx, a standard procedure is to let one element in the vector ofx be equal to one and
reduce the equation to

�A�3×3x3×1 � b3×1 �68�
Then, the remaining components in the boundary eigenvector can be determined. However, the above-mentioned algorithm is
true only when the rank of the leading coefficient matrix,A, is equal to 3. When the rank of the leading coefficient matrix is
lower than 3, the algorithm fails.

In the fixed-fixed supported beam case, it is found that the rank of the leading coefficient matrix in either the essential or
natural equation is equal to 2. This means that the system of equations appearing in either the essential or the natural equation is
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Fig. 4. The first two eigenmodes determined using the essential and natural integral equations for the cantilever beam case.



highly dependent, so that the boundary eigenvector can be chosen arbitrary with a nullity of 2. As mentioned above, the way in
which we divide the equations into two groups, essential and natural equations, is merely a natural division in the derivation. In
general, the boundary eigenvector should satisfy all eight equations. Therefore, we have more equations than unknowns in this
framework.

As mentioned previously, the conventional method of finding the eigenvalues and corresponding boundary eigenvectors
may encounter two difficulties: the spurious eigenvalue problem and the undeterminancy of boundary eigenvectors. Here, we
propose the singular value decomposition method (SVD) to solve these two difficulties at the same time. A brief introduction to
SVD is given next.

Consider a linear algebra probelm with more equations than unknowns:

�A�m×nxn×1 � bm×1; m . n �69�
wherem is the number of equations,n is the number of unknowns andA is the leading matrix, which can be decomposed into

�A�m×n � Um×mSm×nVp
n×n �70�

Here,U is a left unitary matrix constructed by the left singular vectors,S is a diagonal matrix which has singular values
s1,s2,…,sn allocated in the diagonal line as

S1 �

s1
… 0

..

.
]

..

.

0 … sn

..

.
]

..

.

0 … 0

2666666666664

3777777777775
; m . n �71�
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Fig. 5. The first two eigenmodes determined using the essential and natural integral equations for the fixed-roller supported beam case.



in which s1 $ s2… $ sn and V* is the complex conjugate transpose of a right unitary matrix constructed by the right
singular vectors. As we can see in Eq. (71), there are at mostn nonzero singular values. This means that we can find at most
n linear independent equations in the system of equations. If we havep zero singular values (0# p # n), this means that the
rank of the system of equations is equal ton 2 p. However, the singular value may be very close to zero numerically,
resulting in rank deficiency. For a general eigenproblem as shown in this paper, the eigenvalues will cause the rank to be
n 2 1 (i.e. 3).

Determining the eigenvalues of the system of equations has now been transformed into finding the values ofl which make
the rank of the leading coefficient matrix 3. This means that whenm� 8, n� 4 andb4×1� 0, the eigenvalues will makep� 1,
such that the minimum singular value must be zero or very close to zero.

Let us take the simply supported beam as an example; the result of the direct search method based on the SVD method is
plotted in Fig. 7. It is seen that the true eigenvalues cause the minimum singular value to be much lower than the otherl values.
The more the eigenvalue approaches the true value, the more the minimum singular value approaches to be zero, in which case
the rank of the matrix will be reduced to 3. However, this is not true for the spurious case.

To find the boundary eigenvector associated with the eigevalue, we can set one of the elements in the boundary eigenvector
to be one and then reduce the equations into the form of Eq. (69), whereb is now a nontrivial vector,m� 8 andn � 3.

Then, the pseudo-inverse matrix,A1 of A, is expressed as

A1
n×m � Vn×nS

1
n×nUp

m×m �72�

whereS1 is constructed by taking the transpose ofS and then replacing the diagonal singular value terms with its inverse,
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1,2,3,4 497.895 22:107× 1021

0

29:776× 1021

0

8>>>>><>>>>>:

9>>>>>=>>>>>;

2

1,2,5,6 500.565 1:490× 1021

1:490× 1021

26:912× 1021

6:912× 1021

8>>>>><>>>>>:

9>>>>>=>>>>>;

3

1,2,7,8 500.015 1:488× 1021

1:488× 1021

26:913× 1021

6:913× 1021

8>>>>><>>>>>:

9>>>>>=>>>>>;

3

1,4,5,6 500.565 1:488× 1021

1:487× 1021

26:914× 1021

6:911× 1021

8>>>>><>>>>>:

9>>>>>=>>>>>;

3

1,4,5,8 500.575 1:487× 1021

1:488× 1021

26:908× 1021

6:918× 1021

8>>>>><>>>>>:

9>>>>>=>>>>>;

3

5,6,7,8 500.1 2:036× 1021

1:378× 1022

29:794× 1021

3:171× 1022

8>>>>><>>>>>:

9>>>>>=>>>>>;

2

3,4,7,8 500.565 1:488× 1021

1:488× 1021

26:913× 1021

6:913× 1021

8>>>>><>>>>>:

9>>>>>=>>>>>;

3

3,4,5,6 500.1 1:488× 1021

1:488× 1021

26:913× 1021

6:913× 1021

8>>>>><>>>>>:

9>>>>>=>>>>>;

3

2,3,7,8 500.565 1:488× 1021

1:487× 1021

26:913× 1021

6:913× 1021

8>>>>><>>>>>:

9>>>>>=>>>>>;

3

2,3,6,7 500.575 1:488× 1021

1:487× 1021

26:918× 1021

6:918× 1021

8>>>>><>>>>>:

9>>>>>=>>>>>;

3

Table 6
Rank and eigensolutions for different selections of equations for the fixed-fixed supported beam case

Equations Eigenvalues Eigenmode Rank Equations Eigenvalues Eigenmode Rank

Eqs. 1, 2, 3, 4 true eigen equation {cosh� ���
ln

4
p � cos (

���
ln

4
p �2 1g2 � 0; Eqs. 5, 6, 7, 8 true eigen equation {cosh

���
ln

4
p

cos
���
ln

4
p

2 1g2 � 0.
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Fig. 6. The first two eigenmodes determined using appropriate selection of equations and the SVD method for the fixed-fixed supported beam case.

Table 7
Analytical solutions for eigenvalues, boundary modes and eigenmodes for the simply supported beam case (*the given B.C.s.)

Simply supported beam

Boundary conditions u(0) � 0, u(1) � 0, u00(0) � 0, u00(1) � 0
ln l1 � 97.409 l2 � 1558.545
Boundary mode

u�0�
u�1�
u0�0�
u0�1�
u00�0�
u00�1�
u000�0�
u000�1�

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

0p

0p

p

2p

0p

0p

2p3

p3

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

0p

0p

2p

2p

0p

0p

2�2p�3

2�2p�3

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

Mode shape sin� ���
ln

4
p

x�
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Table 8
Analytical solutions for eigenvalues, boundary modes and eigenmodes for the cantilever beam case (* the given B.C.s)

Cantilever
Boundary conditions u(0) � 0, u0(0) � 0, u00(1) � 0, u000(1) � 0
ln l1 � 12.360 l2 � 485.481
Boundary mode

u�0�
u�1�
u0�0�
u0�1�
u00�0�
u00�1�
u000�0�
u000�1�

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

0p

2

0p

2:754

7:031

0p

214:697

0p

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

0p

22

0p

29:574

44:067

0p

2210:679

0p

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

Mode shape cosh� ���
ln

4
p

x�2 cos� ���
ln

4
p

x�2 si �sinh� ���
ln

4
p

x�2 sin� ���
ln

4
p

x��, s1 � 0.732,s2 � 1.018

Table 9
Analytical solutions for eigenvalues, boundary modes and eigenmodes for the fixed-roller supported beam case

Fixed-roller supported beam
Boundary conditions u(0) � 0, iu(1)� 0, u0(0) � 0, u00(1) � 0
ln l1 � 237.721 l2 � 2496.487
Boundary mode

u�0�
u�1�
u0�0�
u0�1�
u00�0�
u00�1�
u000�0�
u000�1�

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

0p

0p

0p

25:713

30:836

0p

2121:179

83:21

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

0p

0p

0p

9:989

99:93

0p

2706:367

2499:825

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

Mode shape cosh� ���
ln

4
p

x�2 cos� ���
ln

4
p

x�2 si �sinh� ���
ln

4
p

x�2 sin� ���
ln

4
p

x��, s1 � 1.001,s2 � 1.000

Table 10
Analytical solutions for eigenvalues, boundary modes and eigenmodes for the fixed-fixed beam case (* the given B.C.s)

Fixed-fixed supported beam
Boundary conditions u(0) � 0, u(1) � 0, u0(0) � 0, u0(1) � 0
ln l1 � 500.564 l2 � 3803.537
Boundary mode

u�0�
u�1�
u0�0�
u0�1�
u00�0�
u00�1�
u000�0�
u000�1�

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

0p

0p

0p

0p

44:75

44:75

2207:94

2207:94

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

0p

0p

0p

0p

123:34

123:34

2969:55

2969:55

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

Mode shape cosh� ���
ln

4
p

x�2 cos� ���
ln

4
p

x�2 si �sinh� ���
ln

4
p

x�2 sin� ���
ln

4
p

x��, s1 � 0.983,s2 � 1.001



expressed as

S1 �

1
s1

… 0 … 0

..

.
]

..

.
]

..

.

0 … 1
sn

… 0

266666664

377777775 m . n �73�

The above-mentioned SVD method has been proved to be equivalent to the least square error solution in determining the
unknown vector when the number of equations is larger than the number of unknowns [16]. After introducing the SVD method,
we do not need to worry about how to pick a specific group of equations such that the rank of the leading coefficient is sufficient
to solve for the eigenvector. On the other hand, we can take all eight equations into account, which apparently causes the rank
of the leading coefficient matrix to be equal to three. Thus, the eigenvector can be easily found in the sense of the least square
error. The eigenmodes determined using the SVD method are the same as those obtained using the above-mentioned method
since the boundary eigenvectors are almost the same; therefore, only the first two mode shapes for the fixed-fixed supported
beam determined using the SVD method are illustrated in Fig. 6. It can be confirmed that the SVD method can solve the
spurious eigenvalue problem and eliminate possible indeterminancy of the boundary eigenvector at the same time. For further
details concerning the SVD method, please refer to Ref. [17].

6. Concluding remarks

In this paper, we have constructed the dual equations for MRM to find the natural frequencies and modes of a beam
numerically and analytically. The role of the natural integral equation in the dual MRM has been examined and used to filter
out spurious eigendata. Also, the spurious eigenequation has been analytically derived and found to be the same for both the
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Fig. 7. Direct search of eigenvalues using SVD for the simply supported beam case.



essential and natural integral equation methods. The SVD technique can be employed to distinguish whether or not the
eigenvalue is true. Further, the SVD method has been proposed to determine the true eigenvalues and the boundary eigen-
vectors, which requires no special selection of equations. Four examples with different boundary conditions have been used to
show the validity of the present formulation. Although only a one-dimensional structure is studied in this paper, extension of
the proposed method to higher dimensional structures has being investigated.
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