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a b s t r a c t

This presentation is mainly devoted to the research on the regularization of indirect boundary integral

equations (IBIEs) for anisotropic potential problems. Based on a new idea, a novel regularization

technique is pursued, in which the regularized IBIEs excluding the CPV and HFP integrals are

established. The proposed method has many advantages. First, it does not need to calculate multiple

integral as the Galerkin method, so it is simple and easy for programming. Second, it can compute

boundary quantities @u/@xi (i¼1,2). Third, the anisotropic problems can be solved directly without

transforming them into isotropic ones so that no inverse transform is required. Finally, the gradient

BIEs are independent of the potential BIEs and they can provide variously useful equations. Numerical

examples show that a better precision and high computational efficiency can be achieved by the

present method.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Anisotropic media always occur in nature, such as woods,
crystals and sedimentary rocks, and can also be produced artifi-
cially, such as laminated and fiber-reinforced construction and
electronic materials, cables, cylinders and tubes. Increase in the
use of these materials in structural applications has considerably
renewed the interest in the solutions to potential problems in
anisotropy. Generally, the anisotropic potential problems include
the problem of heat conduction in anisotropic media, the problem
of subsurface flow in anisotropic media, and the problem of
torsion in anisotropic uniform bar.

It is well known that the numerical analysis for anisotropic
problems has been performed by utilizing experimental, analy-
tical and numerical methods. The usual numerical method such as
the finite difference method (FDM), finite element method (FEM),
boundary element method (BEM), and meshfree method can be
applied to solve such problem. The FEM has long been a dominant
numerical technique in the simulation of many industrial
problems. However, this method requires discretizing the whole
computational domain, which is often computational costly and
ll rights reserved.
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sometimes mathematically troublesome for some complex pro-
blems. For solving the infinite domain problems, the FEM needs to
truncate infinite domain into an artificial finite region with subtle
artificial boundary conditions or absorbing layers. This truncation
can be somewhat arbitrary largely based on various trial-error or
empirical approaches. As a domain discretization technique, the
FEM is also less effective for inverse problems in which measure-
ment is often only accessible on the boundary. As an alternative
approach, the BEM has long been claimed to avoid such draw-
backs [1–4]. It is well known that the BEM can reduce the
discretization complexity by one dimension compared to that of
the FEM. It is also worth noting that the derivatives of the
physical quantity can be calculated directly from the original
boundary integral equations, so that the solution accuracy of both
the physical quantities and its derivatives has the same orders of
magnitude. In sharp contrast, the domain-type numerical meth-
ods, such as the FEM, do not have such good property.

As the price pays for such merits, the standard BEM formula-
tion, however, has to evaluate varied orders of singular integrals,
which requires great care and significant analysis. In the past
decades, tremendous effort was devoted to derive convenient
integral forms or sophisticated computational techniques for
calculating the troublesome singular integrals. These proposed
methods can be summarized on the whole as two categories: the
local and the global strategies. The local strategies are employed
to calculate the singular integrals directly. They usually include,
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but are not limited to, analytical and semi-analytical one [5,6],
new Gaussian quadrature [7], the local regularization method
[8,9], transformation method [10–12], finite-part integral [13,14],
subtraction technique [15,16], etc. It is worth noting that the sub-
traction technique proposed in Refs. [15,16] requires an auxiliary
boundary in the desingularization processes. This method con-
verts the singular integrals on the real boundary into the auxi-
liary boundary and calculates the singular integrals on auxiliary
boundary directly. Although the geometric shapes of the selected
auxiliary boundary are always regular, it also requires a lot of
complex derivation and numerical calculation. If the number of
boundary nodes increases, the procedure would require much
processing and CPU time because each nodes requires an auxiliary
boundary. The analytical algorithm needs enormous works of
deduction and is generally considered more difficult for curved
elements. The coordinate transformation method, which is invalid
to the strongly and hyper-singular integrals, is merely utilized
to treat weakly singularities. Among these methods, the local
regularization technique proposed by Guiggiani et al. [17,18] is
extensively used to handle various orders of singularities. The
main drawback of this technique [19,20] is that it requires the
expansion of every quantity involved in the integrand as Taylor’s
series about the local distance. The global strategies are mainly
adopted to calculate the singular integrals indirectly, such as
the method of fundamental solution or the virtual BEM [21,22],
the null field method [23–25], the simple solution method
[26,27], etc.

Up to now, many attempts have also appeared in the open
literature to deal with the anisotropic potential problems. The
representative methods to solve such problems are to transform
them into isotropic ones or to use the Galerkin BEM. Hu [28]
converted the torsion problem of anisotropic bar into the relevant
isotropic problem by coordinate conversion method. Rungamornrat
et al. [29,30] presented a weakly singular, symmetric Galerkin
boundary element method to analyze the anisotropic Darcy’s flow
problems. The key step in this regularization procedure is to
construct the special decompositions for the fluid velocity funda-
mental solution and the strongly singular kernel which are well-
suited for integration by parts via Stokes’ theorem. As demonstrated
in the numerical experiment, this method is proved to be accurate
and efficient even when relatively coarse meshes are employed.
Wang [31] derived a new traction integral equation involving only
CPV singularities which can be solved directly, and no hyper-
singular terms. Mera et al. [32,33] numerically implemented the
BEM to solve steady state anisotropic heat conduction problems.
Wu et al. [34] developed a generalized boundary integral formula-
tion and applied it for the analysis of seepage flow through the soil
media. Brebbia and Chang [35] utilized the BEM to deal with
seepage problems in zoned anisotropic soils. Dumir and Kumar
[36] proposed a complex variable boundary element method
for solving the torsion of anisotropic cylindrical/prismatic bars.
Chen et al. [37] used dual BEM to solve seepage problem with
sheetpiles.

The efficient elimination of singularities, which is even more
difficult than the cases in isotropy, is also a key point when using
the BEM to solve the anisotropic potential problems. In this paper,
a novel regularization technique is pursued, in which the
regularized indirect BIE is established. Compared with the exist-
ing methods, the presentation has many advantages. First, it can
deal with problems directly without transforming them into
isotropic ones, and for this reason, no inverse transform is
required. Second, this method does not require to calculate
multiple integrals as the Galerkin method, and evaluate CPV
integrals indirectly, and so it is simple and easy for programming.
Third, the proposed gradient BIEs are independent of the potential
BIEs and, as such, can be collocated at the same locations as the
potential BIEs. This provides additional and concurrently useful
equations for various purposes. Finally, it is suited for the compu-
tation of qu/qxi (i¼1,2) on the boundary, not only limited to
normal flux qu/qn.

In the numerical implementation, the boundary geometry is
depicted by both quadratic Lagrange’s and exact elements. Among
these elements the quadratic elements are the most representa-
tive, by which a numerically systematic scheme is established.
Besides, in engineering applications, the structures with circle
or ellipse boundaries are widely used in order to avoid stress
concentrations around sharp corners. The exact elements are
proposed so that the error of the results will arise mainly from
the approximation of boundary quantities.

In order to show the extensive applicability and validity of the
proposed algorithm, we apply this method to solve all the above-
mentioned three problems of the anisotropic potential problems.
Example 1 and example 2 consider two heat conduction problems
with multi-connected bounded domains in anisotropic media,
and especially calculate the isotherms in various temperature
fields. Example 3 studies the torsion problem of anisotropic
uniform bar, in which the calculation of shear stresses associated
with the gradient BIEs is a significant and difficult problem, since
it has to deal with qu/qxi (i¼1,2) instead of qu/qn. Furthermore, in
example 4 the seepage flow in anisotropic media is considered.
The pressure distribution on the dam base and the equipotential
lines at various points under the dam are analyzed in this
example. It is shown that a better precision and high computa-
tional efficiency can be achieved by the present method.
2. Basic theorems

In this paper, we always assume that O is a bounded domain in
R2, Oc its open complement, and G¼qO their common boundary.
t(x) and n(x)(or t and n) are the unit tangent and outward normal
vectors of G to the domain O at the point x, respectively. Assume
that the medium is anisotropic, the governing equation in the
directions of anisotropic can be expressed as
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where kij is the coefficient of medium property. The fundamental
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Lemma 1. Let c(x)AC0,a(G), and x̂ be a smooth point on G. For
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Proof. For the case that k¼1, we will give the strict deduction
here. The other can be performed in almost the same way.
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For any e40, the difference between the left- and right-hand
sides of Eq. (3) is
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The integral D is divided into two parts: D1 over

Gd ¼ fxAG99x�x̂9rdg and D2 over Gc¼G�Gd. First, we estimate
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_

. Let x̂ be a smooth point on G. Hence, it is

obvious that the ratio of the length of arc xx̂
_
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By choosing sufficiently small d, one has 9D19re/2.
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Noting that d has been fixed and x̂ does not belong to Gc,

therefore by taking 9y�x̂9 sufficiently small it is obvious that
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Lemma 2. Consider the complete second order differential equation

with variable coefficients
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where A,B,y,F are given functions of x1 and x2 in O. Let us assume
that v(x) is twice continuously differentiable in O and once on G,
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Theorem 1. Let G be a piecewise smooth curve. Then for the

fundamental solution (2), there holdsZ
G
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where
mx ¼ ðk11n1ðxÞþk12n2ðxÞ,k12n1ðxÞþk22n2ðxÞÞ

T,tx ¼ ðt1ðxÞ,t2ðxÞÞ
T.

Proof. Letting u¼1,v¼un in Lemma 2, we can obtain the first
equation with A¼k11, B¼k12, C¼k22, D¼E¼F¼0. The proof of the
second equation can also be easily performed. &
3. Regularized indirect boundary integral equations

In this section, we will establish the regularized BIEs with
indirect unknowns on O. The one on Oc is similar. The potential
formulation on O can be written as
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where gðxÞ ¼ ðg1ðxÞ,g2ðxÞÞ
T,hðxÞ ¼ ðh1ðxÞ,h2ðxÞÞ

T, and
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(l¼1,2). Therefore, as y-x̂, according to Lemma 1, we can
immediately obtain the regularized BIEs with replacing x̂ by yZ
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Similarly, the regularized BIEs on Oc can be expressed asZ
G
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Remark. If f(x)AC0,a(G),glðx̂ÞAC0,aðGÞ,hlðx̂ÞAC0,aðGÞ (l¼1,2), then
the singularities of integrals in Eqs (10)and (13) should have been
removed.

4. Numerical implementation

In this section, we shall perform the numerical integration
strategy for Eqs. (9) and (10). The key problem is how to evaluate
the integral when the field point is located at one of the nodes of
the element under integration, while the other need not consider
here because of involving only normal integrals.

4.1. Quadratic element

The boundary geometry is modeled by a continuous piecewise
parabolic curve, while the distribution of the boundary quantity
on each element is approximated by a discontinuous quadratic
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element. Let cp(x) (p¼1,2,3) denote the shape function of quad-
ratic Lagrange interpolation. i.e.
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ðxÞ ¼

ðx=a�xq
Þðx=a�xr

Þ

ðxp
�xq
Þðxp
�xr
Þ
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then there are

xk ¼
X3

p ¼ 1

cp
ðxÞxp

k
,yk ¼

X3

p ¼ 1

cp
ðZÞxp

k
, and

dxk

dx
¼
X3

p ¼ 1

dcp
ðxÞ

dx
xp

k
¼ xakþbk

where xp
kðk¼ 1,2; p¼ 1,2,3Þ are node coordinates, and ak ¼

P3
p ¼ 1

2xp

k

xpqxpr ,bk ¼�
P3

p ¼ 1
xq
þxr

xpqxpr xp
k , with xpq

¼ xp
�xq and (p,q,r¼1,2,3;qar,

paq,r), then

xk�yk ¼ r
X3

p ¼ 1

Up
ðx,ZÞxp

k and fðxÞ�fðyÞ ¼ r
X3

p ¼ 1

Up
ðx,ZÞfp

k

where r and Fp are defined as

r¼ x�Z,Up
ðx,ZÞ ¼ xþZ�xq

�xr

ðxp
�xq
Þðxp
�xr
Þ
ðpaq,r; qarÞ

besides

tkðxÞ ¼
1

JðxÞ
dxk

dx
¼

xakþbk

JðxÞ
,nkðxÞ ¼ ð�1Þkþ1tkþ1ðxÞ,tkðyÞ

¼ tkðxÞ9x ¼ Z,nkðyÞ ¼ nkðxÞ9x ¼ Z

with JðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdxi=dxÞðdxi=dxÞ

p
and (U)3¼(U)1, thus

tkðxÞ�tkðyÞ ¼
r

JðxÞ
Uk, nkðxÞ�nkðyÞ ¼

ð�1Þkþ1r
JðxÞ

Ukþ1 ð14Þ

where Uk¼{ak�(((Zþx)aiaiþ2aibi)/(J(Z)[J(Z)þ J(x)]))(Zakþbk)},
k¼1,2, therefore

gkðxÞ�gkðyÞ ¼
r

DxDyJðxÞ
Dyð�1Þkþ1Ukþ1�ðU2V1�U1V2ÞnkðyÞ
n o

ð15Þ
x

x

10

8
2

5

4 2 3 8u x x x x= − + +

Fig. 1. Heat conduction in an elliptic cylinder.

Table 1
The numerical results of temperatures at internal points in the elliptic cylinder.

Internal points(y1,y2) Exact

0.6000000Eþ01 0.0000000Eþ00 0.152000

0.4242641Eþ01 0.2828427Eþ01 0.100000

0.3673819E�15 0.4000000Eþ01 �0.240000

�0.4242641Eþ01 0.2828427Eþ01 0.280000

�0.6000000Eþ01 0.4898425E�15 0.152000

�0.4242641Eþ01 �0.2828427Eþ01 0.100000

�0.1102146E�14 �0.4000000Eþ01 �0.240000

0.4242641Eþ01 �0.2828427Eþ01 0.280000
hkðxÞ�hkðyÞ ¼ ð�1Þk�1
fk1k½g1ðxÞ�g1ðyÞ�þk2k½g2ðxÞ�g2ðyÞ�g ð16Þ

with
V1¼k11[n1(x)þn1(y)]þ2k12n2(x),V2¼2k12n1(y)þk22[n2(x)þn2(y)].

Dx ¼ k11n2
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2ðxÞ,

Dy ¼ k11n2
1ðyÞþ2k12n1ðyÞn2ðyÞþk22n2

2ðyÞ

Then, the singularities of the integrals in Eq. (10) should have
been eliminated.

4.2. Exact element

In engineering applications, the structures with circle or
ellipse boundaries are widely used in order to avoid stress
concentrations around sharp corners. The elliptic arc elements
are the extension of the circular arc elements, which can exactly
depict these boundaries. For elliptic domain, its boundary geo-
metric can be expressed as

x1 ¼ acosax,x2 ¼ bsinax, ax ¼
ð1�xÞ

2
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2
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t1ðyÞ�t1ðxÞ ¼�ðn2ðyÞ�n2ðxÞÞ ¼
ab
JðxÞ

sin
aZ�ax

2
U

�cosgþ
bsinaZ

2JðZÞ
a2 cosgðsinaxþsinaZÞ

JðxÞþ JðZÞ �
b2 singðcosaxþcosaZÞ

JðxÞþ JðZÞ


 �� 	

t2ðyÞ�t2ðxÞ ¼ n1ðyÞ�n1ðxÞ ¼
bb
JðxÞ

sin
aZ�ax

2
U

singþ
bcosaZ

2JðZÞ
a2 cosgðsinaxþsinaZÞ

JðxÞþ JðZÞ �
b2 singðcosaxþcosaZÞ

JðxÞþ JðZÞ


 �� 	
ð17Þ

where b¼y2�y1,g¼((axþaZ)/2), and

@unðx,yÞ

@yj
¼

1

sin½ðaZ�axÞ=2�
� � �½ �, ðj¼ 1,2Þ ð18Þ

The items [?] cannot lead to singular integral. According to
the Eqs (17) and (18), the singularities of the integrals on the right
side of Eq. (10) are eliminated.
5. Numerical examples

In this section, four examples of the anisotropic potential
problems with curved boundaries are given to test the proposed
method. The boundary geometry of the first three examples is
depicted by the exact elements, while the last one by the linear
elements.

Example 1. In this example, we consider the heat conduction in
the elliptic cylinder with the thermal conductivity tensor kij given
by k11¼1, k12¼2, k22¼5, and the analytical temperature distribu-
tion and the values of semi-major and semi-minor axes shown
in Fig. 1.
Present Relative error (%)

0Eþ03 0.1520003Eþ03 �0.2008555E�03

0Eþ03 0.9999542Eþ02 0.4580355E�02

0Eþ02 �0.2399474Eþ02 0.2192336E�01

0Eþ02 0.2799787Eþ02 0.7595139E�02

0Eþ03 0.1520003Eþ03 �0.2008555E�03

0Eþ03 0.9999542Eþ02 0.4580355E�02

0Eþ02 �0.2399474Eþ02 0.2192336E�01

0Eþ02 0.2799787Eþ02 0.7595139E�02
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There are 30 exact elements divided along the whole bound-
aries, 6 equally spaced elements over inner boundary, and 24
equally spaced elements over outer boundary. Quadratic discon-
tinuous interpolation is adopted to approximate the boundary
functions.

The numerical results of temperatures at internal points are
presented in Table 1 in comparison with the exact solution,
together with the relative errors (%). It can be seen that compared
Table 2
The numerical results of qu/qx at the boundary points in the elliptic cylinder.

Boundary points (y) Exact Present Relative error (%)

Inner boundary

0 0.4000000Eþ02 0.4000209Eþ02 �0.5214306E�02

p/12 0.3708412Eþ02 0.3707576Eþ02 0.2254886E�01

p/6 0.3164102Eþ02 0.3164111Eþ02 �0.2942148E�03

p/4 0.2404163Eþ02 0.2404251Eþ02 �0.3657422E�02

p/3 0.4557207Eþ01 0.4550338Eþ01 0.1507150Eþ00

p/2 0.6000000Eþ01 0.5990033Eþ01 0.1661165Eþ00

Outer boundary

0 0.8000000Eþ02 0.7989933Eþ02 0.1258357Eþ00

p/24 0.8244822Eþ02 0.8238517Eþ02 0.7647303E�01

p/8 0.8309476Eþ02 0.8308516Eþ02 0.1156012E�01

5p/24 0.7807854Eþ02 0.7811147Eþ02 �0.4217532E�01

7p/24 0.6774139Eþ02 0.6780300Eþ02 �0.9093795E�01

3p/8 0.5278778Eþ02 0.5286013Eþ02 �0.1370609Eþ00

11p/24 0.3423677Eþ02 0.3430139Eþ02 �0.1887300Eþ00

p/2 0.2400000Eþ02 0.2405394Eþ02 �0.2247462Eþ00

Table 3
The numerical results of qu/qy at boundary points in the elliptic cylinder.

Boundary points (y) Exact Present Relative error (%)

Inner boundary

0 0.1500000Eþ02 0.1500215Eþ02 �0.1436635E�01

p/12 0.1655944Eþ02 0.1656417Eþ02 �0.2857082E�01

p/6 0.1699038Eþ02 0.1699091Eþ02 �0.3130678E�02

p/4 0.1626346Eþ02 0.1626227Eþ02 0.7296392E�02

p/3 0.1160969Eþ02 0.1161332Eþ02 �0.3120835E�01

p/2 �0.8000000Eþ01 �0.7994361Eþ01 0.7048955E�01

Outer boundary

0 0.3000000Eþ02 0.3005437Eþ02 �0.1812400Eþ00

p/24 0.2556651Eþ02 0.2559953Eþ02 �0.1291765Eþ00

p/8 0.1547052Eþ02 0.1547745Eþ02 �0.4480547E�01

5p/24 0.4320234Eþ01 0.4308057Eþ01 0.2818686Eþ00

7p/24 �0.7124464Eþ01 �0.7149434Eþ01 �0.3504840Eþ00

3p/8 �0.1808364Eþ02 �0.1811451Eþ02 �0.1706723Eþ00

11p/24 �0.2781045Eþ02 �0.2783755Eþ02 �0.9744332E�01

p/2 �0.3200000Eþ02 �0.3202299Eþ02 �0.7183424E�01
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Fig. 2. Convergence curves of qu/qx and qu/qy.
with the exact solution, the present results are satisfactory
despite using small computational element numbers. In order to
further show the efficiency, Fig. 3 depicts the convergence curve
of the internal point (0,4), whose computational accuracy is
somewhat inferior to others. From the steep slope of the curve
in Fig. 3 it is shown that the convergence speed is quite fast with
increase of the number of boundary elements.

Tables 2 and 3 list the numerical results of gradients qu/qx and
qu/qy on partial boundary ð0� p=2Þ, respectively. It may easily be
concluded from these two tables that the proposed method can
produce highly accurate numerical solutions. With the increase of
the discretized boundary elements, the maximum relative errors (%)
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Fig. 3. Convergence curves of temperature at interior points.
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Fig. 4. Boundary conditions of Example 2.

Table 4
The comparison between the current method and existing method.

N Analytical solution Numerical solution Relative error (%)

(a) DLBEM

40 0.008333 0.008244 1.071

60 0.008333 0.008288 0.544

80 0.008333 0.008308 0.298

(b) QBEM

40 0.008333 0.008261 0.863

60 0.008333 0.008314 0.237

80 0.008333 0.008325 0.099

(c) DQBEM

40 0.008333 0.008333 0.009

60 0.008333 0.008333 0.002

80 0.008333 0.008333 0.001

(d) Present method

40 0.8333333E�02 0.8333000E�02 0.3997477E�02

60 0.8333333E�02 0.8333292E�02 0.5005535E�03

80 0.8333333E�02 0.8333328E�02 0.6566266E�04



Table 5
The numerical results of temperatures at internal points with N¼40.

Internal points (y1, y2) Exact Present Relative error (%)

0.3061516E�16 �0.5000000Eþ00 �0.4166667E�01 �0.4166683E�01 �0.3939381E�03

0.4330127Eþ00 �0.2500000Eþ00 0.8496794E�01 0.8496739E�01 0.6463444E�03

0.4330127Eþ00 0.2500000Eþ00 0.1634604E�02 0.1633924E�02 0.4154949E�01

0.3061516E�16 0.5000000Eþ00 0.4166667E�01 0.4166683E�01 �0.3939381E�03

�0.4330127Eþ00 0.2500000Eþ00 �0.8496794E�01 �0.8496739E�01 0.6463444E�03

�0.4330127Eþ00 �0.2500000Eþ00 �0.1634604E�02 �0.1633924E�02 0.4154949E�01

Table 6
The numerical results of flux at boundary points with N¼40.

Boundary points (y1, y2) Exact Present Relative error (%)

0.9969173Eþ00 0.7845910E�01 0.5706522Eþ00 0.5705870Eþ00 0.1142973E�01

0.9238795Eþ00 0.3826834Eþ00 �0.2613126Eþ00 �0.2614194Eþ00 �0.4085647E�01

0.8314696Eþ00 0.5555702Eþ00 0.1447581Eþ00 0.1454666Eþ00 �0.4894102Eþ00

0.6788007Eþ00 0.7343225Eþ00 0.1368370Eþ01 0.1367303Eþ01 0.7792549E�01

0.4886212Eþ00 0.8724960Eþ00 0.2760840Eþ01 0.2761706Eþ01 �0.3138780E�01

0.3461171Eþ00 0.9381913Eþ00 0.3390250Eþ01 0.3390674Eþ01 �0.1250639E�01

0.2334454Eþ00 0.9723699Eþ00 0.3567128Eþ01 0.3567247Eþ01 �0.3341742E�02

0.1950903Eþ00 0.9807853Eþ00 0.3559612Eþ01 0.3559451Eþ01 0.4540198E�02
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of gradients at the boundary points are depicted in Fig. 2, from
which we can observe that the convergence speeds of the computed
gradients are fast.

Example 2. We consider the heat conduction of an anisotropic
medium with the thermal conductivity tensor kij given by k11¼5,
k12¼2, k22¼1. The analytical temperature distribution can be
seen in Fig. 4.

This problem is solved in the plane domain O¼ fðx,yÞ :
x2þy2o1g. In order to demonstrate the better precision and high
computational efficiency, a comparison between the current
method and existing method [32] is presented in Table 4. The
numerical results of DLBEM, QBEM and DQBEM with various
numbers of boundary element NA{40,60,80}are obtained from
Re [32] at internal point (0.25,0.25). Besides, we also calculate
temperatures at more internal points and flux at boundary points
to show the universality and improvement of current technique,
which are listed in Tables 5 and 6, respectively. Fig. 5 depicts that
with the increase of the discretized boundary elements, the
maximum relative errors (RE) (%) of flux at boundary points
change, from which we can see that the convergence rates of the
present method are fast.

Example 3. [38] In order to test how the thermal conductivity
tensors kij influence the temperature distribution, here we consider
a hollow eccentric cylinder whose inner and outer radii are 5 and 20,
respectively, as shown in Fig. 6. The center of the inner circle is
located at point (�10,0). For the hollow cylinder, uniform and
constant temperatures are assumed at the inner and outer surfaces.

For various values of k12, Fig. 6 depicts the temperature
distribution in anisotropic and isotropic media. It is worth noting
that the most significant quantity to characterize the anisotropy
of a media is the determinant of the conductivity coefficients,
i.e. kij

�� ��¼ k11k22�k2
12. The smaller is the value of 9kij9, the more
Table 7
The numerical results of shear stresses at the boundary points.

Boundary points Present

x1 x2 txz(tyz)/y

0.9978589Eþ01 0.3270156Eþ00 �0.6507096Eþ00(0.4963955Eþ

0.9807853Eþ01 0.9754516Eþ00 �0.1941006Eþ01(0.4879048Eþ

0.9469301Eþ01 0.1607197Eþ01 �0.3198248Eþ01(0.4710868Eþ

0.8968727Eþ01 0.2211443Eþ01 �0.4400637Eþ01(0.4461804Eþ

0.8314696Eþ01 0.2777851Eþ01 �0.5527991Eþ01(0.4136612Eþ

0.7518398Eþ01 0.3296729Eþ01 �0.6560543Eþ01(0.3740433Eþ

0.6593458Eþ01 0.3759199Eþ01 �0.7480848Eþ01(0.3280264Eþ

0.5555702Eþ01 0.4157348Eþ01 �0.8273186Eþ01(0.2763983Eþ

0.4422887Eþ01 0.4484364Eþ01 �0.8923858Eþ01(0.2200380Eþ

0.3214395Eþ01 0.4734651Eþ01 �0.9421958Eþ01(0.1599162Eþ

0.1950903Eþ01 0.4903926Eþ01 �0.9758712Eþ01(0.9705643Eþ

0.6540313Eþ00 0.4989295Eþ01 �0.9928625Eþ01(0.3253782Eþ

x

x

a

b

O

Fig. 9. A bar with elliptic cross section.
asymmetric are the temperature fields. Figs. 7 and 8 show the
isotherm distribution of the eccentric cylinder with two different
conductivity coefficients, respectively.

Example 4. An anisotropic bar with elliptic cross section sub-
jected to the pure torque on the end surface, is considered in this
example, as shown in Fig. 9. The semi-axes of the ellipse are a¼10
and b¼5, and the ratio of stiffness coefficients is chosen as
k11/k22¼4 and k12/k22¼0.2.

Considering the torsion of anisotropic uniform bar, the regular-
ized BIEs for computing the shear stress components can be easily
derived by using the following relation and combining the Eqs. (10)

tyz

txz

( )
¼ y

k22 k12

k12 k11

" #
@u

@x2
þx1

@u

@x1
�x2


 �T

where u represents the torsion function and y is the twist angle of
unit length in axial direction of the bar.

There are 24 exact elements divided along the whole bound-
aries, while quadratic discontinuous interpolation, i.e. discontin-
uous element, is adopted to approximate the boundary functions.
The numerical results of the shear stresses txz/y, tyz/y of boundary
and internal points (as a0 ¼ 5,b0 ¼ 2:5) are listed in Tables 7 and 8,
respectively, from which it can be seen that compared with the
exact solution, the present results are in good agreement with the
exact solutions.

Example 5. [38] Flow under dam with two different orthotropic
soils is considered. The soil in the lower layer is anisotropic with
k011 ¼ 0:25� 10�5 m=s andk022 ¼ 0:075� 10�5 m=s; the principal
permeability of the upper stratum makes an angle of 451 with
the horizontal and their coefficients of permeability
k11¼4.0�10�5 m/s and k22¼1.0�10�5 m/s. The dam retains
20 m of water upstream and has 5 m of tail water downstream.

There are 48 linear elements divided along the boundary of the
upper dam, meanwhile 44 linear elements for the boundary of the
down dam. Fig. 10 gives the pressure distribution on the dam
base, the equipotent lines at various points under the dam.
6. Conclusions

A novel regularization technique, in which the nonsingular
IBIE excluding the CPV and HFP integrals is established, is pursued
for the homogeneous anisotropic potential problems. With the
proposed algorithm, the considered problems are solved directly
with no inverse transformation, and fairly high accuracy of
numerical results is achieved. Furthermore, this method does
Exact Relative error (%)

txz(tyz)/y txz/y

01) �0.6507529Eþ00(0.4964285Eþ01) 0.6654281E�02

01) �0.1941124Eþ01(0.4879345Eþ01) 0.6087608E�02

01) �0.3198282Eþ01(0.4710918Eþ01) 0.1065573E�02

01) �0.4400717Eþ01(0.4461886Eþ01) �0.1824933E�02

01) �0.5527854Eþ01(0.4136509Eþ01) �0.2482399E�02

01) �0.6560408Eþ01(0.3740356Eþ01) �0.2063332E�02

01) �0.7480712Eþ01(0.3280204Eþ01) �0.1823557E�02

01) �0.8273018Eþ01(0.2763927Eþ01) �0.2032222E�02

01) �0.8923771Eþ01(0.2200358Eþ01) �0.9696586E�03

01) �0.9421836Eþ01(0.1599141Eþ01) �0.1299152E�02

00) �0.9758690Eþ01(0.9705621Eþ00) �0.2246123E�03

00) �0.9928571Eþ01(0.3253765Eþ00) �0.5408201E�03



Table 8
The numerical results of shear stresses at internal points.

Internal points Present Exact Relative error (%)

y tyz/y txz/y tyz/y txz/y tyz/y txz/y

p/10 0.2365719Eþ01 �0.1537349Eþ01 0.2365723Eþ01 �0.1537340Eþ01 0.1669092E�03 �0.5562902E�03

p/5 0.2012404Eþ01 �0.2924209Eþ01 0.2012404Eþ01 �0.2924195Eþ01 0.1321292E�04 �0.4762715E�03

3p/10 0.1462101Eþ01 �0.4024820Eþ01 0.1462097Eþ01 �0.4024809Eþ01 �0.2693607E�03 �0.2694455E�03

2p/5 0.7686761Eþ00 �0.4731451Eþ01 0.7686701Eþ00 �0.4731446Eþ01 �0.7833488E�03 �0.1035127E�03

3p/5 �0.7686639Eþ00 �0.4731441Eþ01 �0.7686701Eþ00 �0.4731446Eþ01 0.7977797E�03 0.1234607E�03

7p/10 �0.1462093Eþ01 �0.4024799Eþ01 �0.1462097Eþ01 �0.4024809Eþ01 0.2945465E�03 0.2508246E�03

4p/5 �0.2012403Eþ01 �0.2924184Eþ01 �0.2012404Eþ01 �0.2924195Eþ01 0.4512591E�04 0.3521772E�03

9p/10 �0.2365724Eþ01 �0.1537336Eþ01 �0.2365723Eþ01 �0.1537340Eþ01 �0.4505264E�04 0.2421450E�03
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Fig. 10. Seepage flow under dam with two different orthotropic soils.
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not need to calculate multiple integral as the Galerkin method,
but rather treat CPV integrals indirectly, so it is simple and easy
for programming. Also, our numerical experiments indicate that,
from the point of view of numerical accuracy, the proposed
method is superior over the stand BEM using direct formulations,
especially for solving some particular examples such as contact
problems, sensitivity problems, and the study of thin bodies. In
addition, although the boundary unknown physical quantities
cannot be obtained directly by using the proposed method which
is based on the indirect boundary integral equations, the total
computational costs are not as high as expected compared to the
costs associated with the direct BEM because no difficult hyper-
singular integrals need to treat in the indirect method.
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