
August 10, 2006 22:23 WSPC/130-JCA 00299

Journal of Computational Acoustics, Vol. 14, No. 2 (2006) 157–183
c© IMACS

TREATMENT OF RANK DEFICIENCY IN ACOUSTICS USING SVD

J. T. CHEN∗

Department of Harbor and River Engineering
National Taiwan Ocean University

P. O. Box 7-59, Keelung 2024, Taiwan
jtchen@mail.ntou.edu.tw

I. L. CHEN

Department of Naval Architecture
National Kaohsiung Marine University, Kaohsiung, Taiwan

K. H. CHEN

Department of Information Management
Toko University, Chia-Yi, Taiwan

Received 25 January 2002
Revised 15 January 2005

In this paper, we proposed a unified formulation to explain the reason why spurious eigensolution
occurs in the eigenproblem of interior acoustics using the real-part and imaginary-part BEMs and
why fictitious frequency occurs in exterior acoustics using the complex-valued BEM. Both the two
problems stem from the rank deficiency of the influence matrix. Based on the circulant properties
and degenerate kernels, an analytical study in a discrete system for a circular cavity is conducted.
The Fredholm alternative theorem is employed to study the rank-deficiency problems in conjunction
with singular value decomposition updating technique. The spurious and fictitious boundary modes
are found to locate in the column vectors of left unitary matrix. Also, the effects of different types
of boundary condition on the spurious and fictitious solutions using direct and indirect methods
are discussed. The mathematical and physical meanings for the nontrivial boundary solution in
spurious eigensolution and fictitious frequency are explained. Numerical experiments are found to
agree with the analytical predictions.

Keywords: Rank deficiency; circulant; degenerate kernel; BEM; spurious eigenvalue; fictitious
frequency.

1. Introduction

Acoustic problems are generally modeled using the wave equation in the time domain. For
harmonic excitation, it can be transformed to the Helmholtz equation in the frequency
domain. Integral equations have been utilized to solve the interior and exterior acoustic
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problems for a long time. While the solution to the original boundary value problem in the
exterior domain to the boundary is perfectly unique for all wave numbers, this is not the case
for the numerical treatment of integral equation formulation, which breaks down at certain
frequencies known as irregular frequencies or fictitious frequencies. This problem is com-
pletely nonphysical because there are no discrete eigenvalues for the exterior problems. It is
well known that the singular (UT ) equation results in fictitious frequencies which are associ-
ated with the interior acoustic frequency with essential homogeneous boundary conditions,
while the hypersingular (LM ) equation produces fictitious frequencies which are associated
with natural homogeneous boundary conditions.1 The general derivation was provided in
a continuous system,1 and a discrete system was analytically studied using a circulant.2

Schenck3 proposed a CHIEF (Combined Helmholtz Interior integral Equation Formulation)
method, which is easy to implement and is efficient but still has some drawbacks. Burton
and Miller4 proposed an integral equation that was valid for all wave numbers by forming
a linear combination of the singular integral equation and its normal derivative through an
imaginary constant. In case of a fictitious frequency, the resulting coefficient matrix for the
exterior acoustic problems becomes ill-conditioned. This means that the boundary integral
equations are not linearly independent and the resulted matrix is rank deficient. In the
fictitious-frequency case, the rank of the coefficient matrix is less than 2N , where 2N is the
number of the boundary unknowns. The SVD (Singular Value Decomposition) updating
technique can be employed to detect fictitious frequencies by checking whether the first
minimum singular value, σ1, is zero or not.5

For interior problems, eigensolutions are very important bases in vibrations and
acoustics. Based on the complex-valued boundary element method,6 the eigenvalues and
eigenmodes can be determined. Nevertheless, complex arithmetic is required. To avoid com-
plex arithmetic, many approaches, the multiple reciprocity method (MRM),7 real-part and
imaginary-part BEMs8,9 have been proposed. For example, Tai and Shaw10 employed only
real-part kernel in integral formulation. A simplified method using only the real-part or
imaginary-part kernel was also presented by De Mey.8 Although De Mey found that the
zeros for a real-part of the complex determinant may be different from those for real-part or
imaginary-part determinant, the spurious eigensolutions were not discovered analytically.
Chen and Wong11 found the spurious eigensolutions analytically in MRM using a simple
example. Later, Kamiya et al.12 and Yeih et al.13 independently claimed that MRM is no
more than the real-part BEM. Kang et al.14 employed the Nondimensional Dynamic Influ-
ence Function method (NDIF) to solve the eigenproblem. Chen et al.15 commented that
the NDIF method is a special case of imaginary-part BEM. Kang and Lee16 also found the
spurious eigensolutions and filtered out the spurious eigenvalues by using the net approach.
The reason why spurious eigenvalues occur in the real-part BEM is the loss of the con-
straints, which was investigated by Yeih et al..13 The spurious eigensolutions and fictitious
solutions arise from an improper approximation of the null space of operator.17 The fewer
number of constraint equations makes the solution space larger. The spurious eigensolutions
can be filtered out by using many alternatives, e.g., the complex-valued formulation, the
domain partition technique,18 the dual formulation in conjunction with the SVD updating
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techniques19 and the CHEEF (Combined Helmholtz Exterior integral Equation Formula-
tion) method.20

One of the important and basic tools of modern numerical analysis; particularly linear
algebra for science and engineering, is SVD. The SVD technique is a form of orthogonal
matrix factorization that is more powerful than the QR factorization, although SVD is
not often included in introductory courses.21 Especially, it is more versatile for the ill-
posed system.22 The present paper is but one of many fields of application and it is likely
that within five or ten years, SVD will become one of the most fundamental tools for the
engineering community, particularly in the case of linear system. It is interesting that SVD
updating technique as well as downdating technique have been applied to data retrieval.23

Based on the circulant properties and degenerate kernels, the reason why the fictitious
wave number and spurious eigensolution occur can be easily understood in this paper. We
explore the mechanism of them and found the relationship between the spurious eigenvalue
(interior problem) and fictitious frequency (exterior problem). The Fredholm alternative
theorem in conjunction with SVD updating technique will be employed to study the math-
ematical structure of the influence matrices. The spurious and fictitious solutions for prob-
lems subject to different boundary conditions using direct and indirect methods will be
investigated. Numerical examples will be demonstrated for the theoretical study.

2. A Unified Integral Formulation for the Interior
and Exterior Acoustic Problems

The governing equation for acoustics is the Helmholtz equation as follows:

∇2u(x) + k2u(x) = 0, x ∈ D, (1)

where u is the acoustic potential, ∇2 is the Laplacian operator, D can be Di for the interior
problem and De for the exterior problem and k is the wave number, which is the angular
frequency over the speed of sound.

2.1. Direct method: Singular (UT ) or hypersingular (LM) equation

Based on the dual formulation, the unified null-field integral formulation for the Helmholtz
equation using the direct method can be written as

0 =
∫

B
T (s,x)u(s)dB(s) −

∫
B

U(s,x)t(s)dB(s), (2)

0 =
∫

B
M(s,x)u(s)dB(s) −

∫
B

L(s,x)t(s)dB(s), (3)

where x is a field point and s is a source point, t(s) = ∂u(s)/∂ns, U(s, x) is the
fundamental solution, T (s,x) = ∂U(s,x)/∂ns, L(s,x) = ∂U(s,x)/∂nx and M(s,x) =
∂2U(s,x)/∂ns∂nx, B denotes the boundary enclosing D. For the exterior problem, we have
U = U i(s,x), T = T i(s,x), L = Li(s,x) and M = M i(s,x). In case of interior problem, we
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have U = U e(s,x), T = T e(s,x), L = Le(s,x) and M = Me(s,x). The selected kernels are
designed to have the null-field equation without jump terms. The eight kernels of U i, U e,
T i, . . . and Me can be obtained by using the degenerate kernels.2 The explicit forms of the
four kernels will be elaborated on later.

2.2. Indirect method: Single-layer (UL) or double-layer (TM) approaches

By employing the indirect method of single-layer (UL) and double-layer (TM) approaches,
we have

u(x) =
∫

B′
U(s,x)φ(s)dB(s), single layer approach, (4)

t(x) =
∫

B′
L(s,x)φ(s)dB(s), single layer approach, (5)

and

u(x) =
∫

B′
T (s,x)ψ(s)dB(s), double layer approach, (6)

t(x) =
∫

B′
M(s,x)ψ(s)dB(s), double layer approach, (7)

where B′ is an auxiliary boundary, φ and ψ are the fictitious densities of single-layer and
double-layer potentials, respectively. In the indirect method, we can superimpose the fic-
titious densities of single-layer or double-layer potential on the fictitious boundary with a
radius R, and collocating the field point along the real boundary with a radius ρ. In the
exterior problem, we have R < ρ. (R > ρ for the interior problem). For the exterior problem,
we have U = U e(s,x), T = T e(s,x), L = Le(s,x) and M = Me(s,x). In case of interior
problem, we have U = U i(s,x), T = T i(s,x), L = Li(s,x) and M = M i(s,x).

3. Analytical Study for Spurious and Fictitious Solutions in BEM
using Degenerate Kernels and Circulants

By using the two bases of the first and the second-kind Bessel functions of the nth order
and their derivatives, Jn(kx), J ′

n(kx), Yn(kx) and Y ′
n(kx), we can decompose the two-

dimensional kernel functions into

U(s,x) =




U i(R, θ; ρ, 0) =
n=∞∑

n=−∞

π

2
[−iJn(kR) + Yn(kR)]Jn(kρ) cos(nθ), R > ρ,

U e(R, θ; ρ, 0) =
n=∞∑

n=−∞

π

2
[−iJn(kρ) + Yn(kρ)]Jn(kR) cos(nθ), R < ρ,

(8)
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T (s,x) =




T i(R, θ; ρ, 0) =
n=∞∑

n=−∞

kπ

2
[−iJ ′

n(kR) + Y ′
n(kR)]Jn(kρ) cos(nθ), R > ρ,

T e(R, θ; ρ, 0) =
n=∞∑

n=−∞

kπ

2
[−iJn(kρ) + Yn(kρ)]J ′

n(kR) cos(nθ), R < ρ,

(9)

L(s,x) =




Li(R, θ; ρ, 0) =
n=∞∑

n=−∞

kπ

2
[−iJn(kR) + Yn(kR)]J ′

n(kρ) cos(nθ), R > ρ,

Le(R, θ; ρ, 0) =
n=∞∑

n=−∞

kπ

2
[−iJ ′

n(kρ) + Y ′
n(kρ)]Jn(kR) cos(nθ), R < ρ,

(10)

M(s,x) =




M i(R, θ; ρ, 0) =
n=∞∑

n=−∞

k2π

2
[−iJ ′

n(kR) + Y ′
n(kR)]J ′

n(kρ) cos(nθ), R > ρ,

Me(R, θ; ρ, 0) =
n=∞∑

n=−∞

k2π

2
[−iJ ′

n(kρ) + Y ′
n(kρ)]J ′

n(kR) cos(nθ), R < ρ,

(11)

where i2 = −1, s = (R, θ) and x can be specified by (ρ, 0) in the polar coordinate without
loss of generality. The definitions of ρ, R and θ for the interior problem using the direct
and indirect methods are shown in Figs. 1 and 2, respectively. For the exterior problems,
they are shown in Figs. 3 and 4, respectively. Based on the circulants for the finite number
degrees of freedom (d.o.f.) system by uniformly discretizing 2N constant elements for a
circular boundary, we have the influence matrix

[G] =




a0 a1 a2 · · · a2N−2 a2N−1

a2N−1 a0 a1 · · · a2N−3 a2N−2

a2N−2 a2N−1 a0 · · · a2N−4 a2N−3

...
...

...
. . .

...
...

a1 a2 a3 · · · a2N−1 a0




, (12)

),( θRs =

)0,(ρ=x
θ

D

B

Fig. 1. The definitions of ρ, R and θ, for the interior problem using the direct method.
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),( θRs =

)0,(ρ=x

θ
D

B′

Fig. 2. The definitions of ρ, R and θ, for the interior problem using the indirect method.

),( θRs =

)0,(ρ=x
θ

D
B

Fig. 3. The definitions of ρ, R and θ, for the exterior problem using the direct method.

)0,(ρ=x

θ
),( θRs =

D B

Fig. 4. The definitions of ρ, R and θ, for the exterior problem using the indirect method.
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where

am =
∫ (m+ 1

2
)∆θ

(m− 1
2
)∆θ

G(R, θ; ρ, 0)R dθ ≈ G(R, θm; ρ, 0)R∆θ, m = 0, 1, 2, . . . , 2N − 1 (13)

in which m = 0, 1, 2, . . . , 2N−1. ∆θ = (2π/2N), θm = m∆θ and G(R, θ; ρ, 0) can be U i, U e,
T i, T e, Li, Le, M i or Me. By using the similar properties for the eight circulants, we have

det[U i] = λ0λN (λ1λ2 · · ·λN−1)(λ−1λ−2 · · · λ−(N−1)), (14)

det[U e] = λ0λN (λ1λ2 · · ·λN−1)(λ−1λ−2 · · · λ−(N−1)), (15)

det[T e] = µ0µN (µ1µ2 · · ·µN−1)(µ−1µ−2 · · ·µ−(N−1)), (16)

det[Li] = µ0µN (µ1µ2 · · ·µN−1)(µ−1µ−2 · · ·µ−(N−1)), (17)

det[T i] = ν0νN (ν1ν2 · · · νN−1)(ν−1ν−2 · · · ν−(N−1)), (18)

det[Le] = ν0νN (ν1ν2 · · · νN−1)(ν−1ν−2 · · · ν−(N−1)), (19)

det[M i] = κ0κN (κ1κ2 · · ·κN−1)(κ−1κ−2 · · ·κ−(N−1)), (20)

det[Me] = κ0κN (κ1κ2 · · ·κN−1)(κ−1κ−2 · · ·κ−(N−1)), (21)

where

λ� = π2ρ[−iJ�(kρ) + Y�(kρ)]J�(kρ), � = 0,±1,±2, . . . ,±(N − 1), N, (22)

µ� = π2kρ[−iJ�(kρ) + Y�(kρ)]J ′
�(kρ), � = 0,±1,±2, . . . ,±(N − 1), N, (23)

ν� = π2kρ[−iJ ′
�(kρ) + Y ′

� (kρ)]J�(kρ), � = 0,±1,±2, . . . ,±(N − 1), N, (24)

κ� = π2k2ρ[−iJ ′
�(kρ) + Y ′

� (kρ)]J ′
�(kρ), � = 0,±1,±2, . . . ,±(N − 1), N, (25)

in which the singularity is distributed on the boundary such that R = ρ.

4. Fictitious Values for Exterior Problems using BEM

4.1. Direct method: Singular (UT ) or hypersingular (LM) equation

For the radiation problem subject to the Dirichlet boundary condition, u(x) = ū is consid-
ered on the boundary. By employing the singular (UT ) and hypersingular (LM) formula-
tions for the circular radiator, we obtain the following dual equations,

[U i]{t} = [T i]{ū}, (26)

[Li]{t} = [M i]{ū}. (27)

Based on Eqs. (22) and (26), and Eqs. (23) and (27), the possible fictitious frequencies occur
at the position where k satisfies

UT : [−iJ�(kρ) + Y�(kρ)]J�(kρ) = 0, � = 0,±1,±2, . . . ,±(N − 1), N, (28)

LM : [−iJ�(kρ) + Y�(kρ)]J ′
�(kρ) = 0, � = 0,±1,±2, . . . ,±(N − 1), N, (29)
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respectively. Since the term of [−iJ�(kρ) + Y�(kρ)] is never zero for any value of k, the k

value satisfying Eq. (28), implies

UT : J�(kρ) = 0, (30)

and the k value satisfying Eq. (29), implies

LM : J ′
�(kρ) = 0. (31)

For the Neumann radiation problem with t(x) = t̄ specified on the boundary, we can
obtain the following equations,

[T i]{u} = [U i]{t̄ }, (32)

[M i]{u} = [Li]{t̄ }. (33)

Based on Eqs. (24) and (32), and Eqs. (25) and (33), the possible fictitious values occur at
the position where k satisfies

UT : [−iJ ′
�(kρ) + Y ′

� (kρ)]J�(kρ) = 0, � = 0,±1,±2, . . . ,±(N − 1), N. (34)

LM : [−iJ ′
�(kρ) + Y ′

� (kρ)]J ′
�(kρ) = 0, � = 0,±1,±2, . . . ,±(N − 1), N. (35)

Since [−iJ ′
�(kρ) + Y ′

� (kρ)] is never zero for any value of k, the k value satisfying Eq. (34),
implies

UT : J�(kρ) = 0, (36)

and the k value satisfying Eq. (35), implies

LM : J ′
�(kρ) = 0. (37)

4.2. Indirect method: Single-layer (UL) or double-layer (TM) approach

By employing the indirect method of single-layer (UL) or double-layer (TM ) approaches
for the exterior radiation problem, we have

{u} = [U e]{φ}, (38)

{t} = [Le]{φ}, (39)

or

{u} = [T e]{ψ}, (40)

{t} = [Me]{ψ}. (41)

Considering the Dirichlet radiation problem with Eqs. (22) and (38), and Eqs. (23) and
(40), the possible fictitious frequencies occur at the position where k satisfies

UL : [−iJ�(kρ) + Y�(kρ)]J�(kρ) = 0, � = 0,±1,±2, . . . ,±(N − 1), N, (42)

TM : [−iJ�(kρ) + Y�(kρ)]J ′
�(kρ) = 0, � = 0,±1,±2, . . . ,±(N − 1), N, (43)
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respectively. The k value satisfying Eq. (42), implies

UL : J�(kρ) = 0. (44)

The k value satisfying Eq. (43), implies

TM : J ′
�(kρ) = 0. (45)

Considering the Neumann radiation problem with Eqs. (24) and (39), and Eqs. (25) and
(41), the possible fictitious values occur at the position where k satisfies

UL : [−iJ ′
�(kρ) + Y ′

� (kρ)]J�(kρ) = 0, � = 0,±1,±2, . . . ,±(N − 1), N, (46)

TM : [−iJ ′
�(kρ) + Y ′

� (kρ)]J ′
�(kρ) = 0, � = 0,±1,±2, . . . ,±(N − 1), N, (47)

respectively. The k value satisfying Eq. (46), implies

UL : J�(kρ) = 0. (48)

The k value satisfying Eq. (47), implies

TM : J ′
�(kρ) = 0. (49)

After obtaining all the fictitious values which occur in each method, it is found that
once the method of integral formulation (either one of UT , LM , UL and TM methods) is
adopted, the positions of fictitious values are independent of the type of boundary condition.

4.3. The Burton and Miller method

Burton and Miller4 proposed an integral equation by combining the UT and LM equations
through an imaginary constant,[

U i +
i

k
Li

]
{t} =

[
T i +

i

k
M i

]
{u}. (50)

Equation (50) is valid for all wave numbers, since J�(kρ)+ (i/k)J ′
�(kρ) is never zero for any

value of k.

4.4. The dual BEM

By employing the UT and LM formulations to solve the exterior problem of acoustics,
we have

[U i]{t} = [T i]{u}, (51)

[Li]{t} = [M i]{u}. (52)

A conventional approach to detect the nonunique solution is the criterion of satisfying both
Eqs. (51) and (52) at the same time. The UT or LM method in conjunction with SVD



August 10, 2006 22:23 WSPC/130-JCA 00299

166 J. T. Chen, I. L. Chen & K. H. Chen

technique can extract out the fictitious frequencies. Employing the SVD technique, one can
decompose Eq. (51) into

ΦT ΣT Ψ†
Tu = ΦUΣUΨ†

U t, (53)

where † denotes the transpose conjugate, ΦU , ΨU , ΦT and ΨT are the unitary matrices, ΣU

and ΣT are the diagonal matrices composed of the singular values σ
(U)
i and σ

(T )
i of U i and

T i matrices, respectively. When k is a fictitious wave number (ks
f ), there exists a φs vector

which satisfies [
U i†(ks

f )

T i†(ks
f )

]
φs = 0, (54)

after using the Fredholm alternative theorem. Equation (54) is derived in Appendix A. By
taking the transpose conjugate with respect to Eq. (54), we have

φ†
s[U

i(ks
f ) T i(ks

f ) ] = 0, (55)

where φs is the fictitious boundary mode encountered in the “singular” equation. The
assembly of U i and T i matrices in Eqs. (54) and (55) are found to be the SVD updating
terms and documents, respectively. It is found that the fictitious modes can be extracted
out from the left unitary matrix of U i and T i matrices.

Similarly, Eq. (52) can be rewritten as

ΦMΣMΨ†
Mu = ΦLΣLΨ†

Lt (56)

where ΦL, ΨL, ΦM and ΨM are the unitary matrices, ΣL and ΣM are the diagonal matrices
composed of the singular values σ

(L)
i and σ

(M)
i of Li and M i matrices, respectively. When

k is a fictitious wave number (kh
f ), there exists a vector of φh which satisfies

[
Li†(kh

f )

M i†(kh
f )

]
φh = 0, (57)

after using the Fredholm alternative theorem. The derivation is the same as Eq. (54). By
taking the transpose conjugate with respect to Eq. (57), we have

φ†
h[Li(kh

f ) M i(kh
f ) ] = 0, (58)

where φh is the fictitious mode encountered in the “hypersingular” equation. The assemble
of Li and M i matrices in Eqs. (57) and (58) are found to be the SVD updating terms and
documents, respectively. It is found that the fictitious boundary mode can be extracted out
from the left unitary matrix of Li and M i matrices.
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4.5. The CHIEF method

In order to solve the exterior acoustics in case of fictitious frequency, Schenck3 used the
CHIEF method, which employed the boundary integral equations by collocating the interior
point as an auxiliary constraint to promote the rank of influence matrix. Combination of
the integral equations for the boundary points and those in the interior points yields an
over-determined equation system,

[
UB

2N×2N

U I
a×2N

]
{t} =

[
TB

2N×2N

T I
a×2N

]
{ū} (59)

where the superscript B denotes collocation on the boundary, the superscript I denotes
collocation on the interior domain and a is the number of additional interior points. Chen
et al.5 suggested the optimum numbers and proper positions for the collocation points in
the interior domain by using analytical study and numerical experiments.

5. Spurious Eigensolutions for Interior Problems using BEM

5.1. The complex-valued direct methods

By using the UT and LM formulations for the interior Dirichlet problem, we obtain the
following equations,

[U e]{t} = {0}, (60)

[Le]{t} = {0}. (61)

The eigenequations are derived for the circular problem, respectively,

UT : [J�(kρ) + iY�(kρ)]J�(kρ) = 0, (62)

and

LM : [J ′
�(kρ) + iY ′

� (kρ)]J�(kρ) = 0. (63)

The true eigenvalues are the roots of J�(kρ) = 0 for the common part in the eigenequations
of Eqs. (62) and (63).

For the interior Neumann problem, we obtain the following equations,

[T e]{u} = {0}, (64)

[Me]{u} = {0}. (65)
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The eigenequations are derived, respectively,

UT : [J�(kρ) + iY�(kρ)]J ′
�(kρ) = 0, (66)

and

LM : [J ′
�(kρ) + iY ′

� (kρ)]J ′
�(kρ) = 0. (67)

The true eigenvalues are the roots of J ′
�(kρ) = 0 for the common part in the eigenequations

of Eqs. (66) and (67).

5.2. The real-part direct methods

By employing the real-part kernels in UT and LM equations for the interior Dirichlet
problem, we obtain the eigenequations,

UT : Y�(kρ)J�(kρ) = 0, � = 0,±1,±2, . . . ,±(N − 1), N, (68)

LM : Y ′
� (kρ)J�(kρ) = 0, � = 0,±1,±2, . . . ,±(N − 1), N, (69)

respectively. To satisfy Eqs. (68) and (69) at the same time, we obtain the true eigenequation
(J�(kρ) = 0). Otherwise, they are spurious eigenequation (Y�(kρ) = 0 for UT method,
Y ′

� (kρ) = 0 for LM method).
For the interior Neumann problem, we obtain the eigenequations,

UT : Y�(kρ)J ′
�(kρ) = 0, � = 0,±1,±2, . . . ,±(N − 1), N, (70)

LM : Y ′
� (kρ)J ′

�(kρ) = 0, � = 0,±1,±2, . . . ,±(N − 1), N, (71)

respectively. Similarly, it is easily found that J ′
�(kρ) = 0 is the true eigenequation and

Y�(kρ) = 0 and Y ′
� (kρ) = 0 are spurious eigenequations using UT and LM approaches,

respectively.

5.3. The imaginary-part direct methods

By employing the imaginary-part kernels in UT and LM equations for the interior Dirichlet
problem, we obtain the eigenequations,

UT : J�(kρ)J�(kρ) = 0, � = 0,±1,±2, . . . ,±(N − 1), N, (72)

LM : J ′
�(kρ)J�(kρ) = 0, � = 0,±1,±2, . . . ,±(N − 1), N, (73)

respectively. To satisfy Eqs. (72) and (73) at the same time, we obtain the true eigenequation
(J�(kρ) = 0). Otherwise, they are spurious eigenequation (J�(kρ) = 0 for UT method,
J ′

�(kρ) = 0 for LM method).
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For the interior Neumann problem, we obtain the eigenequations,

UT : J�(kρ)J ′
�(kρ) = 0, � = 0,±1,±2, . . . ,±(N − 1), N, (74)

LM : J ′
�(kρ)J ′

�(kρ) = 0, � = 0,±1,±2, . . . ,±(N − 1), N, (75)

respectively. Similarly, it is easily found that J ′
�(kρ) = 0 is the true eigenequation and

J�(kρ) = 0 and J ′
�(kρ) = 0 are spurious eigenequations using UT and LM approaches,

respectively.

5.4. The complex-valued indirect methods

By using the UL and TM formulations for the interior Dirichlet problem, we obtain the
following equations,

[U i]{φ} = {0}, (76)

[T i]{ψ} = {0}. (77)

The corresponding eigenequations are, respectively,

UL : [J�(kρ) + iY�(kρ)]J�(kρ) = 0, (78)

and

TM : [J ′
�(kρ) + iY ′

� (kρ)]J�(kρ) = 0. (79)

The true eigenvalues are the roots of J�(kρ) = 0 for the common part in the eigenequations
of Eqs. (78) and (79).

For the interior Neumann problem, we can obtain the following equations,

[Li]{φ} = {0}, (80)

[M i]{ψ} = {0}. (81)

The corresponding eigenequations are, respectively,

UL : [J�(kρ) + iY�(kρ)]J ′
�(kρ) = 0, (82)

and

TM : [J ′
�(kρ) + iY ′

� (kρ)]J ′
�(kρ) = 0. (83)

The true eigenvalues are the roots of J ′
�(kρ) = 0 for the common part in the eigenequations

of Eqs. (82) and (83). If we employ the real-part or imaginary-part indirect BEM, we can
obtain the true and spurious eigenvalues in a similar way. After comparing the real-part
BEM and the imaginary-part BEM with the complex-valued BEM using either direct or
indirect method, it can be realized that the reason why spurious eigenvalues occur is due
to the loss of imaginary-part (real-part) constraints for the real-part BEM (imaginary-
part BEM).
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5.5. The dual BEM

The dual BEM in conjunction with SVD technique can also filter out the spurious eigenso-
lutions. Employing the SVD technique, we can decompose the real-part UT equation,

[T e
R]{u} = [U e

R]{t}, (84)

into

ΦT ΣT ΨT
Tu = ΦUΣUΨT

U t, (85)

where the superscript T denotes the transpose and the subscript R denotes the real-part,
and Φ is a left unitary matrix constructed by the left singular vectors, Σ is a diagonal
matrix which has singular values allocated in a diagonal line, and ΨT is the transpose of a
right unitary matrix constructed by the right unitary vectors. Similarly, the real-part LM

equation,

[Me
R]{u} = [Le

R]{t} (86)

can be rewritten as

ΦMΣMΨT
Mu = ΦLΣLΨT

Lt. (87)

When k is a true eigenvalue, there exists a true boundary mode ψ̃ satisfying[
U e

R

Le
R

]
ψ̃D = 0, for the Dirichlet problem (88)

or [
T e

R

Me
R

]
ψ̃N = 0, for the Neumann problem (89)

after assembling Eqs. (85) and (87), where ψ̃D and ψ̃N are the true boundary modes for
the Dirichlet and Neumann problems, respectively. It is found that true boundary modes
can be extracted out from the right unitary vectors of U e

R and Le
R, or T e

R and Me
R.

If k is a spurious eigenvalue, there exists a spurious boundary mode φ̃ satisfying

φ̃T
s

[
U e

R T e
R

]
= 0, (90)

after using the Fredholm alternative theorem. The derivation is shown in Appendix B. After
transposing Eq. (90), we have [

U eT
R

T eT
R

]
φ̃s = 0. (91)
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Similarly, we have

φ̃T
h

[
Le

R Me
R

]
= 0 or

[
LeT

R

MeT
R

]
φ̃h = 0 (92)

where φ̃s and φ̃h are the spurious boundary modes encountered in the singular (UT ) and
hypersingular (LM) equations, respectively. It is found that the spurious boundary modes
can be extracted out from the left unitary vectors of U e

R and T e
R, or Le

R and Me
R matrices,

respectively.

5.6. The CHEEF methods

Chen et al.20 extended the CHIEF to CHEEF method by combining the integral equations
for the boundary points and those in the exterior points. It yields the over-determined
equation system, [

UB
2N×2N

UE
a×2N

]
{t} = 0 (93)

or [
TB

2N×2N

TE
a×2N

]
{u} = 0, (94)

for the Dirichlet and Neumann problems, respectively. The superscript E denotes collocation
on the exterior domain. It can filter out the spurious eigensolutions efficiently for the interior
problem in a similar way of CHIEF for the exterior problems.

6. Numerical Examples

Case 1. Fictitious values for an exterior acoustic problem subject to the Neumann bound-
ary condition.

For the first example, we consider the Neumann problem (nonuniform radiation of an
infinite circular cylinder with a radius of a = 1.0 m). This problem was chosen because
the exact solution is known.24 The Neumann boundary condition is applied to the cylinder
surface. The portion (−α < θ < α) is assigned a unit value, while the remaining portion is
assigned a homogeneous value. The exact solution is given by

u(r, θ) = − 2
πk

∞∑
n=0

′sin(nα)
n

H
(1)
n (kr)

H
′(1)
n (ka)

cos(nθ), r ≥ a, 0 ≤ θ < 2π, (95)

where the former symbol “′” denotes the Neumann factor, the H
(1)
n and H

′(1)
n denote the

first kind Hankel functions with order n and its derivative, respectively. Thirty-two elements
are adopted in the BEM mesh and α is chosen as π/9 for this case. Using the singular (UT )
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equation, the positions where the irregular values occur can be found in Fig. 5 for the
solution u(a, 0; k) versus ka. It is found that irregular values occur at the positions of Jn,m,
which is the mth zero of Jn(ka). It agrees well as predicted in Eq. (36). Figure 6 shows the
solution u(a, 0; k) versus ka using the hypersingular (LM) equation, the positions where

ka

u(a,0;k) 

1,2J

0.00 2.00 4.00 6.00 8.00

-0.80

-0.40

0.00

0.40

0.80

1.20

1,3J
14J

1,1J

Fig. 5. The potential of u(a, 0; k) versus ka using the UT method.

ka 

u(a,0;k) 

'
1,0J

'
1,1J

'
1,2J

'
2,0J

'
1,3J

'
1,4J

0.00 2.00 4.00 6.00 8.00

-0.80

-0.40

0.00

0.40

0.80

1.20

'
1,5J

'
3,0J

'
2,2J

Fig. 6. The potential of u(a, 0; k) versus ka using the LM method.
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the irregular values occur at the positions of J ′
n,m, which is the mth zero of J ′

n(ka). It also
agrees well as predicted in Eq. (37). Figure 7 shows the solution u(a, 0; k) versus ka using
the Burton and Miller approach. Figure 8 shows the solution u(a, 0; k) versus ka using the
CHIEF method. Both of these methods can avoid the unstable solution near the irregular

ka

u (a ,0; k ) 

0.00 2.00 4.00 6.00 8.00

-0.80

-0.40

0.00

0.40

0.80

1.20

Fig. 7. The potential of u(a, 0; k) versus ka using the Burton and Miller method.

ka 

u (a ,0 ;k ) 

1x
2x

0.00 2.00 4.00 6.00 8.00

-0.80

-0.40

0.00

0.40

0.80

1.20

Fig. 8. The potential of u(a, 0; k) versus ka using the CHIEF method.
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Fig. 9. The potential of u(a, 0; k) versus ka using different methods.

Fig. 10. The potential of t(a, 0; k) versus ka using different methods.
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ka 

1σ

1,0J

1,0Y
1,1Y 1,2Y 2,0Y 1,3Y

(S ) (S ) (S ) (S )(S ) 

(T )

1,1J

(T )

(T ): true 

(S ): spurious 

0.00 1.00 2.00 3.00 4.00 5.00

1E-4

1E-3

1E-2

1E-1

1E+0

Fig. 11. The minimum singular value σ1 versus ka using the real-part BEM.

1σ

ka 

J'
1,2

(T ) (T ) 

J'
2,0

(S ) (S ) 

J '
3,1

(S ) 

(T ): true 

(S ): spurious 

)(S

J1,1

J0,1 J1,1

0.00 1.00 2.00 3.00 4.00 5.00

1E-20

1E-19

1E-18

1E-17

1E-16

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

Fig. 12. The minimum singular value σ1 versus ka using the imaginary-part BEM.

wave numbers. The results of the analytical solution, the UT method, the LM method,
Burton and Miller approach, and CHIEF method are all shown in Fig. 9.

Case 2. Fictitious values for an exterior acoustic problem subject to the Dirichlet boundary
condition.



August 10, 2006 22:23 WSPC/130-JCA 00299

176 J. T. Chen, I. L. Chen & K. H. Chen

ka 

Udet

1,1J

1,0J

(T ) 

(T ) (T ): true

0.00 1.00 2.00 3.00 4.00 5.00

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

Fig. 13. The absolute value of determinant versus ka using the complex-valued BEM.

1,0J 1,1J

1σ

ka

x1

x2

(T ) (T ) 

(T ): true 

0.00 1.00 2.00 3.00 4.00 5.00

1E-3

1E-2

1E-1

1E+0

Fig. 14. The minimum singular value σ1 versus ka using the CHEEF method.
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In order to clarify how the irregular frequencies depend on the types of boundary
conditions, the second problem subject to the Dirichlet boundary condition is designed.
The analytical solution is

u(r, θ) =
2
π

∞∑
n=0

′sin(nα)
n

H
(1)
n (kr)

H
(1)
n (ka)

cos(nθ), r ≥ a, 0 ≤ θ < 2π. (96)

Figure 10 shows the solution u(a, 0; k) versus ka using the UT method, the LM method,
Burton and Miller approach and CHIEF method. It is found that the irregular frequencies
in Fig. 10 occur at the same positions in comparison with those of Fig. 9. This confirms the
conclusion that the irregular values depend on the integral formulation instead of the types
of boundary conditions (Dirichlet or Neumann).

Case 3. Spurious eigensolution for an interior acoustic problem.

mb 2=

a=1 m

a=1 m

Fig. 15. Right triangle domain.

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

0.00

0.00

0.01

0.10

1.00

1σ

k

T T T

SSS

Fig. 16. The first minimum singular values σ1 versus k of a right triangle cavity using the real-part UT
equation subject to Neumann boundary conditions.
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0 1 2 3 4 5 6 7

0

1
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3

4

5

T T T

1σ

k
Fig. 17. The first minimum singular value for different wave number using the SVD updating technique.

We considered a circular cavity with a radius 1.0 m subjected to the Dirichlet boundary
condition. Figure 11 shows the first minimum singular value, σ1, versus ka, where the true
and spurious eigenvalues are obtained if only the real-part UT equation is used. In the range
of 0 < ka < 5, we have two true eigenvalues (J0,1(2.405) and J1,1(3.832)) and five spurious
eigenvalues (Y0,1(0.894), Y1,1(2.197), Y2,1(3.384), Y0,2(3.958) and Y3,1(4.527)), where Yn,m

is the mth zero of Yn(ka). It agrees well as predicted in Eq. (68). Figure 12 shows the
first minimum singular value, σ1, versus ka, where the true and spurious eigenvalues are
obtained if only imaginary-part LM equation is used. Only ten elements are adopted in the
BEM mesh to avoid the ill-conditioned behavior. We have two true eigenvalues (J0,1(2.405)
and J1,1(3.832)) and four spurious eigenvalues (J ′

1,1(1.841), J ′
2,1(3.054), J ′

0,2(3.832) and
J ′

3,1(4.201)). It also agrees well as predicted in Eq. (73). Figure 13 shows the absolute
value of determinant versus ka using the complex-valued UT equation, where only true
eigenvalues are obtained. Figure 14 shows the first minimum singular value, σ1, versus ka,
using the CHEEF method where only the true eigenvalues are obtained.

Case 4. We consider a right triangle problem subjected to the Neumann boundary condition
with a = 1 m and b =

√
2 m is shown in Fig. 15 for a case of general geometry. The exact

eigenvalues are known10 to be nπ, n
√

2π for n = 1, 2, . . . . Thirty elements in the BEM mesh
were adopted. Figure 16 indicates the first minimum singular value, σ1 versus k, where the
true and spurious eigenvalues can be obtained. In the range of 0 < k < 7, we have the three
true eigenvalues (3.14, 4.47 and 6.34) and three spurious eigenvalues (1.98, 4.34 and 5.76).
Figure 17 shows the first minimum singular value versus different wave number using the
SVD updating technique, then all the spurious eigenvalues are filtered out.
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Table 2. The relationship between the spurious eigensolution (interior problem) and fictitious solution
(exterior problem) using the indirect.

Problem type

Interior problem Exterior problem

BD )0,(ρ

θ

θ
=x

),(Rs =
B’

D )0,(ρ
θ

=x
),(Rs =

B’D
B

Method Method

Real-part Imag.-part8 Complex- Singular layer Double layer
BEM BEM Valued BEM approach approach

Equation UL TM UL TM UL TM Equation UL TM

Dirichlet B.C. Yn Y ′
n Jn J ′

n × × Dirichlet B.C. Jn J ′
n

analytical analytical
spurious fictitious
eigenequation solution

Neumann B.C. Yn Y ′
n Jn J ′

n × × Neumann B.C. Jn J ′
n

analytical analytical
spurious fictitious
eigenequation solution

7. Conclusions

In this paper, the mechanism of fictitious values and spurious eigenvalues in BEM was
investigated using the degenerate kernels and circulants for a discrete system of a circular
domain. The reason why spurious eigenvalues occur in the real-part or imaginary-part BEM
and why fictitious frequencies appear in the integral formulation results from the rank defi-
ciency of influence matrix. The numerical results agree well with the analytical prediction.
SVD updating technique can study the spurious eigenvalues and fictitious frequencies in
a unified manner. The relationship between spurious eigenvalues of interior problem and
fictitious values of exterior problem using the direct and indirect methods was summarized
in Table 1 and Table 2, respectively. It is interesting to note that the true boundary modes
for interior problem can be found from the right unitary vector of SVD, while the spurious
or fictitious boundary modes can be extracted from the left unitary vector. The similarities
of CHIEF and CHEEF methods were also explored.
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Appendix A

For the exterior radiation problem subject to the Dirichlet boundary condition (u(x) = ū),
Eq. (51) reduces to

[U i]{t} = [T i]{ū} = {b}. (A.1)

In case of a fictitious frequency, [U i] is singular. According to the Fredholm alternative
theorem, {t} has a solution if and only if {b} satisfies

{b†}φs = 0, (A.2)

where φs is a nontrivial solution for the adjoint system such that

[U i†]φs = 0. (A.3)

By substituting Eq. (A.1) into Eq. (A.2), we have

{ū†}[T i†]φs = 0. (A.4)

Since ū can be arbitrary, Eq. (A.4) implies

[T i†]φs = 0. (A.5)

By assembling Eq. (A.3) and Eq. (A.5) together, we can construct[
U i†

T i†

]
φs = 0. (A.6)

By taking the transpose conjugate with respect to Eq. (A.6), we have

φ†
s

[
U i T i

]
= 0. (A.7)

The T i matrix can be seen as the updating document with U i in Eq. (A.7), while the T i†

matrix is the updating term with U i† in Eq. (A.6).

Appendix B

To filter out the spurious eigenvalues, a nonhomogeneous boundary excitation is consid-
ered by

[U e
R]{t} = [T e

R]{u} = {b}, (B.1)

where {u} or {t} are boundary excitation sources. Since spurious eigenvalues are embedded
in both the Dirichlet and Neumann problems, we have

{b}T φ̃s = 0 (B.2)

where φ̃s satisfies

[U e
R]T φ̃s = 0, for the Dirichlet problem, (B.3)

[T e
R]T φ̃s = 0, for the Neumann problem, (B.4)
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according to the Fredholm alternative theorem. By substituting Eq. (B.1) into Eq. (B.2),
we have

uT [T e
R]T φ̃s = 0, for the Dirichlet problem, (B.5)

tT [U e
R]T φ̃s = 0, for the Neumann problem. (B.6)

Since u and t can be arbitrary for the Dirichlet and Neumann problems, respectively, we
have

[T e
R]T φ̃s = 0, for the Dirichlet problem, (B.7)

[U e
R]T φ̃s = 0, for the Neumann problem. (B.8)

By combining Eq. (B.3) with (B.7), we have[
UT

R

T T
R

]
φ̃s = 0. (B.9)

Similarly, Eq. (B.9) can be obtained by combined Eq. (B.4) with (B.8).
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