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Abstract

For a potential problem, the boundary integral equation approach has been shown to yield a nonunique solution when the geometry is equal
to a degenerate scale. In this paper, the degenerate scale problem in boundary element method (BEM) is analytically studied using the
degenerate kernels and circulants. For the circular domain problem, the singular problem of the degenerate scale with radius one can be
overcome by using the hypersingular formulation instead of the singular formulation. A simple example is shown to demonstrate the failure
using the singular integral equations. To deal with the problem with a degenerate scale, a constant term is added to the fundamental solution
to obtain the unique solution and another numerical example with an annular region is also considered. © 2001 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

The boundary element method (BEM) has received much
attention not only from academic research groups [1] but
also from the engineering community [2] in recent decades.
The crack degeneracy in BEM was discussed by Cruse [1,2].
Chen and Hong [3] termed the crack surface ‘degenerate
boundary’. It is well known that rigid body motion test or
so called use of simple solution can be employed to check
the singular matrices for the strongly singular and hyper-
singular kernels for problems without degenerate bound-
aries, respectively. In this case, the singularity occurs
physically and mathematically. The nontrivial solution for
the singular matrix is found to be a rigid body term for the
interior Neumann problem. However, in some special cases,
the influence matrix of the weakly singular kernel may be
singular for the Dirichlet problem [4] when geometry is
special. The nonunique solution is not physically realizable
but results from the zero eigenvalue of the influence matrix
in integral formulation. For example, the unit circle case has
been noted by Petrosky [5] and by Jaswon and Symm [6].
The special geometry which results in a nonunique solution
for a potential problem is called degenerate scale. For
several specific boundary conditions, some studies for
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potential problems [4,7,8] and plane elasticity problems
[8—11] have been done. The difficulties due to nonunique-
ness of solutions were overcome by the necessary and
sufficient boundary integral formulation [10] and boundary
contour method [11]. However, the boundary conditions in
their cases are either the Dirichlet or mixed type and must be
constant along the circular boundary. Fictitious BEM also
has the degenerate scale problem when selecting a special
fictitious boundary, and has been proven to yield nonunique
solutions for two-dimensional potential problems [12].
Also, the degenerate scale of multiply-connected domain
problems was discussed by Tomlinson et al. [13]. Never-
theless, no general proof has been done for the degenerate
scale problem.

In this paper, many aspects, general boundary conditions,
exterior problems and multiply-connected, are all consid-
ered. The degenerate scale in BEM will be studied analyti-
cally and numerical experiments will be performed.
Degenerate kernels and circulant matrices are employed to
find the eigenvalues for the influence matrices analytically
in a discrete system for a circular problem. The singularity
pattern distributed along a ring boundary resulting in a zero
field will be determined when the ring boundary is a
degenerate scale. An annular region is also considered and
the possible degenerate scales are investigated. Also, the
role of hypersingular formulation is examined for the
degenerate scale problems in both simply-connected and
multiply-connected problems.
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Fig. 1. Potential problem for a circular region.

2. Mathematical analysis of the degenerate scale
problems for a circular problem

The governing equation for potential problem is Laplace
equation

V2u(x) =0, xin €2 (1)

where V? is the Laplace operator, {2, is the simply-
connected domain of the problem. Here, we consider the
problem with a circular region of radius a as shown in
Fig. 1. The boundary condition is the Dirichlet type, u =
it, where i is the specified boundary data. Based on the dual
boundary integral equation formulation for the potential
problems [3], we have

au(x) = C.P.V.J T (s, x)u(s) dB(s)
B(s)

- R.P.V.J U(s, x)t(s) dB(s) 2)
B(s)
at(x) = H.P.V.J M(s, x)u(s) dB(s)
B(s)

— C.P.V.J ()L(s,x)t(s) dB(s) 3)
B(s

where the kernel functions, U(s,x)=1Inr, T(s,x)=
aU(s, x)/ong, L(s,x) = oU(s,x)/dn,, M(s,x) = dT(s,x)/on,
and r = |x — s|, is the distance between x and s, RP.V,,
C.P.V. and H.P.V. denote the Reimann principle value,
Cauchy principle value and Hadamard principle value,
t(s) = du(s)/dn,, and « depends on the collocation point
(o = 27r for an interior point, & = 7 for a smooth boundary
point, « = 0 for an exterior point).

For a problem with a circular domain, the circular bound-
ary can be discretized into 2N constant elements with equal
arc length. The linear algebraic dual equations can be
obtained as shown below

[ULawson {t}anxt = [Tlanson {u}onxi @

[Llanson {t}onvxs = [MIonson {t}anxi )

where [U], [T], [L] and [M] are the four influence matrices,
{u} and {¢} are the boundary data for the primary and the
secondary fields, respectively. Based on the -circular

symmetry, the influence matrices for the discrete system
are found to be circulants with the following forms [14—17]

[~ ug up U Upn—1]
Upn—1 Uy Uy - Upn—2
[U]l=| Yan—2 HUpNn—1 Up - UpN—3 6)
L U U uz - Uup
[~ 1o R ) fon—17]
Ihn-1 Iy Iy o Dy
[T1=|] fav—2 fov—1 lo = Ton—3 7
| 7 1) I3 e I
" [ by = by7]
by ly L by
[L] = by—a byt Iy - by 8)
s I L ly
[ my my  m Mon—1 ]
mMyN— my m myn—2
[M] =] Mon—2 Mon-1 M MyN-3 9)
Ly my my e my

where the elements u,,, t,,, [, and m,,, will be elaborated on
later. The four matrices in Egs. (6)—(9) have only N + 1
different elements since rotation symmetry for the circulant
is found. Based on the separable properties for the kernels,
the kernel functions in the dual BEM can be expanded into
degenerate forms as shown below [16—18]

Ui(R’ 0;p,¢)=InR — Z %(%)m cos(m(0 — ¢)), R>p

m=1

U(s,x) = © 1 /R
Uik ip ) =tnp= > (%) costm— . p>R
m=1 m\p
(10)
TR G:p.)= 5 + > hrcosm®— ). R>p
n=1
T(s,x) =

m—1

= R
TR, 6:p, )= — ) 7

m=1

cos(m(0 — ¢)), p>R

)
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) 00 m—1

LR 6:p. )= = > Ecosm(6— ). R>p
L(s,x) = =l

. 1 & R
Lmﬁu@=;ﬁ;wmmww—@xp>R
(12)

. 00 m—1
MR 6:p.)= Y Z0rcosm(6 = $). R>p

M(S, x) = m:1 Rm—l
MR.6:p.0)= > ”;,,Tcos(mw— ¢). p>R

m=1

(13)

where ‘i’ and ‘e’ denotes the interior domain (R > p) and
the exterior domain (R < p), x = (p, ¢) and s = (R, 6) in the
polar coordinate as shown in Fig. 2. It must be noted that the
superscripts of the ‘i’ and ‘e’ kernels are used for the exterior
and interior problems to avoid the source terms, respec-
tively. Then, we have the influence coefficients in the four
matrices as shown below:

- J(m+ %)Ao

( 1)A0 U(R, 0, p, p)p dO = U°(R, 0,,: p, $)pAb,

m-y

m=0,1,2,..2N — 1 (14)
(m+ %)AO

t, = J . TR, 6;p, d)p d6 = T°(R, 6,,; p, h)pAS,
(m— §)A0

m=0,1,2,..2N — 1 (15)

m=0,1,2,..2N — 1 (16)

(m + %)Ao
M = j( Yo MR 50 00 = MR .

m=7
m=0,1,2,..2N — 1 a7)
where A@ = 27/2N and 6, = mA6. By introducing the

following bases for circulants, I, C%N,CgN,...,ng_l, we
can expand matrix [U] into

[U] = upl + uy Coy + Gy + - +upy_ Gy ' (18)
where
[0 1 0 0]
0 0 1 0
Ciy=]0 00 - 0 (19)
[ 1 0 0 - O_lowxon

Based on the similar properties for the matrices of [U] and
[Coy], we have
/\EU] =y + uyay + upal + o+ upy_ L
(20)
[=0,%x1,%2,.., =N — I,N

where /\EU] and «, are the Ith eigenvalues for [U] and [Cyy],
respectively. It is easily found that the eigenvalues and
eigenvectors for the circulants [C,y], are the roots for 2N =
1 as shown below

a, = @™ n=0,+1, %2, ..., =N~ I,N, or
(21
n=0,1,2..,2N-1

Fig. 2. Symbols for degenerate kernels.
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(b} =1 % ¢, (22)

2N—1
\ &), J

respectively. Substituting Eq. (21) into Eq. (20), we have

2N —1 2N —1
U iml(27/2N
)\E ] = Z um(al)m = Z Uy elm( 2N
m=0 m=0
2N -1 )
= U(a, 6; a,0)aAg e™A?
m=0
2N —1 ‘
=a > U%a,0,a,0)e"’A0 (23)
m=0

When N approaches infinity, the Riemann sum in Eq. (23)
can be transformed to the following integral:

21 .
N = aJ U%(a, 6;a,0) ¢"’ do (24)
0

By substituting U° kernel of Eq. (10) into Eq. (24) for the
interior problem to avoid the source term, we have

21 N 1 .
AU = J Ina— Y —cos(mb) | "’ do
i a . na cos(mb) | e

m=1

2maln a, =0
- —wﬁ, I=+1. 42, +(N-1N

Similarly, we can obtain the eigenvalues for the other
influence matrices

, 0, =0

A = (26)
—m l=*1,%2,.., (N —1),N
2, =0

ME = (27
m l=%*1,%2,.., (N - 1),N

0, 1=0

A =1 (28)

T, I=*1,%2 .., (N —1),N

a

In the eigen spectrum, one of eigenvalues of the matrix
[U] is zero when the radius a is equal to one if we use Eq. (4)
for the interior Dirichlet problem. In this case, the solution is
nonunique when a is this specific magnitude which is equal
to its degenerate scale. Instead of using Eq. (4), we can
employ Eq. (5) to avoid the zero eigenvalue because all
the eigenvalues of the influence matrix [L] are never zero
from Eq. (27) no matter what the value of radius, a, is.

Similarly, we can avoid the zero eigenvalue for the

influence matrices of exterior problem as shown below

27maln a, [=0

) _

A —wﬁ, I= 4142, +(N-1N
27, [=0

AT = (30)
m, l=*1,%2,..., (N — 1),N
0, =0

A = 31
—m, l=*1,%2,.., =N —1),N
0, =0

AT=1 32)
1= =%1,%2,.. *(N—1),N

For the exterior problem, one of eigenvalues of the matrix
[U] is zero when the radius a is equal to one if we use Eq. (4)
for the Dirichlet problem. Similarly, the solution is non-
unique when a is a specific magnitude which is equal to
its degenerate scale. Instead of using Eq. (4), we expected
to employ Eq. (5) to obtain the accurate solution. However,
in Eq. (31), one eigenvalue of the influence matrix [L] is zero.
Eq. (5) will fail no matter what the value of radius, a, is.

3. Mathematical analysis of the degenerate scale
problems for an annular problem

An annular domain composed of two concentric circles
(Fig. 3) is to be studied here with the following governing

equation:
Viux) =0, xin, (33)

where (2, is the multiply-connected domain and the
well-posed boundary conditions may be

u(x) =uort(x) =1 xonBi(r=ry) (34)

ux) =u,ort(x) =t xon By(r=r,) 35)

where B, and B, are the boundaries of the interior and
exterior circles, respectively. By collocating the point x on

Fig. 3. Potential problem for an annular region.
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it

the point (x; on ri) and the point (x, on r, ), the dual
boundary integral equations can be derived as shown below

j T(s,300 )ity 5) dB(s)—J UCs.x)i1(s) dB(s)
B,

B

+J T(s,x)us(s) dB(s)—j UCs.x)tx(s) dB(s)
B,

B,

=0, x —r (36)
JB T(s, x)uy(s) dB(s) — JB U(s, x5)t;(s) dB(s)

+ J T(s, x0)uy(s) dB(s) — J U(s, x5)t,(s) dB(s)
B,

B,
=0, x,—r (37)

and

j M(s, )i (s) dB(s)—j L(s.x)t1(s) dB(s)
B, B,

+ J M(s, x1)uy(s) dB(s) — J L(s, x;)t,(s) dB(s)
B,

B,
=0, x— r1+ (38)
j M(s,x2)uy(s) dB(s) — J L(s.x2)t1(5) dB(s)
By B,

+ J M(s, xp)u,(s) dB(s) — J L(s, x)t,(s) dB(s)
B, B,
=0, x,—7r. (39)

Discretizing the interior (B,) and exterior (B;) circles into
2N constant elements, we can transform Eq. (36)—(39) into
matrix forms

Ml 0

T, Uy T Up 151 0
= (40)

Ty Uy Ty Uplfw 0

th 0

and

23] 0

My Ly My Ly I 0
o (41)

My Ly My Ly || u 0

t 0

where the first subscript ‘i’ in Uy, Ty, L; or M;; denotes the
position of collocation point (1 for By, and 2 for B,), the
second subscript ‘j’ identifies the boundary data, u; or i
Similarly, we can obtain the eigenvalues for the influence
submatrices, respectively. The results are shown in Table 1.

When the boundary condition of the potential problem is
the Dirichlet type (u; = i, and u, = ii, are specified), Eq.
(40) and Eq. (41) reduce to

Ui Up (1 Ty T |(w
- ) (42)
Uy Uxpiln T Ty Il

and

[Lll
Ly,

823

Iy )
" ]{ “ } 43)
My | u,

In order to obtain the determinant for the assembled
matrices, we can decompose the submatrices Uj; and L;
circulants into

[U;] = [RI[T1R] ™!

Table 1

(44)

Eigenvalues for [U,-J-], [T,-j], [Ll-j] and [M,-j] in an annular problem (U = In r)

[=0 [==*1,%£2,%£3,.., N - 1,N
)\ETH] 0 —ar
A%U”J —2ar; Inr ‘%
A%TQJ 0 _ﬂ_(ri)‘ll
r
Ao =27, In ) ( ) )V\
oy s
M n
/\}TZ[] 2 W(Q)M
n
)\EUZ‘] =27, In i (rz )V\
oLy ey
M r
Al 27 m
)\EUZZ] =27y Inry 77-‘%2'
)\EMH] 0 ﬂ
r
AELH] 2 —T
)‘EMIZJ 0 ‘[| ( ) )\l\
Pl
rno\rn
A 2a(ry/ry) 777( n >\1|+1
r
A 0 i(ny
Pl
n\rn
/\ELu] 0 Tr(r_z)m—l
r
)\EMzz] 0 ﬂ
)
)\ELzz] 0 T
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Table 2
Degenerate scale for potential problems with an annular region using the
singular integral formulation (U = In r)

Table 3
Eigenvalues for [Uj], [T;], [L;] and [M;] in an annular problem (U =
Inr+c¢)

B.C. Degenerate scale [=0 l=%*1,%2, 3, ..., =N —1,N
Uy =iy, Uy = ilp rn=1 /\y“'] 0 -7
uy =iy, =10 rp =1
Uy =iy, 1 = lTl r = 1 /\}UHJ *277}"1(111 r o+ c) Tr%
7 -1
[Ly] = [RILIR] @5 A 0 _W(g)"‘
n
where R is an orthogonal matrix composed by {¢,} [19].
lihe elements in the diagonal matrices [U;] and [Lij]. are the Al —2ar(nr + o) N
eigenvalues of the [Uj;] and [L;]. Then the determinant of ”m n
the assembled matrix
[ U, Up ] A 2m 7T(LZ)M
r
Uy Up
is )\EUZ‘] —27r(Inr; + ¢) 7_I_r_l(r_z)m
_ _ i\ ry
Un Un Un Up .
det = det| _ _ " |-det|[R][R]] N 5 .
Uy Un Uy Uy ! i
U“ 1 2N — 1 AEUH] )\I[UIZ] /\EUZZ] —2mry(Inry +¢) a2
= det =TT, (46) d
Uz] U22 =0 /\l 2 /\1 2 o
. A 0 A
Similarly, we have rl
_ Lyl Lyl
Ly Ly ol )‘E oA (Lu1] -
det[ = [ det 1t @n N 2 ™
Ly Ly 1=0 AN
s /\}MIZJ 0 m r il
where Al is the Ith eigenvalue for matrix [A]. For the above ”Z(Z)
Dirichlet problem, the determinant of the influence matrix is
zero as r; = 1 since /\E)U“])\([)U“] - /\([)U‘z]/\BUZ‘] =0 in Eq. AlLe! 2m(rolry) G
(46) if singular equation is used. Obviously, it yields a W(Z
non-unique solution when r is a specific magnitude which
is equal to the degenerate scale. Table 2 shows the Albn] 0

degenerate scale for the problems with different boundary
conditions of the mixed type u; = iy, t, =1, or t; =1y,
u, = il,. According to the eigenspectrum in Eq. (25)—-(28),
we can avoid the degenerate scale problem and obtain the
accurate solution by using the hypersingular equation Eq.
(3) for the interior problem. However, it still yields a non-
unique solution no matter what the radius r; is chosen for
multiply-connected problem. It is surprising that Eq. (3)
fails to solve the potential problems in an annular domain
no matter what the boundary condition is the Dirichlet or
mixed, and no matter what the radiuses, r, and r, are.

To deal with the degenerate scale problem, we can also
superimpose a constant term c in the U kernel [20]. The
corresponding eigenvalues for the submatrices are shown
in Table 3. Thus, the degenerate scale using the modified
kernel moves to e ¢ (Table 4) instead of 1 using the original
kernel.

Based on the zero eigenvalue check, we can determine
the degenerate scale in the above sections. Now we will

1 (Vz )M
a2

n\n
/\ELm] 0 7T( r )M—l

/\EMzz] 0 M
P

/\ELZZ] 0 ™

propose an alternative way to find the special geometry. If
we superimpose the single-layer potential ¢(s) along the
boundary B, we have

u(x) = J U(s, x)D(s) dB(s) (48)
B

1(x) = J L(s, x)P(s) dB(s) (49)
B
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Table 4
Degenerate scales for potential problems with an annular region using the
singular formulation (U =Inr + ¢)

B.C. Degenerate scale
_ _ e

up = uy, Uy = Uy rn=e¢

=i, Hh="0h rn=e"

Uy =iy, 1 = rn=e°¢

where the single-layer density @(s) can be expressed by
series form

N

D(s) = > c;y(s) (50)
j=0

Similarly, we have

u(x) = J T (s, x)¥(s) dB(s) oy
B

H(x) = J M(s,x)¥(s) dB(s) (52)
B

where the double-layer potential ¥(s) can be represented by
series form

N
W(s) = > dji(s) (53)
j=0

The primary potential across the boundary is continuous

Table 5

825

in Eq. (48) and discontinuous in Eq. (51). The secondary
field across the boundary is discontinuous in Eq. (49) and
continuous in Eq. (52). We can obtain the primary and
secondary fields as shown in Table 5. We find that the
field in the interior domain resulting from the U kernel for
¢, distribution is equal to zero everywhere when the radius
p is equal to one. Therefore, the strength of this singularity
distribution, ¢y, cannot be determined. Then we observe that
p = 1 is the degenerate scale in the circular or the annular
problem. Similarly, we can obtain the other cases of
degenerate scales as shown in Tables 6 and 7.

4. Numerical examples for circular and annular
problems

4.1. Circular problem

We consider the interior potential problem subjected to a
circular domain (Fig. 1) with the mixed type condition as
follows

1
t(r, 0) = cos(6), r=a, — <0< 577, (r,0) € By

(54)

1
u(r, 8) = a cos(0), r=a, §7T< 0<m (r,0) €EB,

(55)

The field responses in the domain for singularity distribution ¢, or ¢, along the boundary B

Singularity Field response Field variable Related kernel Domain of interest n=20 n=12,...N
distributed across the b,(s) or r,,(s) ¢,(s) or r,(s)
on the boundary B
boundary B
R u: continuous u U D' —plnp 2£ (5 ) ncos no
n\p
n
D¢ —pInR zﬁ(%) cos né
n
t: discontinuous t L D' 0 1 (R )”’1
- — cos nb
2\p
e _ B 1 n+l

D R =5 (% ) cos nf

[ u: discontinuous T D' -1 - % (5 ) ncoq né
p
e 1 n
D 0 5 ( %) cos nf
t: continuous t M D' 0 - % ( R )ncos no
p
D¢ 0 n (
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Table 6
The degenerate scales in the direct BEM

Elements 25 (2001) 819-828

Domain of interest Singular integral Hypersingular integral
equation (UT equation) Equation (LM equation)
Simply-connected domain Interior a=1 None

Exterior a=1

a is arbitrary

Multiply-connected domain a=1 a is arbitrary
Table 7
The degenerate scales in the fictitious BEM

Domain Single layer potential Double layer potential

method method

Simply-connected Interior a=1 None

Exterior a=1 a is arbitrary
Multiply-connected a=1 a is arbitrary

Table 8
The results for the potential problems with a circular region

u (error %) (6 = 0)

Analytical solution

Singular integral formulation

Hypersingular
integral
formulation

2N =20 a = 1.012 (degenerate scale) 1.000
a=2 2.000

0.667 (33.3%)
2.015 (0.75%)

0.975 (2.5%)
1.950 (2.5%)
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In the BEM mesh, 10 elements are distributed uniformly e
on the B; boundary, and ten elements on the B,. The gggg
analytical solutions are u(r, ) = acos(6) and t(r, 6) = A Bl e
cos(6). The numerical results are shown in Table 8. The =
degenerate scale occurs numerically at a = 1.012 instead E‘ T2
of the value a = 1 analytically. It is found that the results 21 |1T79%°7
of conventional BEM have a great error of 33% in case of
degenerate scale. Nevertheless, the hypersingular formula- SR
tion obtains the acceptable results within 3%. &3 &8

SRRE
4.2. Annular problem g |~ T
Given an annular problem with the mixed boundary E
conditions as follows: n § § § §
100 2| |ZEiz
Hx) = ———, x on B; (56) D S&R5 5
ry In (rp/ry) [J? < % PR
uy(x) = 100, xon B, &)
the analytical solution is [21] § i % §
=1 8s
u=u + In(r/r,) , p=r=r (58) < T
In (ra/r)(uy — uy) =
where 2r, = r; and u; is the potential on B;. The same TT sg9s
number of elements on the internal and exterior circles are ) P =
adopted. The results are listed in Table 9, where 2N denotes D § ﬁ § =
the number of elements. From Table 9, we find that the Lg | TOFR
errors of u; and 1, are very large in the case of degenerate
scale (r; = 1) using the singular formulation. By using the
hypersingular Eq. (3) to solve the potential problem with an
annular region, it is found that no good results can be S g
obtained even though the radius is not a degenerate scale . % 3 § 3
(r1 = 2). This indicates that hypersingular formulation fails =
for multiply-connected problems as predicting theoretically g
in Eq. (47). But we can obtain accurate results by adding a 5
constant term, 10, in the fundamental solution using the ; REEEE
fewer number of elements. Also, the results of NSBIE Hls|oonoo
method in reference of Ref. [7] are compared with and the
numerical instability can be dealt with by the proposed & it
method. & - eo =k
Ele|elQ3Q2
gl
5. Conclusions SR
=2 |g===

In this paper, we have proved why the degenerate scale is E g slg-<g<
embedded in the BEM formulation by two approaches. In £
the first approach, degenerate kernels and theory of circu- —g o
lants were employed. For the second method, a singularity ; B g 3 § 3
distribution along a degenerate scale of boundary is found to g § A=A
have zero field. For the simply connected domain of a sz
circular domain with the Dirichlet boundary condition, the £ 2l s|lcocoo
radius of one is a degenerate case if the singular integral 8
equation is used. To overcome the problem, hypersingular 2 2222
equation can be adopted. In case of the exterior problem, the 3
radius of one is a degenerate case if the singular integral - 3 e
equation is used. No matter what the radius is, it will be the o g f I
degenerate case if the hypersingular integral equation is E 2| = g 3
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used. For the multiply-connected domain with an annular
region, outer radius of one results in a nonunique solution if
the singular formulation is employed, no matter what the
inner radius is for any types of boundary conditions. The
hypersingular formulation fails for the multiply-connected
problems no matter what the inner or outer radius is. The
hypersingular equation was successfully applied to solve the
degenerate scale problem of interior problem as shown in
the illustrative example. Also, another example has been
shown that we can deal with the degenerate scale problem
and obtain the accurate solution by adding a constant in the
fundamental solution.
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