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Abstract: The periodic solution for the new hysteretic damping model sub-
jected to harmonic loading is analytically derived. The numerical solution
using the Runge-Kutta method from the transient state to steady state is
worked out for verification. The hysteresis loop is constructed and the dissi-
pation energy of the area is shown to be indepedent of the exciting frequency
theoretically and numerically. The stability and convergence for the pertur-
bation of the initial disturbance are demounstrated by means of a numerical
example using the Runge-Kutta method, The phase lags between input and
output for ditferent ranges of loss factors and exciting frequencies are examined.
Also, the sticking phenomenon when the external force can not overcome the
{riction damping is discussed. The subharmonic solution is worked out using
the numerical method. :
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1. Introduction

The damping characteristic is often utilized to suppress the vibration level
using various energy dissipation mechanisms. Damping models, e.g., viscous,
Coulomb and hysteresis damping, have been discussed in detail in the litera-
ture of structural dynamics and viscoelasticity. A great deal of effort has been
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focused on the frequency domain approach, especially for the hysteretic damp-
ing model. Free vibration of a single degree of freedom(SDOF) system with
hysteretic damping was solved by Chen ét al. {1]. Although the model in [1]
obeys the casual effect, Crandall {2] criticized this model for not being fully
equivalent to the hysteretic damping model in the frequency domain. A “new”
hysteretic damping model was suggested for the model in {1] by Crandall. In
1980’s, there was renewed interest in the model with the addition of Coulomb
damping so that it modelled the behavior of elastometric bearings used in base
isolation [3]. The equivalent linearization for the nonlinear hysteretic system
was also studied in [4]. By taking the Fourier transform with respect to the
nonlinear model in [1], one can not obtain the complex stiffness of k(1 + 47).
The above statement confirms that Crandall’s comment in {2] is right. Also,
this finding stimulated research on the time-domain formulation for the lin-
ear hysteretic damping reported in [5, 6], where the inverse Fourier transform
for the model was considered in the frequency domain. It is interesting that
Chen’s study [5, 6] and Inaudi’s work [7] both independently derived the same
integro-differential equation(IDE) for the linear hysteretic model in the time
domain. For the new nonlinear model mentioned in Crandal’s paper, Canghy
and his coworkers [8] also solved its free and forced vibration. Later, Makris
and Constantinou have solved the the steady state solution of multiple-stops
for linear/Coulomb friction model [3]. However, they did not focus on the
dissipation mechanism and subharmonic response.

In this paper, we extend the free vibration to forced vibration for harmonic
loading of the new hysteretic damping in the time domain for all ranges of ex-
citing frequencies. The hysteresis loop is constructed in the phase plane to
understand the disspation behavior. The transient behavior from initial state
to steady state on the damping ellipse is found by using the Runge-Kutta
method. Also, the steady state solution is analytically derived without consid-
ering the initial conditions. The stability and convergence for the perturbation
of initial disturbance on the steady-state solution are numerically verified. To
demonstrate that the present model is also hysteretic, the relation between
the dissipation energy and exciting frequency is considered. The sticking phe-
nomenon is also discussed, and the phase lag between the input and output
for different loss factors and exciting frequencies is examined. Also, the sub-
harmonic response is demonstrated by means of a numerical experiment using
the Runge-Kutta method.

2. Formulation of the Forced Vibration
Subjected to Harmonic Loading

The definition of hysteretic damping has been given by Clough and Penzien {9},
where the damping force is proportional to the amplitude of the displacement,
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1, and is in phase with the velocity, . Therefore, the damping force, f4, of a
SDOF system can be expressed as
uj
fd = hL_lu, (1)
|%]
where h is a proportional constant. The governing equation for the forced
vibration of a SDOF system can be derived as
. M . _
mu+h|,|u+ku*P(£]. (2)
(/)
When P(t) is the external force and is set to be Pe®, the steady state solution,

u = ie'* is expected. Although Eq.(2) is nonlinear, it has been wrongly
reformulated in the frequency domain as follows [10]:

—mali + k(1 Lin)i=P, + when a>0,— when a <0, (3)

where @ and P are the Fourier transforms for u and P, respectively, and k(1xin)
denotes the complex stiffness with » denoting the loss factor:

=" (4)

When o > 0, the complex stiffness reduces to k{1 + ?};), which is the con-
ventional complex stiffness. Crandall {2] mentioned that eqs.(2) and (3) are
not equivalent mathematically. Now we will focus on the problem in the time
domain with the following governing equation:

mii(t) + kn%ﬂ(t} + ku(t) = P(t). (5)

For the linear hysteretic damping model, we have the following governing equa-
tion [5, 6],

ws [ P(t
ity — ™ / ) gr b wtufty = 2O (6)
T J o {t—7) m
where 7j is loss factor for linear hysteretic model and
k

T

By taking Fourier transform with respect to eq.{6), we can obtain the hysteretic
damping model in the frequency model as shown in eq.(3). The dissipation
energy per cycle of hysteresis was determined as [6]

D = 7k7Aj, (8)
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where Ay is the maximum response as shown.in Fig.l. For the nonlinear
hysteretic damping model in eq.(5), Caughy et al. [8] derived

D = 2knA?, (9)

It is found that both models obey the definition of the hysteretic damping
model; that is, the dissipation energy per cycle of hysteresis loop should be
independent of the exciting frequency. To make the dissipation in eqgs.(8) and
(9) equal for comparion, we have

n=na/2 (10)

3. Formulation for the Periodic Solution of the New
Hysteretic Damping Model Subjected to Harmonic Excitation
— No Sticking :

Assume a periodic solution exists under the harmonic loading P(t) = Py sin{at);
we have
iy = i, + m, (11)

where o is the exciting frequency, and ¢;,t; and t3 are the time parameters
shown in the phase plane of Fig.1 since

P(t) = P{t+T) (12)

Pty = —P(t+§), (13)

where T is the period with T = 27 /a. By setting the two natural frequencies
in the four quadrants [?], we have

w? = (1 +n)wi, for the first and third quadrants, (14)
w? = (1 -n)w}, for the second and fourth quadrants. (15)

In the first quadrant, the general solution for eq.(5) contains two parts, com-
plementary and particular solutions, as shown below:

ui(t) = Ay sinat + g sinwy (8 — ty) + by cosw (¢ — ty), (16}

where a; and b; are the coefficients to be determined and A, 1s

Ficl
Ay = ——E : (17)
L+ (1+n)

Ll

[=]

Iu a way similar to that in the second quadrant, we have

ug(t) = Ay sinat + ap sin walty — 1) + by coswa(ty — 1), (18)
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where a; and by are the coefficients to be undetermined and A; is
fy
k

~& +(1-n)

Ay = (19)

By introducing a new coefficient V4 as shown in Fig.1 and the two conditions
'U,l(tl) = 0, (20)

uy(ts) = 0, (21)

we can obtain
w1 (t) = A, [sin at — sin{at;) cosw{t — t,)

cecos(aty)

Vo ..
sinwy (t — £)] + — sinwy(t — &), (22)
W Wi

uz(t) = Ag[sin ot — sin(atz) coswy(t — t3)

os(at i |
20O Gt - )] = L siman(t — ), (23)
Wy W2

where
Vo = i (tr) = ~ta(t;). (24)

In the case of no sticking on the displacement axis in the phase plane, the
velocities, 4,(¢) and 1uy(t), are both zero at ¢, as follows:

tr{t2) = Ai[acosaty + wy sin(at,) sinw, (35 — 1)
—acos(aty) cosw (ty — 13)] + Vo cos wi(ty - 4) =0, (25)
tz{ta) = Azl cos aty + wy sin(aty) sinwy(t, — t3)

—acos{atz) coswy(ty — i3} — Vgcoswy(t, — tg) = 0. (26)

By introducing a new variable, Ay, as shown in Fig.1, we obtain
w1(t2) = Ao = Ay[sin(ady) — sin(at;) coswy (ty — £;)

ycos(ady) . Vo .
_a (ﬂ—l—) sinw(t2 — )] + QTU sinwy (2 — t)), (27)
]

)
ux(tz) = Lo = Aplsin{aty) — sin{ats) coswy{ty — 1)

veos{at Vi
_w 5111 wz(iz - t:i)] -2 sin wo(ty — t3). (28)
g w2
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To cancel out the V; terms involved in egs. (25).and (27), we have

sin{cat))
cosw (ty — t)

O COS (xlg

Dy = Ay{sinat, —
0 2{ 2 (] COS[LlJl(tQ — tl )]

Sinwl(tg — tl) -

1 (29)

In a similar way, we obtain

sin{aty)
Ccos {.dg(tg — i3

CO8 (vl
Wy COS[UJ’Q(tQ g t3)]

AO = Ag{Sin ety — sin w2(£2 - t,j) -

)} (30)

by cancelling out the V; terms involved in eqs.(26) and (28).
After introducing the phase angles, ¢,,8, and 85 as

0, = at,, (31)
62 = wlg, (32)
8y = aty =7 + 0, (33)

the above two equations can be rewritten as

_ cos Bz sin Ay (0 — 6;) sin(6;)
Ay = - - 3:
0= Ai{sind, Apcos A (B, — ) cos A (B — 61) h (34)

cos 3 sin Ax(f; — 65) sin #;

Do = Aatsinds = Nl —05)  cosalBs — )

b (35)

where w
A= 1T+ 1=, (36)
(44 .
Ae = /12 (37)
43

Dividing eq.(25) by cosw{t, — t1), V; can be represented as

« cos{ ot w( sin ot
Vo = Aacos(at,) — (ort2) ! L

- si 1y — )]
coswy(ty — t1) coswl(tz_tl}qmul(z )] (38)

Dividing eq.(26) by coswy{t; — t3), ¥ can be represented as

¥ COS (kg Wy SN Ceiq

Vo = Ap[—acos(aty) + sinwq(ta — t3)]. (39)

cos wg(tg — t3) COSs wg(tg - t;;)
- By substituting eqs.(31) ~ (33) into eq.(38), we have

cos 8§, _ Avsin A (8 ~ 68y)
cos A (6, — 6)) cos Ay (By — 0))

Vo = adlcos ) — sin ], {10}
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In a similar way, we have

COo8s 92 + ){2 sin /\2(92 - 93)
CoS Az(gz - 93) CcOoS /\2(92 - 93)

Vo = ady[— cos(fs) + sinfis].  (41)

By introducing a new variable, 4, to relate 8; and @, as

5592";91—21 ' (42)
we have the following relations:
cos Az(f; — 83) = cos )\2(% - 4), (43)
sinMy(0) ~ 03) = —sin ,\2(% —8), (44)
cosfl, = —sin(f; +9), (45)
sinfl, = cos(# + 9). (46)

It must be noted that the range of § is limited by

™ m
—-~2-<:6< 2" (47)

Substituting eqgs.(43) ~ (46) into eqs.(34), (35), (40) and (41), we have

No = Ai[cos(b, —}I’(s)..;'i' m({f\l:o?/\s:?;l(i; ) o8 ;TE;I* 6)]’ (48)
Dy = Agfcos(d, +6) — Sin(il:z-:o?)\sj?;z_-(%;‘)_ ) oS ;ll(l_;_ )]s (49)
o= I“A‘[C"Sﬁ‘ i c;;n)ff(k ;j 35) -2 Sizoil,\sli?g’\ﬁ;r 2, (50)
o = adylcosf — C:l“)ffg;jg he Si:()il;:?;z_( %6)“ 5)]. (61)

In order to solve egs.(48) ~ (51) with four unknowns, Ay, Vy, #; and &, the four
equations can be rearranged as

Dy = Ayg1(8)cos(0:) + Ak (6)sin(d,), (52)
A[} = Aggg(a]COS(Bl) + Agh;;(é)sin(ﬁ'l), (53)
1’0 = Alfl (6)608(61) + ,4161((5)82.71,(9]), (54)

Vo = Aufo{0)cos{f)) + Azeq(d)sin(h,), (53)
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where g,(6}, g2(8), ht(8), ha(d), €1(8), e2(8) f1(8) and f2(8) can be easily deter-
mined according to egs.(48) ~ (51). Cancelling out the ¢, Ay and V; terms,
we have

Ay Az 1
— Ay ~ (4, — A3)[A, (A t
2(A, )(cosm +COS#2) (A = Ag)[Ar (M + /\l) an piy
1
+As(As + " —}tan po| cos & + {2(A¥ + A3)
1 1,A X\
_ Sl — — = (72 t =
2A1 A, P—— + 2()\1 + )tanpl an yp]} sind = 0,
where j; and ps are the functions of § deﬁned as follows:
i = A ( + 6), (56)
T
Ho = /\2(5 — 6) (57)
Eq. (56) can be rearranged to get
A As 1 1
9 . _ t - .
(cos,u_l oS y—[A )+ " —)tan; + Ax(Ag + I\Q)tdn,ug]cosé
. 2414, 1
2(A, - A )
+2(4) 2)sind + A — Ag[l + COS /1] COS fi3
1 A2 A
-E(A—? + /\—;) tan p) tan py)sinéd = 0.

Only one variable § left in eq.(59) should be solved. The root of § for the
nonlinear equation can be easily found using the numerical method.

4. Formulation for the Periodic Solution
of the New Hysteretic Damping Model Subjected
to Harmonic Excitation — Sticking

Substituting ¢, obtained in the above section into P(t), we have
P(t;) = Pysin(aty). (58)

When u{f;) = 0, at this moment, only two situations may occur as shown
in Fig.2: one is that the state bumps backward to the first quadrant with
it(¢) > 0, and the other is that the state penetrates into the fourth quadrant
with &t} < 0. The first case implies that

P(t:) > (1 + ks (59)
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while the second case implies that
P(t2) < (1 - kA, (60)

It is interesting to consider what will happen if P(t2) is in the range of two
bounds, i.e.,

(1= kD < P(t) < (1+n)kA. (61)

The answer is that the mass will stick on the displacement axis with zero
velocity since the magnitude of the forces combining the spring force, kA, and
the external force, PP(t), can not overcome the damping force to pull backward
in bd curve in Fig.2. It is impossible to pull forward into the fourth quadrant
since the velocity, i{t), is negative. Therefore, it corresponds to a frozen point
.n the phase plane mathematically and represents the sticking phenomenon
physically. Since the mass will rest in the phase plane as shown in Fig.2, we
need to introduce a new variable, ¢} or 65. From ?} to {;, the mass rests, and
we have

P(tg) = (1 - T})kﬂg. (62)
Substituting eqs.(60), (19) and (37) into eq.(64), we have
—1+4+ X2
Ao = A2 ;2' 2 sin 92. (63)
2

Substituting eq.(65) into (35) to cancel the Ag term, we have

—1+4 A - in Ag(6; — 6a) in 0
; 2 5inf, = sin 6, — 5":9‘25.’“ ol 05y sinty gy
3 2008 A(fy — B3) . cos Ap(f2 — As)
Eq.(66) can be simplified to
tan 8, = Ao[sin Ap(6y — 63) — Agsin{t, — 05)) | (65)

co8 Ay (fy — 83) — Micos(6, — 63)

Substituting eq.(65) into eq.(34), where 8, is replaced by #; in the first quad-
rant, we have

~1+4 A}
A3

cos 63 sin X, (63 — 6,) sin @
Acos A (5 —8))  cosA (85 —8))

sin f5 = sinf5 —

(66)

Cancelling the 14 terms in eqgs.(40) and {41) in a similar way, we have

cos 92 )\2 sin /\2(92 — 93) .
- cos B :
cos O3 + o5 0aly —02) T cos ha(Ba = 05) sin 0
A 05 0 Aq s 2 ~
_ —l[cos o, - cos ¢, _ /s A6 —6)) 511191]. (67)

Ay cos A {05 — 6) cos A (65 — 61)
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In summary, we have the three unknowns, 8,0, and #;, to be solved in three
equations (67) ~ (69). Note that §; = 8, + n. Once 8,,6; and §; are available,
Ay can be calculated by eq.(65) and V4 can be determined by eq.(41). The steps
in the numerical algorithm for solving the simultaneous system of nonlinear
equations for the three unknowns are summarized below:

Step 1:

Initial guess for the value of 8 — 8.

Step 2:

According to Eq.(67), &, can be determined directly. Of course, 63 can be
determined by ‘means of the guess value of step 1 and #, = 63 — 7.

Step 3:

Substituting &;, 82 and 85 into Eq.(68), we can obtain 83 by iteration.

Step 4:

Substituting 8y, 65,63 and 85 into Eq.(69), the half method can be employed
to iterate the initial guess of 8; — 85. Go to Step 1.

5. Numerical Examples and Discussions

In this section, forced vibration problems will be considered.

Case 1: No sticking (o = 0.8, = 0.05,wp = 1, F; = 1).

In this case, no sticking occurs. Fig.3(a) shows the steady state trajectory
in the phase plane. The displacement and velocity histories are shown in
Figs.3(b) and 3(c), respectively. - Fig.3(d) shows the trajectory in the phase
plane from the initial state at the origin to steady state using the Runge-Kutta
method. Fig.3(e) shows the trajectory in the phase plane from the initial state
at (—0.2,2.2) to steady state using the Runge-Kutta method. The stability of
the steady state solution and the convergence can be demonstrated based on
Figs.3(d) and 3(e).

Case 2: Sticking {a = 0.1, =0.05,wo =1, P = 1).

In this case, the sticking phenomenon occurs. Fig.4(a) shows the steady
state trajectory in the phase plane. It is found that the intrinsic time at the
same position of B and B* is different in the phase plane. In another words, the
mass rests from the time £} to ¢t,. The displacement and velocity histories are
shown in Figs.4(b) and 4(c}, respectively. Fig.4(b} shows that the displacement
remains constant during the time from ¢} to ¢, while Fig.4(c) shows the zero
velocity during the same duration. Fig.4(d) shows the trajectory in the phase
plane from the initial state at the origin to steady state using the Runge-Kutta
method. The stability and the convergence can be demonstrated by Fig.4(d).

Discussion on dissipation energy: (wp = 1, Py = 2.53) _

According to the above relation, we can design two tables. Table 1 shows
the maximum response, strain energy, dissipation energy and loss factors for
both models with different loss factors under the same harmonic loadings,
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P(t) = sin(nt). It is interesting to find that the maximum response decreases
as the loss factor increases for thé linear model. However, the nonlinear model
contradicts this trend. The reason will be explained by considering the phase
lag between the input and output. In Table 2, the dissipation energy is found
to be indepedent of the exciting frequencies, @ = 0.5, %, 1.57 and 2, for
both linear and nonlinear models. It is found that the amplitudes of the
force are different so that we have the same maximum response of one. As
the excitation frequency increases, the maximum response decreases for the
nonlincar model. For the case of the linear model, the maximum response
increases as the exciting frequency increases. The reason can be found by
considering the phase lag between the input and output as follows.

Discussion of phase lag: (o = 1.0, = 1.90,wy = 1, P, = 2.53)

Setting the exciting frequency constant (o = 0.5) for the case of wq = 1,
the phase lag between the input and output for different values of loss factors
(n = 0.1 ~ 1.8) is that shown in Fig.5(a). The phase lags can be found from
the positions of the symbols in Fig.5(a). When 0.1 < 5 < 0.8 in Fig.5(a), the
phase lag increases as 7 increases. The phase lag explains why the case with a
larger loss factor has larger response since the power efficiency is larger. In the
range of 1.0 < n < 1.8 in Fig.5(a), the phase lag remains constant. The larger
the loss factor is, the lower the maximum response will be. The displacement
and velocity histories are shown in Figs.5(b) and 5(c), respectively.

Setting the loss factor constant (1 = 1.0) for the case of wy = 1, the phase
lag between input and output for different values of loss factors (v = 0.2 ~ 1.5)
is that shown in Fig.6(a). The phase lags can be found from the positions of the
symbols in Fig.6(a). When 0.2 < & < 0.5 in Fig.6(a), the phase lag remains
constant. As the excitation frequency approaches more closely the natural
frequency, wy, a larger response is obtained. In the range of 0.8 < o < 1.5 in
Fig.6(a), the phase lag increases as the exciting frequency increases. The phase
lag behaves in a way similar to the viscous damping system. The displacement
and velocity histories are shown in Figs.6(b} and 6(c), respectively.

Discussion on subharmonic response:

In the formulation, we assume a harmonic solution with frequency « for
the forcing function Pysin{at). We can extend the harmonic solution to a
subharmonic solution by introducing more equations for more unknowns in
the phase plane. Avoiding the lengthy derivation in analytical way, we have
demonstrated that the subharmonic solution exists by using numerical method.
For the case of @ = 1.0 and 7 = 1.9, the subharmonic motion can be found by
using the Runge-Kutta method. Fig.7(a) shows the trajectory for the subhar-
monic response in the phase plane. The displacement and velocity histories
are shown in Figs.7(b) and 7(c), respectively.
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6. Concluding Remarks

The present paper has extended the free vibration of hysteretic damping to
forced vibration. The closed-form solution for the steady state solution of the
hysteretic damping model Subj'fagted to harmonic loading has been obtained
for all ranges of exciting frequencies. It ‘has been proved analytically and
numerically that the dissipation energy is independent of the exciting frequency
if the maximum response is the same. The sticking phenomenon, subharmonic
response and phase lag between the input and output have all been discussed.
In addition, stability has been demonstrated by means of a numerical example
using the Runge-Kutta method.

wlty) =V

Uy (t]

ultz) = 4Ag

¥s

Fig.1: A diagram for typical hysteretic damiping under harmonic excitation
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Fig.3: No sticking case (o = 0.8.n = 0.03,wy = 1).
(a). steady state trajectory in the phase plane obtained
using analytical method
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a=0.8
up=0.0 00000 steady state 1n=0.05
5=0.0 — transient wo=1.0
4
3..
2-
> 17
Z
O Q-
o 7]
R
._2_.
-a
-t 77 " 1T T 71
s 4 -3 -2 -1 0 1 2 3 4 5
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Fig.3: (d). trajectory from the initial state of (0,0)
to steady state using the Runge-Kutta method
a=0.8
Up=—.2 00000 steady state 71=0.05
b=2.2 transient we=1.0
T
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e |
> 17
=
O 0-
o
.
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_3~
-4

— T f_ T T_ T T 1Y v LA
-5 -4 -3 <2 1.0 1 2 3 4 5
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Fig.3: (e). trajectory from the initial state of (-0.2,2.2)
to steady state using the Runge-Kutta method



426 S.R. Kuo, J.T. Chen

a=0.1
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- ¥Fig 4: -Sticking case (a = 0.1, = 0.05,wy = 1).
(a).-steady 'state trajectory in the phase plane obtained
using analvtical method
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Fig. 1. (b). displacement history
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Fig.4: (c). velocity history
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Fig.4: (d). trajectory from the initial state of (0, 0)
to steady state using the Runge-Kutta method
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Table Captions: -

Tab.1 Relation between the dissipation energy and loss factor.
Tab.2 Relation between the dissipation energy and exciting frequency.

Table 1: Dissipation energy of different loss factors with p(£) = sinxt for the conventional and
new hysteretic damping models.

Max. response (X,,qz) 0.0351 | 0.0388 | 0.0487 | 0.0370
Max. response (X nqz) 0.0344 | 0.0326 | 0.0298 | 0.0231
Strain energy(V = 1kX2 ) 0.0243 | 0.0297 | 0.0468 | 0.0270
Strain energy(V = £kX2__) 0.022 | 0.021 {0.0175 | 0.0105

Area of ellipse, dissipation energy (W) | 0.0153 | 0.0373 } 0.1177 | 0.1358
Area of ellipse, dissipation energy (W) | 0.0138 | 0.0264 | 0.044 | 0.053

Loss factor (ff = 7%) - 01 | 02 | 04 | 08
Loss factor (n = 1) 0.057 | 0.1x | 0.2r | 04nx

Here, 7 and n are the loss factors defined for the nonlinear and linear hysteretic damping models,
respectively. The parameters are shown below:

n= 3% m=1lkg k= 4mN/m? wy = 2m, @ = .

Table 2: Dissipation energy for the SDOF hysteretic system subjected to four different excitation

frequencies, o« = 0.5m, a = 7, & = 1.5m, a@ = 2, for 7 = 0.8 and p(t) = Asinat.
a=05rla=r|a=15r|a=2x

Amplitude (A) 28.58 26.99 31.71 38.61
Amplitude (A4) 4865 | 43.29 | 36.00 | 3158
Max. response {Xmaz) 1 1 1 1
Max. response (Xmaz) 1 1 1 1
Strain energy(V = 2k X2 _ ) 19.78 [ 19.78 | 19.78 19.78
Strain energy(V = 2kX2 ) 19.74 [ 1974 | 1974 | 19.74

Area of ellipse, dissipation energy (W) | 99.22 | 99.22 99.22 99.22

Area of ellipse, dissipation energy (W) | 99.22 $9.22 99.22 99.22
Loss factor (7 = -2) 08 | 08 0.8 0.8
Loss factor (n = %) 0.4 0.47 0.4n 0.4mr
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