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SUMMARY7

This study is concerned with the Stokes flow of an incompressible fluid of constant density and viscosity
with circular boundaries. To fully capture the circular boundary, the boundary densities in the direct and9
indirect boundary integral equation (BIE) are expanded in terms of Fourier series. The kernel functions
in either the direct BIE or the indirect BIE are expanded to degenerate kernels by using the separation11
of field and source points. Consequently, the improper integrals are transformed to series sum and are
easily calculated. The linear algebraic system can be established by matching the boundary conditions at13
the collocation points. Then, the unknown Fourier coefficients can be easily determined. Finally, several
examples including circular and eccentric domains are presented to demonstrate the validity of the present15
method. Five gains were obtained: (1) meshless approach; (2) free of boundary-layer effect; (3) singularity
free; (4) exponential convergence; and (5) well-posed model. Copyright q 2007 John Wiley & Sons, Ltd.17
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1. INTRODUCTION

The boundary element method (BEM) by discretizing the boundary integral equation (BIE) has21
been extensively applied for engineering problems recently more than domain-type methods, e.g.
finite element method (FEM) or finite difference method. It is noted that improper integrals on the23
boundary should be handled particularly when BEM is used. In the past, many researchers proposed
several regularization techniques to deal with the singularity and hypersingularity. To determine25
the Cauchy principal value and the Hadamard principal value in the singular and hypersingular
integrals is a critical issue in BEM/BIE method (BIEM). The technique of the integration by parts27
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University, Keelung, Taiwan.

†E-mail: jtchen@mail.ntou.edu.tw
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to reduce the order of singularity [1] is an alternative. One order of singularity is shifted to the1
density function from the kernel. In this paper, instead of using the previous concepts, the kernel
function is described in an analytical form on each side across the boundary (interior and exterior)3
by employing the degenerate kernel since the potential is discontinuous across the boundary.
Therefore, degenerate kernel, namely separable kernel, is a vital tool to study the Stokes problems5
with circular boundaries. Boundary integral formulation is nothing more than the linear algebra
once fundamental solutions are expressed by separable kernels. One gain is that this formulation7
is free of singularity.

BIEs for the plate problems were acquired from the Rayleigh–Green identity [2, 3] and the9
null-field integral equations were derived by collocating the field point outside the domain. The
formulation for the plate problems can be applied to study the Stokes flow problem since both11
displacement and stream function satisfy biharmonic equation. The kernel functions in the present
formulation are expanded to degenerate kernels in an analytical series representation by separating13
the source point and field point and the boundary densities are expressed in terms of Fourier
series. It is well known that Fourier series is always incorporated to formulate the solution for15
problems with circular boundaries [4, 5]. Bird and Steele [4] presented a Fourier series procedure
to solve circular plate problems containing multiple circular holes. Also, Mogilevskaya and Crouch17
[6, 7] presented a method in conjunction with Fourier series for solving problems with randomly
distributed circular elastic inclusions with arbitrary properties. Although Fourier series expansions19
have been employed, it seems that no one has ever introduced the degenerate kernel in BIEs to
tackle the problem. Therefore, the BIE in conjunction with degenerate kernel and Fourier series21
is proposed to solve the Stokes problems with circular boundaries. Two gains are that exponential
convergence instead of linear algebraic order can be obtained and mesh generation on the boundary23
is not required.

The Stokes flow problem with circular boundaries is considered since the stream function as25
well as displacement plate problem satisfies the biharmonic equation. The computation for internal
Stokes flow problems for a circle by integral equations was solved analytically [8]. Later, Chen27
et al. revisited this problem and obtained the series solution by using degenerate kernel and
Fourier series [2]. A spectral boundary element approach to three-dimensional Stokes flow was29
proposed by Muldowney and Higdon [9]. A numerical approach for Stokes flow past a particle
of arbitrary shape was proposed by Youngren and Acrivos [10]. The flow between eccentric31
cylinders for the doubly connected problem is focused in this paper. Many papers were published
on these problems, some important works are those of Kamal [11], DiPrima and Stuart [12].33
Ingham and Kelmanson [13], Kelmanson [14] and Wannier [15] also applied the BIE to solve
the problems of two-dimensional steady slow flow for the lubrication technology. Although both35
of the Kelmanson’s formulation and the present method are based on the same BIE, the main
differences are pointed out here. First, the kernel functions in Kelmanson’s paper are fundamental37
solutions instead of degenerate kernels. It is noted that all the improper integrals are transformed
to series sum and are easily calculated when the degenerate kernels are used since the potential39
across the boundary can be described explicitly in both sides, interior and exterior regions. Second,
Fourier expansion for the boundary density is used in this paper instead of linear boundary element41
scheme [13, 14].

The purpose of this paper is to study biharmonic problems with circular boundaries by using43
direct and indirect BIEs in conjunction with degenerate kernels, Fourier series, vector decompo-
sition and the adaptive observer frame. It is very convenient to be able to expand the solution45
in an alternative form, each form referring to a different specified coordinate set describing the

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)
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same solution. In the polar coordinate system, the calculation of potential gradients in the normal1
and tangential directions for the non-concentric domain must be taken care of. Therefore, the
technique of vector decomposition is adopted to deal with the problem for the non-concentric3
case. It is interesting that Stokes flow problem (not involving the Poisson ratio) can also be
solved by using the present formulation for plate although the Poisson ratio is contained in5
the approach. Although the well-known alternative BIE formulations for these problems [16]
have been explored, the indirect BIE as well as the direct BIE in conjunction with degenerate7
kernels and Fourier series are both used to solve the Stokes problems. Single- and double-layer
potentials are simultaneously used to construct the indirect BIE. Although the indirect method9
cannot provide the null-field integral equation, the compatible relationship of the boundary data
(single- and double-layer fictitious densities) is obtained by moving the domain point in BIE to11
the boundary. Special care must be taken in selecting the appropriate expressions (interior and
exterior) for the kernel function. Regarding the direct BIE, we employ the concept of null-field13
integral equations and collocate the point on the real boundary in real implementation. Finally,
several examples are presented to show the validity of the present method and some conclusions15
are made.

2. FORMULATION OF THE STOKES FLOW PROBLEMS17

The governing equation of Stokes flow is derived from the Navier–Stokes equation as follows:

�
DV

D̃t
=�g˜ −∇P+�∇2V˜ (1)19

where V˜ denotes the velocity field V˜ =(vr ,v�), � the density of fluid, t the time, g˜ the gravity, P
the pressure and � the viscosity. Therefore, the first term of Equation (1) means inertia force, the21
second term denotes body force, the third term is pressure gradient and the final term is viscous
force. The term of inertia force can be neglected since the low Reynolds number flow is considered23
(inertia force � viscous force) and the body force is also neglected to reduce Equation (1) as
follows:25

∇P=�∇2V˜ (2)

The continuity equation for the incompressible two-dimensional flow is expressed as follows:27

1

r

�(rvr )

�r
+ 1

r

�v�

��
=0 (3)

and the velocity components, vr and v�, can be related to the stream function u(r,�) through the29
equations

vr = 1

r

�u
��

(4)

v� = −�u
�r

(5)
31

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)
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The biharmonic equation can be derived by associating Equations (2)–(5) as follows:1

∇4u=0 (6)

Introducing the vorticity as the Laplacian of the stream function u [13, 14], we have
3

∇2u = � (7)

∇2� = 0 (8)

where � is the vorticity. To deal with the Stokes problem, two ways are used in the literature
[3, 14]. First, the biharmonic equation of Equation (6) is treated [3]. The other one is solving the5
Poisson and Laplace equation in Equations (7)–(8) [14]. In this paper, we focus on the former
formulation.7

3. DIRECT BIE METHOD

3.1. BIE for the domain point9

Here, we use plate formulation to solve Stokes problems since they both satisfy the biharmonic
equation. The direct BIEs for the domain point can be derived from the Rayleigh–Green identity11
[2, 3] as follows:

8�u(x) = −
∫
B
U (s, x)v(s)dB(s)+

∫
B

�(s, x)m(s)dB(s)

−
∫
B
M(s, x)�(s)dB(s)+

∫
B
V (s, x)u(s)dB(s), x ∈� (9)

8��(x) = −
∫
B
U�(s, x)v(s)dB(s)+

∫
B

��(s, x)m(s)dB(s)

−
∫
B
M�(s, x)�(s)dB(s)+

∫
B
V�(s, x)u(s)dB(s), x ∈� (10)

8�m(x) = −
∫
B
Um(s, x)v(s)dB(s)+

∫
B

�m(s, x)m(s)dB(s)

−
∫
B
Mm(s, x)�(s)dB(s)+

∫
B
Vm(s, x)u(s)dB(s), x ∈� (11)

8�v(x) = −
∫
B
Uv(s, x)v(s)dB(s)+

∫
B

�v(s, x)m(s)dB(s)

−
∫
B
Mv(s, x)�(s)dB(s)+

∫
B
Vv(s, x)u(s)dB(s), x ∈� (12)

13

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)
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where B is the boundary of the domain �,u(x),�(x),m(x) and v(x) are the displacement, slope,1
moment and shear force for solid mechanics, s and x are the source point and field point, respec-
tively. However, u(x) is defined as the stream function in this paper instead of displacement3
for plate problem. The kernel functions U,�,M,V,U�,��, M�, V�, Um , �m,Mm,Vm,Uv,�v ,
Mv,Vv in Equations (9)–(12) are expanded to degenerate kernels by using the separation of source5
and field points [3, 17]. The kernel function U (s, x) in Equation (9) is the fundamental solution
that satisfies7

∇4U (s, x)=8��(s−x) (13)

where �(s−x) is the Dirac-delta function. Therefore, the fundamental solution can be obtained9

U (s, x)=r2 lnr (14)

where r is the distance between source point s and field point x . The relationship among11
u(x),�(x),m(x) and v(x) are shown as follows:

�(x) = K�,x (u(x))= �u(x)

�nx
(15)

m(x) = Km,x (u(x))=�∇2
x u(x)+(1−�)

�2u(x)

�2nx
(16)

v(x) = Kv,x (u(x))= �∇2
x u(x)

�nx
+(1−�)

�
�tx

[
�

�nx

(
�u(x)

�tx

)]
(17)

where K�,x (·),Km,x (·),Kv,x (·) are the slope, moment and shear force operators with respect to13
the point x , �/�nx is the normal derivative with respect to the field point x,�/�tx is the tangential
derivative with respect to the field point x,∇2

x means the Laplacian operator and � is the Poisson15
ratio.

By taking the Laplacian with respect to u(x) in Equation (9), the vorticity function is derived17
as follows:

8��(x) = −
∫
B
U∇2(s, x)v(s)dB(s)+

∫
B

�∇2(s, x)v(s)dB(s)

−
∫
B
M∇2(s, x)v(s)dB(s)+

∫
B
V∇2(s, x)v(s)dB(s), x ∈� (18)

where U∇2(s, x),�∇2(s, x),M∇2(s, x) and V∇2(s, x) are the Laplacian of degenerate kernels19
U (s, x),�(s, x),M(s, x) and V (s, x), respectively. The kernel functions are listed in Appendix A.
By using the formulations in conjunction with the degenerate kernels, Fourier series and adaptive21
observer system, the stream function and vorticity can be solved.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)
DOI: 10.1002/nme
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3.2. Null-field integral equation1

The null-field integral equations were obtained by collocating the field point x outside the domain
as follows:

3

0= −
∫
B
U (s, x)v(s)dB(s)+

∫
B

�(s, x)m(s)dB(s)

−
∫
B
M(s, x)�(s)dB(s)+

∫
B
V (s, x)u(s)dB(s), x ∈�C (19)

0= −
∫
B
U�(s, x)v(s)dB(s)+

∫
B

��(s, x)m(s)dB(s)

−
∫
B
M�(s, x)�(s)dB(s)+

∫
B
V�(s, x)u(s)dB(s), x ∈�C (20)

0= −
∫
B
Um(s, x)v(s)dB(s)+

∫
B

�m(s, x)m(s)dB(s)

−
∫
B
Mm(s, x)�(s)dB(s)+

∫
B
Vm(s, x)u(s)dB(s), x ∈�C (21)

0= −
∫
B
Uv(s, x)v(s)dB(s)+

∫
B

�v(s, x)m(s)dB(s)

−
∫
B
Mv(s, x)�(s)dB(s)+

∫
B
Vv(s, x)u(s)dB(s), x ∈�C (22)

where �C is the complementary domain of �. Since the four equations of Equations (19)–(22)
are given, there are six (C4

2 ) options for choosing any two equations to solve the problems. For5
simplicity, Equations (19) and (20) are used. In the real implementation, the collocation point in the
null-field integral equation is moved to the boundary from �C such that the kernel functions can7
be expressed in terms of appropriate forms of degenerate kernels. Consequently, all the improper
integrals disappear and are transformed to series sum in the BIEs since the potential across the9
boundary can be described explicitly in both sides by using degenerate kernels.

3.3. Expansion of Fourier series11

The boundary densities u(s),�(s),m(s) and v(s) are expressed in terms of Fourier series as follows:

u(s) = p0+
M∑
n=1

(pn cosn�+qn sinn�) (23)

�(s) = g0+
M∑
n=1

(gn cosn�+hn sinn�) (24)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)
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Figure 1. Degenerate kernel for U (s, x).

m(s) = c0+
M∑
n=1

(cn cosn�+dn sinn�) (25)

u(s) = a0+
M∑
n=1

(an cosn�+bn sinn�) (26)

where a0,an,bn,c0,cn,dn,g0,gn , hn, p0, pn and qn are Fourier coefficients and M denotes the1
truncating terms of Fourier series.

3.4. Expansion of kernels3

By employing the separation technique for source and field points, the kernel function U (s, x) can
be expanded in terms of degenerate kernel in a series form [17] as shown below:5

U (s, x)=r2 lnr

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U I (s, x) = �2(1+ ln R)+R2 ln R−
[
R�(1+2ln R)+ 1

2

�3

R

]
cos(�−�)

(27a)

−
∞∑

m=2

[
1

m(m+1)

�m+2

Rm
− 1

m(m−1)

�m

Rm−2

]
cos[m(�−�)], R��

UE(s, x) = R2(1+ ln�)+�2 ln�−
[
�R(1+2ln�)+ 1

2

R3

�

]
cos(�−�)

(27b)

−
∞∑

m=2

[
1

m(m+1)

Rm+2

�m
− 1

m(m−1)

Rm

�m−2

]
cos[m(�−�)], �>R

where the superscripts ‘I ’ and ‘E’ denote the interior and exterior cases ofU (s, x) kernel depending7
on the geometry as shown in Figure 1. It is interesting to find that interior and exterior Trefftz
bases are imbedded in the degenerate kernel. The other kernels in the BIEs can be obtained by9
utilizing the operators of Equations (15)–(17) with respect to the U (s, x) kernel. The degenerate
kernels U,�,M,V,U�,��,M� and V� in Equations (9) and (10) are listed in Appendix A. It is11

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)
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noted that the interior and exterior cases of U,�,M,U� and �� are the same when they both1
approach the boundary (�= R), since the degenerate kernels are continuous functions across the
boundary. Then, the kernel function with the superscript ‘I’ is chosen while the field point is inside3
the circular region; otherwise, the kernels with the superscript ‘E’ are chosen.

4. INDIRECT BIE METHOD5

Indirect BIE method is originated from the physical concept of superposition and must satisfy not
only the governing equation but also the boundary conditions. There are four kinds of potentials,7
single-, double-, triple- and quadruple-layer potentials in the indirect BIEM for the Stokes flow
problems. By choosing any two potentials, six options (C4

2 ) (single–double-layer potentials, single–9
triple-layer potentials, single–quadruple-layer potentials, double–triple-layer potentials, double–
quadruple-layer potentials and triple–quadruple-layer potentials) can be chosen. For simplicity,11
single- and double-layer potentials are chosen here as follows:

u(x)=
∫
B
U (s, x)�(s)dB(s)+

∫
B

�(s, x)�(s)dB(s), x ∈� (28)13

where �(s) and �(s) are the single- and double-layer fictitious densities, respectively, and B is
the boundary of the domain �. By taking normal derivative with respect to u(x) in Equation (28),15
we have

�(x)=
∫
B
U�(s, x)�(s)dB(s)+

∫
B

��(s, x)�(s)dB(s), x ∈� (29)17

The single- and double-layer fictitious densities in Equations (28) and (29) are expressed in terms
of Fourier series as follows:

19

�(s) = a0+
M∑
n=1

(an cosn�+bn sinn�) (30)

�(s) = c0+
M∑
n=1

(cn cosn�+dn sinn�) (31)

where a0,an,bn,c0,cn and dn are the Fourier coefficients and M denotes the truncating terms of
Fourier series. By taking the Laplacian with respect to u(x) in Equation (28), the vorticity function21
is derived as shown below:

�(x)=
∫
B
U∇2(s, x)�(s)dB(s)+

∫
B

�∇2(s, x)�(s)dB(s), x ∈� (32)23

where U∇2(s, x) and �∇2(s, x) are the Laplacian of the degenerate kernels U (s, x) and �(s, x),
respectively. It is noted that null-field integral equation in the indirect method is not available.25
However, the compatible relationship of boundary data can be obtained by moving the domain
point x in Equations (28) and (29) to the boundary B− and B+ from inside and outside domains,27
respectively.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2007)
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5. ADAPTIVE OBSERVER SYSTEM AND VECTOR DECOMPOSITION FOR THE1
NORMAL DERIVATIVE

5.1. Adaptive observer system3

Consider a biharmonic problem with circular boundaries as shown in Figure 2. Since the BIEs
are frame indifferent due to objectivity, an adaptive observer system is chosen to fully employ the5
circular property by expanding the kernels into degenerate forms. The origin of the observer system
can be adaptively located on the center of the corresponding boundary contour under integration.7
The dummy variable in the circular contour integration is the angle (�) instead of radial coordinate
(R). By using the adaptive system, all the boundary integrals can be determined analytically free9
of principal value senses.

5.2. Vector decomposition11

Since the higher-order singular equation is also one alternative to deal with the Stokes problem,
potential gradient or higher-order gradients is required to calculate carefully. For the non-concentric13
case, special treatment for the potential gradient should be taken care as the source and field points
locate on different boundaries. As shown in Figure 3, the true normal direction with respect to15
the collocation point x on the Bi boundary can be superimposed by using the radial direction e˜ �
and angular direction e˜ �

on the Bj boundary. The degenerate kernels for the higher-order singular17
equation (�-formulation) are changed to

Un(s, x) = �U (s, x)

�nx
cos(�−�′)+ �U (s, x)

�tx
cos

(�

2
−�+�′) (33)

�n(s, x) = ��(s, x)

�nx
cos(�−�′)+ ��(s, x)

�tx
cos

(�

2
−�+�′) (34)

1
f

1r
2r

( , )x r f

2o

1 1( , )R q

1o
2f

1x 2x

2y

jo
jf

jx

jy
jr

ix

iy

if

ir

2 2( , )R q

( , )j jR q

( , )i iR q io
1y

1B
2B

jB

iB

Ω

C
ol
or

O
nl
in
e,

B
&
W

in
Pr
in
t

Figure 2. Adaptive observer system at Oj ( j =1,2,3, . . . ,Nc) when integrating the corresponding circular
boundary Bj for the collocation null-field point near Bi .
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Figure 3. Vector decomposition (Collocation on x and integration on Bj ).

Mn(s, x) = �M(s, x)

�nx
cos(�−�′)+ �M(s, x)

�tx
cos

(�

2
−�+�′) (35)

Vn(s, x) = �V (s, x)

�nx
cos(�−�′)+ �V (s, x)

�tx
cos

(�

2
−�+�′) (36)

The tangential derivative �/�tx with respect to the field point x for the four kernels need to be1
additionally derived and are listed in Appendix A, where the normal derivative �/�nx is �/�� and
has been derived in the U�,��,M� and V� kernels. We call this treatment ‘vector decomposition3
technique’. By approaching the collocation point from �C to Bi and integrating the Bj circle using
the adaptive observer system of origin Oj , the normal and tangent derivatives can be superimposed5
as follows:

�
��i

= �
�� j

cos(�i −�′
j )+

1

� j

�
�� j

cos
(�

2
−�i +�′

j

)
(37)

1

�i

�
��i

= �
�� j

cos
(�

2
−�i +�′

j

)
+ 1

� j

�
�� j

cos(�i −�′
j ) (38)

7

6. SOLUTION PROCEDURES OF THE SEMI-ANALYTICAL APPROACHES

Two semi-analytical approaches, the direct and indirect BIEMs are described. Direct BIEM employs9
the concept of the null-field integral equation but collocates on the real boundary and the indirect
BIEM obtains the compatible relation of boundary data by collocating the point to the boundary11
from the BIE of domain point.
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6.1. Direct formulation1

6.1.1. Eccentric case (doubly connected domain). By using the null-field integral equations (19)–
(20) as shown in Figures 4 and 5, the linear algebraic system can be constructed as follows:3

⎡
⎢⎢⎢⎢⎣

U11 H11 U12 H12

U11h H11h U12h H12h

U21 H21 U22 H22

U21h H21h U22h H22h

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v1

m1

v2

m2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

M11 V11 M12 V12

M11h V11h M12h V12h

M21 V21 M22 V22

M21h V21h M22h V22h

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

h1

u1

h2

u2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(39)

For brevity, a unified form [Ui j] (i=1,2 and j =1,2) denotes the response of U (s, x)5
kernel at the i th circle point due to the source at the j th circle. Otherwise, the same
definition for [Hi j], [Mi j], [Vi j], [Ui j�], [Hi jh], [Mi jh] and [Vi jh] cases. The sub-matrices7
[Ui j], [Hi j], [Mi j], [Vi j], [Ui jh], [Hi jh], [Mi jh] and [Vi jh] are defined as follows:

[Hi j] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�i j0c(�1) �i j1c(�1) �i j1s(�1) · · · �i j Mc(�1) �i j Ms(�1)

�i j0c(�2) �i j1c(�2) �i j1s(�2) · · · �i j Mc(�2) �i j Ms(�2)

�i j0c(�3) �i j1c(�3) �i j1s(�3) · · · �i j Mc(�3) �i j Ms(�3)

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

�i j0c(�2M ) �i j1c(�2M ) �i j1s(�2M ) · · · �i j Mc(�2M ) �i j Ms(�2M )

�i j0c(�2M+1) �i j1c(�2M+1) �i j1s(�2M+1) · · · �i j Mc(�2M+1) �i j Ms(�2M+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(40)

[Mi j] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mi j0c(�1) Mi j1c(�1) Mi j1s(�1) · · · Mi jMc(�1) Mi jMs(�1)

Mi j0c(�2) Mi j1c(�2) Mi j1s(�2) · · · Mi jMc(�2) Mi jMs(�2)

Mi j0c(�3) Mi j1c(�3) Mi j1s(�3) · · · Mi jMc(�3) Mi jMs(�3)

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

Mi j0c(�2M ) Mi j1c(�2M ) Mi j1s(�2M ) · · · Mi jMc(�2M ) Mi jMs(�2M )

Mi j0c(�2M+1) Mi j1c(�2M+1) Mi j1s(�2M+1) · · · Mi jMc(�2M+1) Mi jMs(�2M+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(41)

[Vi j] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V i j0c(�1) V i j1c(�1) V i j1s(�1) · · · V i jMc(�1) V i jMs(�1)

V i j0c(�2) V i j1c(�2) V i j1s(�2) · · · V i jMc(�2) V i jMs(�2)

V i j0c(�3) V i j1c(�3) V i j1s(�3) · · · V i jMc(�3) V i jMs(�3)

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

V i j0c(�2M ) V i j1c(�2M ) V i j1s(�2M ) · · · V i jMc(�2M ) V i jMs(�2M )

V i j0c(�2M+1) V i j1c(�2M+1) V i j1s(�2M+1) · · · V i jMc(�2M+1) V i jMs(�2M+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(42)
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Figure 4. Sketch of the null-field points near the inner cylinder for the centric case.
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Figure 5. Sketch of the null-field points near the outer cylinder for the eccentric case.

[Ui j�] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ui j0c� (�1) Ui j1c� (�1) Ui j1s� (�1) · · · Ui jMc
� (�1) Ui jMs

� (�1)

Ui j0c� (�2) Ui j1c� (�2) Ui j1s� (�2) · · · Ui jMc
� (�2) Ui jMs

� (�2)

Ui j0c� (�3) Ui j1c� (�3) Ui j1s� (�3) · · · Ui jMc
� (�3) Ui jMs

� (�3)

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

Ui j0c� (�2M ) Ui j1c� (�2M ) Ui j1s� (�2M ) · · · Ui jMc
� (�2M ) Ui jMs

� (�2M )

Ui j0c� (�2M+1) Ui j1c� (�2M+1) Ui j1s� (�2M+1) · · · Ui jMc
� (�2M+1) Ui jMs

� (�2M+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(43)
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[Hi j�] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�i j0c� (�1) �i j1c� (�1) �i j1s� (�1) · · · �i j Mc
� (�1) �i j Ms

� (�1)

�i j0c� (�2) �i j1c� (�2) �i j1s� (�2) · · · �i j Mc
� (�2) �i j Ms

� (�2)

�i j0c� (�3) �i j1c� (�3) �i j1s� (�3) · · · �i j Mc
� (�3) �i j Ms

� (�3)

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

�i j0c� (�2M ) �i j1c� (�2M ) �i j1s� (�2M ) · · · �i j Mc
� (�2M ) �i j Ms

� (�2M )

�i j0c� (�2M+1) �i j1c� (�2M+1) �i j1s� (�2M+1) · · · �i j Mc
� (�2M+1) �i j Ms

� (�2M+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(44)

[Mi j�] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mi j0c� (�1) Mi j1c� (�1) Mi j1s� (�1) · · · Mi jMc
� (�1) Mi jMs

� (�1)

Mi j0c� (�2) Mi j1c� (�2) Mi j1s� (�2) · · · Mi jMc
� (�2) Mi jMs

� (�2)

Mi j0c� (�3) Mi j1c� (�3) Mi j1s� (�3) · · · Mi jMc
� (�3) Mi jMs

� (�3)

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

Mi j0c� (�2M ) Mi j1c� (�2M ) Mi j1s� (�2M ) · · · Mi jMc
� (�2M ) Mi jMs

� (�2M )

Mi j0c� (�2M+1) Mi j1c� (�2M+1) Mi j1s� (�2M+1) · · · Mi jMc
� (�2M+1) Mi jMs

� (�2M+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(45)

[Vi j�] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V i j0c� (�1) V i j1c� (�1) V i j1s� (�1) · · · V i jMc
� (�1) V i jMs

� (�1)

V i j0c� (�2) V i j1c� (�2) V i j1s� (�2) · · · V i jMc
� (�2) V i jMs

� (�2)

V i j0c� (�3) V i j1c� (�3) V i j1s� (�3) · · · V i jMc
� (�3) V i jMs

� (�3)

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

V i j0c� (�2M ) V i j1c� (�2M ) V i j1s� (�2M ) · · · V i jMc
� (�2M ) V i jMs

� (�2M )

V i j0c� (�2M+1) V i j1c� (�2M+1) V i j1s� (�2M+1) · · · V i jMc
� (�2M+1) V i jMs

� (�2M+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(46)

where �k (k=1,2,3, . . . ,2M+1) is the kth collocation angle of the collocation points on each1
boundary and the elements of the sub-matrix are defined as follows:

Ui jnc(�k) =
∫
Bj

U (s, xk)cos(n� j )R j d� j , n=0,1,2,3, . . . ,M (47)

Ui jns(�k) =
∫
Bj

U (s, xk)sin(n� j )R j d� j , n=1,2,3, . . . ,M (48)
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�i jnc(�k) =
∫
Bj

�(s, xk)cos(n� j )R j d� j , n=0,1,2,3, . . . ,M (49)

�i jns(�k) =
∫
Bj

�(s, xk) sin(n� j )R j d� j , n=1,2,3, . . . ,M (50)

Mi jnc(�k) =
∫
Bj

M(s, xk)cos(n� j )R j d� j , n=0,1,2,3, . . . ,M (51)

Mi jns(�k) =
∫
Bj

M(s, xk)sin(n� j )R j d� j , n=1,2,3, . . . ,M (52)

V i jnc(�k) =
∫
Bj

V (s, xk)cos(n� j )R j d� j , n=0,1,2,3, . . . ,M (53)

V i jns(�k) =
∫
Bj

V (s, xk)sin(n� j )R j d� j , n=1,2,3, . . . ,M (54)

Ui jnc� (�k) =
∫
Bj

U�(s, xk)cos(n� j )R j d� j , n=0,1,2,3, . . . ,M (55)

Ui jns� (�k) =
∫
Bj

U�(s, xk) sin(n� j )R j d� j , n=1,2,3, . . . ,M (56)

�i jnc� (�k) =
∫
Bj

��(s, xk)cos(n� j )R j d� j , n=0,1,2,3, . . . ,M (57)

�i jns� (�k) =
∫
Bj

��(s, xk)sin(n� j )R j d� j , n=1,2,3, . . . ,M (58)

Mi jnc� (�k) =
∫
Bj

M�(s, xk) cos(n� j ) R j d� j , n=0,1,2,3, . . . ,M (59)

Mi jns� (�k) =
∫
Bj

M�(s, xk)sin(n� j )R j d� j , n=1,2,3, . . . ,M (60)

V i jnc� (�k) =
∫
Bj

V�(s, xk)cos(n� j )R j d� j , n=0,1,2,3, . . . ,M (61)

V i jns� (�k) =
∫
Bj

V�(s, xk)sin(n� j )R j d� j , n=1,2,3, . . . ,M (62)
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where the interior degenerate kernels are used for i=1 and j =1,2; the exterior degenerate kernels1
are used for i=2 and j =1,2. However, the stream function on the boundary of inner rotating
cylinder is an unknown constant u1 [13, 14] for the viscous flow problems. In other words, one more3
unknown degree of freedom is introduced in the real implementation. Therefore, an extra constraint
is required to uniquely solve the problem. The additional equation is obtained on the physical5
view that the pressure is periodic in 2� around the inner rotating cylinder. According to the Stokes
equation of motion and ∇2u=�, the pressure P and vorticity � satisfy the Cauchy–Riemann7
equation, the condition for periodicity in P , namely∫

B1

�P
�t

dB1=0 (63)
9

becomes ∫
B1

��

�n
dB1=

∫
B1

�n dB1=0 (64)
11

where �n is the normal derivative of vorticity, t and n are tangent and normal vectors on the
boundary for the Cauchy–Riemann relation. If u is solved, the vorticity can be determined by13
�=∇2u in the post-processing using Equation (18). Therefore, �n can be obtained by taking
normal derivative with respect to �(x) in Equation (18)

15

�n = 1

8�

NC∑
j=1

∫
Bj

{−U∇2,n(s, x)v j (s)+�∇2,n(s, x)m j (s)

−M∇2,n(s, x)� j (s)+V∇2,n(s, x)u j (s)}dBj (s) (65)

in which U∇2,n(s, x), �∇2,n(s, x), M∇2,n(s, x) and V∇2,n(s, x) are the normal derivatives of
Laplacian of the degenerate kernels U (s, x), �(s, x), M(s, x) and V (s, x), respectively, which are17
listed in Appendix A, NC is the number of circular boundaries. By substituting Equation (65) into
Equation (64), we have the constraint equation

19

∫
B1

{
NC∑
j=1

∫
Bj

[−U∇2,n(s, x)v j (s)+�∇2,n(s, x)m j (s)

−M∇2,n(s, x)� j (s)+V∇2,n(s, x)u j (s)]dBj (s)

}
dB1(x)=0 (66)

Equation (66) indicates that the constraint is composed of double boundary integrals. It is
noted that the point x in the first boundary integral is located by approaching x from the21
domain to R+

1 as shown in Figure 6. For the double integration of the same inner boundaries∫
B1

∫
B1
, the analytical integration can be obtained by using the orthogonal property of Fourier23

bases. For the double integration on different boundaries
∫
B1

∫
B2
, trapezoid integral is used

as follows:25 ∫ 2�

0
f (�)d�=

N∑
k=1

2�

N
f (�k) (67)
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Figure 6. Collocation method for the constraint equation.

where the outer boundary is uniformly divided into N segments. By matching the boundary1
conditions at the 2M+1 collocation points on each boundary and rearranging the known and
unknown sets, the linear algebraic system Equation (39) is reformulated to

3 ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U11 H11 U12 H12 V11

U11� H11� U12� H12� V11�

U21 H21 U22 H22 V21

U21� H21� U22� H22� V21�

U11∇2,n H11∇2,n U12∇2,n H12∇2,n V11∇2,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1

m1

v2

m2

u1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=�1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M11

M11�

M21

M21�

M11∇2,n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(68)

where �1=�1r1 due to the rotation of inner cylinder [13, 14]. It is noted that [V12], [V12�],5
[V22], [V22�], [V12∇2,n], [M12], [M12�], [M22], [M22�] and [M12∇2,n] disappear since the
outer cylinder is stationary (u2=0 and �2=0). The sub-matrices [U11∇2,n], [H11∇2,n], [U12∇2,n]7
and [H12∇2,n] with a dimension of one by (2M+1) are shown below:

[U11∇2,n] = [U110c∇2,n U111c∇2,n U111s∇2,n · · · U11Mc
∇2,n U11Ms

∇2,n] (69)

[H11∇2,n] = [�110c∇2,n �111c∇2,n �111s∇2,n · · · �11Mc
∇2,n �11Ms

∇2,n] (70)

[U12∇2,n] = [U120c∇2,n U121c∇2,n U121s∇2,n · · · U12Mc
∇2,n U12Ms

∇2,n] (71)

[H12∇2,n] = [�120c∇2,n �121c∇2,n �121s∇2,n · · · �12Mc
∇2,n �12Ms

∇2,n] (72)9
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where each element of [U11∇2,n], [H11∇2,n], [U12∇2,n] and [H12∇2,n] are defined as shown1
below:

U11nc∇2,n =
∫
B1

∫
B1
UE

∇2,n(s, x)cos(n�1)dB1(s)dB(x)1, n=0,1,2,3, . . . ,M (73)

U11ns∇2,n =
∫
B1

∫
B1
UE

∇2,n(s, x)sin(n�1)dB1(s)dB1(x), n=1,2,3, . . . ,M (74)

�11nc∇2,n =
∫
B1

∫
B1

�E
∇2,n(s, x)cos(n�1)dB1(s)dB1(x), n=0,1,2,3, . . . ,M (75)

�11ns∇2,n =
∫
B1

∫
B1

�E
∇2,n(s, x)sin(n�1)dB1(s)dB1(x), n=1,2,3, . . . ,M (76)

U12nc∇2,n =
∫
B1

∫
B2
U I

∇2,n(s, xk)cos(n�2)dB2(s)dB1(x)

=
N∑

k=1

2�

N

∫
B2
U I

∇2,n(s, xk)cos(n�2)dB2(s), n=0,1,2,3, . . . ,M (77)

U12ns∇2,n =
∫
B1

∫
B2
U I

∇2,n(s, xk)sin(n�2)dB2(s)dB1(x)

=
N∑

k=1

2�

N

∫
B2
U I

∇2,n(s, xk)sin(n�2)dB2(s), n=1,2,3, . . . ,M (78)

�12nc∇2,n =
∫
B1

∫
B2

�I
∇2,n(s, xk)cos(n�2)dB2(s)dB1(x)

=
N∑

k=1

2�

N

∫
B2

�I
∇2,n(s, xk)cos(n�2)dB2(s), n=0,1,2,3, . . . ,M (79)

�12ns∇2,n =
∫
B1

∫
B2

�I
∇2,n(s, xk)sin(n�2)dB2(s)dB1(x)

=
N∑

k=1

2�

N

∫
B2

�I
∇2,n(s, xk)sin(n�2)dB2(s), n=1,2,3, . . . ,M (80)

3
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where xk is sampling point. The elements of [M11∇2,n] and [V11∇2,n] with a dimension of one1
by one are defined as follows:

M11∇2,n =
∫
B1

∫
B1

ME
∇2,n(s, x)1dB(s)1 dB1(x) (81)

V 11∇2,n =
∫
B1

∫
B1
V E

∇2,n(s, x)1dB1(s)dB1(x) (82)

The unknown Fourier coefficients and the unknown stream function on the inner rotating cylinder3
can be obtained at the same time by solving the linear algebraic augmented system of Equation
(68). After determining the unknown Fourier coefficients, the interior potential can be obtained by5
using the BIE for the domain point. The vorticity in the post-processing can be obtained by using
the following equation:

7

∇2u(x) = �(x)= 1

8�

NC∑
j=1

{
−

∫
Bj

U∇2(s, x)v j (s)dBj (s)+
∫
Bj

�∇2(s, x)v j (s)dBj (s)

−
∫
Bj

M∇2(s, x)v j (s)dBj (s)+
∫
Bj

V∇2(s, x)v j (s)dBj (s)

}
, x ∈� (83)

where NC is the number of circular boundaries.

6.2. Indirect formulation9

By using the indirect formulation of Equations (28)–(29) and collocating to the boundaries from
R+ and R− for the inner and outer boundaries, respectively, the linear algebraic system is obtained11
as follows:

⎡
⎢⎢⎢⎢⎣

U11 H11 U12 H12

U11h H11h U12h H12h

U21 H21 U22 H22

U21h H21h U22h H22h

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U1

W1

U2

W2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u1

�1

u2

�2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(84)

13

whereU1,W1,U2 andW2 are the column vectors of Fourier coefficients for the fictitious boundary
distributions of U and W; u1, �1, u2 and �2 are the given boundary conditions. The sub-matrices15
[Ui j], [Hi j], [Ui jh] and [Hi jh] (i=1,2 and j =1,2) of the influence matrix are the same as
Equations (40) and (44)–(45). The elements of the sub-matrices are defined as follows:

17

Ui jnc(�k) =
∫
Bj

U (s, xk)cos(n� j )R j d� j , n=0,1,2,3, . . . ,M (85)

Ui jns(�k) =
∫
Bj

U (s, xk)sin(n� j )R j d� j , n=1,2,3, . . . ,M (86)
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�i jnc(�k) =
∫
Bj

�(s, xk)cos(n� j )R j d� j , n=0,1,2,3, . . . ,M (87)

�i jns(�k) =
∫
Bj

�(s, xk)sin(n� j )R j d� j , n=1,2,3, . . . ,M (88)

Ui jnc� (�k) =
∫
Bj

U�(s, xk)cos(n� j )R j d� j , n=0,1,2,3, . . . ,M (89)

Ui jns� (�k) =
∫
Bj

U�(s, xk)sin(n� j )R j d� j , n=1,2,3, . . . ,M (90)

�i jnc� (�k) =
∫
Bj

��(s, xk)cos(n� j )R j d� j , n=0,1,2,3, . . . ,M (91)

�i jns� (�k) =
∫
Bj

��(s, xk)sin(n� j )R j d� j , n=1,2,3, . . . ,M (92)

where j =1 and i=1,2, the exterior degenerate kernels are used; j=2 and i=1,2, the interior1
degenerate kernels are used. However, u1 is an unknown constant along the inner cylinder as
explained in the direct BIEM, one more constraint equation is needed and Equation (64) is3
considered again as follows:

∫
B1

��

�n
dB1=

∫
B1

�n dB1=0 (93)
5

By substituting Equation (32) into Equation (93), we have

∫
B1

NC∑
j=1

{∫
Bj

U∇2,n(s, x)� j (s)dBj (s)+
∫
Bj

�∇2,n(s, x)� j (s)dBj (s)

}
dB1(x)=0 (94)

7

Therefore, the linear algebraic system (84) can be reformulated as shown below:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

U11 H11 U12 H12 −1

U11h H11h U12h H12h 0

U21 H21 U22 H22 0

U21h H21h U22h H22h 0

U11∇2,n H11∇2,n U12∇2,n H12∇2,n 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U1

W1

U2

W2

u1

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0

�1

u2

�2

0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(95)

9

The sub-matrices [U11∇2,n], [H11∇2,n] [U12∇2,n], [H12∇2,n] with a dimension of one by (2M+1),
respectively, are the same as Equations (69)–(72). The unknown Fourier coefficients and the11
unknown stream function along the inner rotating cylinder can be obtained at the same time by
solving the linear algebraic augmented system of Equation (95). After determining the unknown13
Fourier coefficients, the interior potential can be obtained by using the BIE for the domain point
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of Equation (28). The vorticity in the post-processing can be obtained by using the following1
equation:

�(x)=
NC∑
j=1

{∫
Bj

U∇2(s, x)� j (s)dBj (s)+
∫
Bj

�∇2(s, x)� j (s)dBj (s)

}
, x ∈� (96)

3

where NC is the number of circular boundaries.

7. NUMERICAL EXAMPLES5

7.1. Eccentric case: a doubly connected domain

Two approaches, direct BIEM and indirect BIEM, are presented to solve the flow between eccen-7
tric cylinders. The inner cylinder rotates with a constant angular velocity and the outer one is
stationary as shown in Figure 7. The following parameters are defined: r1=0.5, radius of inner9
cylinder; r2=1, radius of outer cylinder; c=r2−r1, the clearance; 	=e/c, the eccentricity; e,
separation of centers of cylinders; �1=1 for the anticlockwise angular velocity of inner cylinder.11

e

2r
1r

2B
1B

4 ( ) 0,u x x∇ = ∈Ω

1ω
Boundary conditions: 

1( )u s u=  and 1 1( ) 0.5s rθ ω= =  on 1B

( ) 0u s =  and ( ) 0sθ =  on 2B

Figure 7. The flow between eccentric cylinders.

Table I. Comparison of analytical and numerical results of u1 for the eccentric bearing.

Kelmanson and Ingham [13, 14]
Limit Analytical Present method Present method

	 n=80 n=160 n=320 n→∞ [1] solution (Direct BIEM) (Indirect BIEM)

0.0 0.1066 0.1062 0.1061 0.1061 0.1060 0.1060 (N =5) 0.1060 (N =5)
0.1 0.1052 0.1048 0.1047 0.1047 0.1046 0.1046 (N =7) 0.1046 (N =7)
0.2 0.1011 0.1006 0.1005 0.1005 0.1005 0.1005 (N =7) 0.1005 (N =7)
0.3 0.0944 0.0939 0.0938 0.0938 0.0938 0.0938 (N =7) 0.0938 (N =7)
0.4 0.0854 0.0850 0.0848 0.0846 0.0848 0.0848 (N =9) 0.0848 (N =9)
0.5 0.0748 0.0740 0.0739 0.0739 0.0738 0.0738 (N =11) 0.0738 (N =11)
0.6 0.0622 0.0615 0.0613 0.0612 0.0611 0.0611 (N =17) 0.0611 (N =17)
0.7 0.0484 0.0477 0.0474 0.0472 0.0472 0.0472 (N =17) 0.0472 (N =17)
0.8 0.0347 0.0332 0.0326 0.0322 0.0322 0.0322 (N =21) 0.0322 (N =21)
0.9 0.0191 0.0175 0.0168 0.0163 0.0164 0.0164 (N =31) 0.0164 (N =31)

n, the number of boundary nodes; N , the number of collocation points on the inner cylinder.
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Figure 8. Comparison of contour plots of streamlines for 	=0.5.
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Present method (M=10) Present method (M=20)

Present method (M=40)
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Figure 9. Comparison of streamlines contour plots for 	=0.8.

The flow between eccentric cylinders satisfies the biharmonic equation and the essential boundary1
conditions are specified as follows:

u(s) = u1, �(s)= �u(s)

�n
=�1r1=0.5, s on B1 (97)

u(s) = 0, �(s)= �u(s)

�n
=0, s on B2 (98)

First, the direct BIEM is used. The unknown boundary densities m(s), v(s) on B1 and m(s), v(s)3
on B2 are expressed in terms of Fourier series. The unknown Fourier coefficients can be determined
by using the null-field integral equations in conjunction with degenerate kernels and Fourier series;5
however, the boundary condition u1 is an unknown constant along the inner boundary. An additional
constraint is required to ensure a unique solution. From the solution procedures of the direct BIEM,7
u1 with different eccentricities are calculated and the results are shown in Table I. By using the
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Present method (M=10) Present method (M=20)

Kelmanson [11] (a) 0, (b) 0.4, (c) 0.8, (d) 1.2, (e) 1.6, (f) 2.0, (g) 2.5 
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Figure 10. Comparison of vorticity contour plots for 	=0.5.

Present method (M=10) Present method (M=20) 
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Figure 11. Comparison of vorticity contour plots for 	=0.8.
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Figure 12. Comparison for 	=0.5 using direct formulation.

fewer degrees of freedom than BIE [14], present results are more accurate after comparing with1
the analytical solution as follows:

u1= A�1r1(sinh�−�cosh�)(sinh
2 sinh�−�sinh
1)

2[(�+sinh
1 cosh
1−cosh
2 sinh
2)(sinh�−�cosh�)+cosh�(�2−sinh�2)] (99)
3

where

A = c

	

[
(1−	2)

[(
r1+r2

c

)2

−	2
]]1/2

(100)


1 = −sinh−1
(

A

2r1

)
(101)


2 = −sinh−1
(

A

2r2

)
(102)

� = 
1−
2 (103)5
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Figure 13. The streamlines contour plot for 	=0.5 by using indirect BIEM.
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Figure 14. The streamlines contour plot for 	=0.8 by using indirect BIEM.
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It is noted that the number of segments N in integrating on B1 boundary of Equation (68) is the1
same as the number of (2M+1) collocation null-field points near the inner cylinder boundary. The
contour plot of stream function and vorticity can be obtained by substituting Fourier coefficients3
into the BIE for the domain point of Equations (9) and (18). The streamlines and vorticity contour
plots for 	=0.5 and 0.8 solved by employing the direct BIEM are compared with the Kelmanson’s5
results [14] obtained by using the 160 boundary nodes and Kamal’s result [11] as shown in Figures
8–11. Figure 12 shows the rate of convergence between the present approach and BIE. It indicates7
that our approach shows exponential convergence rate.

According to the indirect BIEM, the unknown boundary constant u1 for the eccentric bearing9
problem is also obtained as shown in Table I. Good agreement is also made after comparing the
results for 	=0.5 and 0.8 as shown in Figures 13 and 14. Besides, the FEM by using ABAQUS11
software is used to solve the problem and the results are also shown in Figures 13 and 14 for
comparison.13

8. CONCLUDING REMARKS

In this paper, the direct and indirect formulations in conjunction with the degenerate kernels and15
Fourier series expansion in adaptive observer system were proposed to solve the Stokes flow
problems. ABAQUS software [18] was also used to solve the stream function for the eccentric17
bearing case. The constant stream function along the inner rotating cylinder is obtained by using
direct and indirect BIEMs. Only fewer numbers of collocation and segments were used to show the19
good agreement after comparing with the BIE results [13, 14] on the base of analytical solution.
Although the Poisson ratio is contained in the direct BIEM, this method can be applied to solve21
the Stokes problems no matter how the Poisson ratio is specified. Although the indirect BIEM
cannot provide null-field integral equation, the present method by moving the interior point to23
the boundary can be implemented by choosing the appropriate expansion of degenerate kernels.
Numerical examples were demonstrated to see the validity of the present formulation with five25
gains: meshless approach, boundary-layer effect free, singularity free, exponential convergence
and well-posed model.27

APPENDIX A: DEGENERATE KERNELS

A.1. Degenerate kernels for U,�,M,V in the first BIE29

U (s, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U I(s, x)=�2(1+ ln R)+R2 ln R−
[
R�(1+2ln R)+ 1

2

�3

R

]
cos(�−�)

−
∞∑

m=2

[
1

m(m+1)

�m+2

Rm
− 1

m(m−1)

�m

Rm−2

]
cos[m(�−�)], R��

UE(s, x)= R2(1+ ln�)+�2 ln�−
[
�R(1+2ln�)+ 1

2

R3

�

]
cos(�−�)

−
∞∑

m=2

[
1

m(m+1)

Rm+2

�m
− 1

m(m−1)

Rm

�m−2

]
cos[m(�−�)], �>R
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�(s, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�I(s, x)= �2

R
+R(1+2ln R)−

[
�(3+2ln R)− 1

2

�3

R2

]
cos(�−�)

+
∞∑

m=2

[
1

m+1

�m+2

Rm+1
− m−2

m(m−1)

�m

Rm−1

]
cos[m(�−�)], R��

�E(s, x)=2R(1+ ln�)−
[
�(1+2ln�)+ 3

2

R2

�

]
cos(�−�)

−
∞∑

m=2

[
m+2

m(m+1)

Rm+1

�m
− 1

m−1

Rm−1

�m−2

]
cos[m(�−�)], �>R

M(s, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M I(s, x)=(�−1)
�2

R2
+(�+3)+2(�+1) ln R−

[
(�+1)

2�

R
−(�−1)

�3

R3

]
cos(�−�)

+
∞∑

m=2

[
(�−1)

�m+2

Rm+2
+m(1−�)−2(1+�)

m

�m

Rm

]
cos[m(�−�)], R��

ME(s, x)=2(1+�)(1+ ln�)−(�+3)
R

�
cos(�−�)

+
∞∑

m=2

[
m(�−1)−2(�+1)

m

Rm

�m
+(1−�)

Rm−2

�m−2

]
cos[m(�−�)], �>R

V (s, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V I(s, x)= 4

R
+

[
2�

R2
(3−�)− �3

R4
(1−�)

]
cos(�−�)

−
∞∑

m=2

[
m(1−�)

�m+2

Rm+3
−(4+m(1−�))

�m

Rm+1

]
cos[m(�−�)], R>�

V E(s, x)=(−3−�)
1

�
cos(�−�)

+
∞∑

m=2

[
(m(1−�)−4)

Rm−1

�m
−m(1−�)

Rm−3

�m−2

]
cos[m(�−�)], �>R

1

A.2. Degenerate kernels for U�, ��, V� in the second BIE

U�(s, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U I
�(s, x)=2�(1+ ln R)−

[
R(1+2ln R)+ 3

2

�2

R

]
cos(�−�)

−
∞∑

m=2

[
m+2

m(m+1)

�m+1

Rm
− 1

m−1

�m−1

Rm−2

]
cos[m(�−�)], R��

UE
� (s, x)= R2

�
+�(1+2ln�)−

[
R(3+2ln�)− 1

2

R3

�2

]
cos(�−�)

+
∞∑

m=2

[
1

m+1

Rm+2

�m+1
− m−2

m(m−1)

Rm

�m−1

]
cos[m(�−�)], �>R
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��(s, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�I
�(s, x)=

2�

R
−

[
(3+2ln R)− 3

2

�2

R2

]
cos(�−�)

+
∞∑

m=2

[
m+2

m+1

�m+1

Rm+1
−m−2

m−1

�m−1

Rm−1

]
cos[m(�−�)], R��

�E
� (s, x)= 2R

�
−

[
(3+2ln�)− 3

2

R2

�2

]
cos(�−�)

+
∞∑

m=2

[
m+2

m+1

Rm+1

�m+1
−m−2

m−1

Rm−1

�m−1

]
cos[m(�−�)], �>R

M�(s, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M I
�(s, x)=

2�

R2
(�−1)−

[
2

R
(�+1)−3(�−1)

�2

R3

]
cos(�−�)

+
∞∑

m=2

[
(m+2)(�−1)

�m+1

Rm+2
+(m(1−�)−2(1+�))

�m−1

Rm

]

×cos[m(�−�)], R>�

ME
� (s, x)= 2(1+�)

�
+(�+3)

R

�2
cos(�−�)

−
∞∑

m=2

[
(m(�−1)−2(�+1))

Rm

�m+1
+(m−2)(1−�)

Rm−2

�m−1

]

×cos[m(�−�)], �>R

V�(s, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V I
�(s, x)=

[
2

R2
(3−�)−3(1−�)

�2

R4

]
cos(�−�)

−
∞∑

m=2

[
m(m+2)(1−�)

�m+1

Rm+3
−m(4+m(1−�))

�m−1

Rm+1

]

×cos[m(�−�)], R>�

V E
� (s, x)=(3+�)

1

�2
cos(�−�)

−
∞∑

m=2

[
m(m(1−�)−4)

Rm−1

�m+1
−m(m−2)(1−�)

Rm−3

�m−1

]

×cos[m(�−�)], �>R

where U�, ��, M�, V� are equal to �U (s, x)/�nx ,��(s, x)/�nx , �M(s, x)/�nx and �V (s, x)/�nx ,1
respectively.
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A.3. Tangential derivative with respect to the field point1

U,t (s, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U I
,t (s, x)=−

[
R(1+2ln R)+ 1

2

�2

R

]
sin(�−�)

−
∞∑

m=2

[
1

m+1

�m+1

Rm
− 1

m−1

�m−1

Rm−2

]
sin[m(�−�)], R>�

UE
,t (s, x)=−

[
R(1+2ln�)+ 1

2

R3

�2

]
sin(�−�)

−
∞∑

m=2

[
1

m+1

Rm+2

�m+1
− 1

m−1

Rm

�m−1

]
sin[m(�−�)], �>R

�,t (s, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�I
,t (s, x)=−

(
3+2ln R− 1

2

�2

R2

)
sin(�−�)

+
∞∑

m=2

[
m

m+1

�m+1

Rm+1
−m−2

m−1

�m−1

Rm−1

]
sin[m(�−�)], R>�

�E
,t (s, x)=−

(
1+2ln�+ 3

2

R2

�2

)
sin(�−�)

−
∞∑

m=2

[
m+2

m+1

Rm+1

�m+1
− m

m−1

Rm−1

�m−1

]
sin[m(�−�)], �>R

M,t (s, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M I
,t (s, x)=−

[
2(�+1)

R
−(�−1)

�2

R3

]
sin(�−�)

+
∞∑

m=2

[
m(�−1)

�m+1

Rm+2
+(m(1−�)−2(1+�))

�m−1

Rm

]
sin[m(�−�)], R>�

ME
,t (s, x)=−(�+3)

R

�2
sin(�−�)

+
∞∑

m=2

[
(m(�−1)−2(�+1))

Rm

�m+1
+m(1−�)

Rm−2

�m−1

]
sin[m(�−�)], �>R

V,t (s, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V I
,t (s, x)=

[
2(3−�)

R2
− �2

R4
(1−�)

]
sin(�−�)

−
∞∑

m=2

[
m2(1−�)

�m+1

Rm+3
−m(4+m(1−�))

�m−1

Rm+1

]
sin[m(�−�)], R>�

V E
,t (s, x)=(−3−�)

1

�2
sin(�−�)+

∞∑
m=2

[
m(m(1−�)−4)

Rm−1

�m+1

−m2(1−�)
Rm−3

�m−1

]
sin[m(�−�)], �>R
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1 A.4. Laplacian of the degenerate kernels with respect to U,�,M,V

U∇2(s, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U I
∇2(s, x)=4(1+ ln R)−4

�

R
cos(�−�)−

∞∑
m=2

4

m

�m

Rm
cos[m(�−�)], R>�

UE
∇2(s, x)=4(1+ ln�)−4

R

�
cos(�−�)−

∞∑
m=2

4

m

Rm

�m
cos[m(�−�)], �>R

�∇2(s, x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�I
∇2(s, x)= 4

R
+4

�

R2
cos(�−�)+

∞∑
m=2

4
�m

Rm+1
cos[m(�−�)], R>�

�E
∇2(s, x)=−4

�
cos(�−�)−

∞∑
m=2

4
Rm−1

�m
cos[m(�−�)], �>R

M∇2(s, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M I
∇2(s, x)= 4

R2
(�−1)+8(�−1)

�

R3
cos(�−�)

+
∞∑

m=2
4(m+1)(�−1)

�m

Rm+2
cos[m(�−�)], R>�

ME
∇2(s, x)=

∞∑
m=2

4(m−1)(�−1)
Rm−2

�m
cos[m(�−�)], �>R

V∇2(s, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V I
∇2(s, x)=8(�−1)

�

R4
cos(�−�)

+
∞∑

m=2
4m(m+1)(�−1)

�m

Rm+3
cos[m(�−�)], R>�

V E
∇2(s, x)=−

∞∑
m=2

4m(m−1)(�−1)
Rm−3

�m
cos[m(�−�)], �>R

3

A.5. Normal derivative of Laplacian of the degenerate kernels

U∇2,n(s, x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

U I
∇2,n(s, x)=− 4

R
cos(�−�)−

∞∑
m=2

4
�m−1

Rm
cos[m(�−�)], R>�

UE
∇2,n(s, x)=

4

�
+4

R

�2
cos(�−�)+

∞∑
m=2

4
Rm

�m+1
cos[m(�−�)], �>R

�∇2,n(s, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�I
∇2,n(s, x)=

4

R2
cos(�−�)+

∞∑
m=2

4m
�m−1

Rm+1
cos[m(�−�)], R>�

�E
∇2,n(s, x)=

4

�2
cos(�−�)+

∞∑
m=2

4m
Rm−1

�m+1
cos[m(�−�)], �>R
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M∇2,n(s, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M I
∇2,n(s, x)=

8(�−1)

R3
cos(�−�)

+
∞∑

m=2
4m(m+1)(�−1)

�m−1

Rm+2
cos[m(�−�)], R>�

ME
∇2,n(s, x)=−

∞∑
m=2

4m(m−1)(�−1)
Rm−2

�m+1
cos[m(�−�)], �>R

V∇2,n(s, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V I
∇2,n(s, x)=

8(�−1)

R4
cos(�−�)

+
∞∑

m=2
4m2(m+1)(�−1)

�m−1

Rm+3
cos[m(�−�)], R>�

V E
∇2,n(s, x)=

∞∑
m=2

4m2(m−1)(�−1)
Rm−3

�m+1
cos[m(�−�)], �>R

1

A.6. Tangential derivative of Laplacian of the degenerate kernels

U∇2,t (s, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
U I

∇2,t (s, x)=− 4

R
sin(�−�)−

∞∑
m=2

4
�m−1

Rm
sin[m(�−�)], R>�

UE
∇2,t (s, x)=−4

R

�2
sin(�−�)−

∞∑
m=2

4
Rm

�m+1
sin[m(�−�)], �>R

�∇2,t (s, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�I
∇2,t (s, x)=

4

R2
sin(�−�)+

∞∑
m=2

4m
�m−1

Rm+1
sin[m(�−�)], R>�

�E
∇2,t (s, x)=− 4

�2
sin(�−�)−

∞∑
m=2

4m
Rm−1

�m+1
cos[m(�−�)], �>R

M∇2,t (s, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

M I
∇2,t (s, x)=

8(�−1)

R3
sin(�−�)

+
∞∑

m=2
4m(m+1)(�−1)

�m−1

Rm+2
sin[m(�−�)], R>�

ME
∇2,t (s, x)=

∞∑
m=2

4m(m−1)(�−1)
Rm−2

�m+1
sin[m(�−�)], �>R

V∇2,t (s, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V I
∇2,t (s, x)=

8(�−1)

R4
sin(�−�)

+
∞∑

m=2
4m2(m+1)(�−1)

�m−1

Rm+3
sin[m(�−�)], R>�

V E
∇2,t (s, x)=−

∞∑
m=2

4m2(m−1)(�−1)
Rm−3

�m+1
sin[m(�−�)], �>R
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