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In this paper, the eigenproblems with circular boundaries of multiply-connected domain are studied
by using the null-field integral equations in conjunction with degenerate kernels and Fourier series to
avoid calculating the Cauchy and Hadamard principal values. An adaptive observer system of polar
coordinate is considered to fully employ the property of degenerate kernels. For the hypersingular
equation, vector decomposition for the radial and tangential gradients is carefully considered in the
polar coordinate system. Direct-searching scheme is employed to detect the eigenvalues by using
the singular value decomposition (SVD) technique. Both the singular and hypersingular equations
result in spurious eigenvalues which are the associated interior Dirichlet and Neumann problems of
interior domain of inner circles, respectively. It is analytically verified that the spurious eigenvalue
depends on the radius of any inner circle and numerical experiments support this point. Several
examples are demonstrated to see the validity of the present formulation. More number of degrees
of freedom of BEM is required to obtain the same accuracy of the present approach.
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1. Introduction

During the recent decades, many numerical methods are utilized to solve the engineering
problems. The FEM and BEM have been recognized as the effective methods in numerical
analysis. Although FEM is a popular method for solving eigenproblems, it needs a lot of
time to generate the mesh for problems with complex geometries. In this aspect, BEM is
an efficient alternative from the viewpoint of mesh reduction. However, it also exist some
pitfalls in BEM and the readers can consult with the keynote lecture by Chen et al.1 for
the detailed discussion.

For the Helmholtz problems, it is well known that the boundary integral equation
for solving the exterior and interior problems results in fictitious frequency and spurious
eigenvalue, respectively. In the interior eigenproblem with a simply-connected domain, the
dual reciprocity method (DRM) by Partridge et al.2 and the multiple reciprocity method
(MRM)3–5 have been widely used. One advantage of using the conventional MRM is that
only real-valued computation is considered instead of complex-valued computation since
the fundamental solution for Laplace operator is used.6 Nevertheless, no matter what we
used either the real-part singular or the hypersingular equation, the spurious eigenvalues
occur. To overcome the problem of spurious eigenvalue, the dual MRM by Chen et al.7 the
real-part dual BEM by Kuo et al.8 and the singular value decomposition (SVD) updating
terms1,7,8 had been constructed. Chen et al.1,7,9,10 also extended the combined Helmholtz
exterior integral equation formulation (CHEEF) concept, Fredholm alternative theorem and
SVD updating technique to filter out the spurious eigenvalue. Tai and Shaw11 claimed that
spurious eigenvalues do not appear if a complex-valued kernel is employed. However, it is
true only for simply-connected domain. For a multiply-connected problem, the spurious
eigensolution also appears even though a complex-valued BEM is employed to solve the
eigensolution. Spurious eigenvalues were found by Kitahara12 and were suppressed by Chen
et al.13 Recently, spurious eigensolutions in the BEM14,15 and method of fundamental solu-
tion (MFS)16,17 have been noticed until the recent years. Some remedies, e.g. SVD updat-
ing technique and Burton & Miller method were also presented to filter out the spurious
eigenvalues.

For the problems with a circular geometry, the Fourier series expansion method is spe-
cially suitable to obtain the analytical solution. Lin18 employed the transformation technique
of cylindrical wave functions to satisfy the boundary condition with seven holes. Nagaya
and Poltorak19 used both the Fourier expansion collocation method and point-matching
approach to find the eigenvalues with eccentric inner boundaries. Mogilevskaya et al.,20–22

Barone and Caulk,23–29 Bird and Steele30,31 attempted to solve problems involving circular
boundary using series expansions. Barone and Caulk used the special boundary integral
method for solving the Laplace’s equation in two-dimensional domains with circular holes.
According to their idea, the boundary potential and its normal derivative were expressed
in a finite series of circular harmonics on each hole. Unlike other approaches, the unknown
coefficients in each hole are determined by a new set of integral equations with special ker-
nel functions. However, the explicit equations29 were limited to the case when a constant



July 7, 2008 18:6 WSPC/130-JCA 00339

Null-Field Integral Equation Approach for Eigenproblems with Circular Boundaries 403

potential is specified on the boundary of each hole. For the eigenproblem with circular
boundaries, Chen et al.14 have employed BEM to demonstrate the existence of spurious
eigenvalues. Also, they proposed several regularization techniques to filter out the spurious
solution. However, low frequency behavior was not well described. This motivates us to
consider BIEM using Fourier expansion to more analytically solve the problem with circular
boundaries.

In this paper, the boundary integral equation method (BIEM) is utilized to solve the
eigenproblems with circular boundaries. To fully utilize the geometry of circular boundary,
not only Fourier series for boundary densities as used by many researchers but also the
degenerate kernel for fundamental solutions in the present formulation are incorporated into
the null-field integral equation at the same time. All the boundary integrals are analytically
determined by using the orthogonal property of the Fourier bases. The principal values of
improper integrals are replaced by the series sum. In integrating each circular boundary
for the null-field equation, the observer system of polar coordinate is adaptively considered
to fully employ the property of degenerate kernel. For the hypersingular equation, vector
decomposition for the radial and tangential gradients is carefully considered, especially in
case of eccentric case. Direct-searching scheme is employed to detect the eigenvalue by
using the SVD technique. Spurious eigenvalues in the multiply-connected problems are also
examined. Mode shapes are simultaneously determined from the right unitary vectors of
zero singular value in the SVD after we detect the zero singular value in case of eigenvalue.
The results are compared with those of FEM and BEM.

2. Problem Statement and Integral Formulation

2.1. Problem statement

The governing equation of the acoustic problem is the Helmholtz equation

(∇2 + k2)u(x) = 0, x ∈ DI (1)

where ∇2, k and D are the Laplacian operator, the wave number, and the domain of interest,
respectively. Consider the eigenproblem with a circular domain containing Nc randomly
distributed circular holes centered at the position vector c

˜
j (j = 1, 2, . . . , Nc) as shown

in Fig. 1.

2.2. Dual boundary integral formulation

Based on the dual boundary integral formulation of the domain point for the eigenproblem,13

we have

2πu(x) =
∫

B
T (s, x)u(s)dB(s) −

∫
B
U(s, x)t(s)dB(s), x ∈ DI (2)

2πt(x) =
∫

B
M(s, x)u(s)dB(s) −

∫
B
L(s, x)t(s)dB(s), x ∈ DI (3)
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Fig. 1. Problem statement.

where s and x are the source and field points, respectively, DI is the domain of the interests,
t(s) is the directional derivative of u(s) along the outer normal direction at s. The U(s, x),
T (s, x), L(s, x) and M(s, x) represent the four kernel functions13

U(s, x) =
−iπH(1)

0 (kr)
2

, (4)

T (s, x) =
∂U(s, x)
∂ns

=
−ikπH(1)

1 (kr)
2

yini

r
, (5)

L(s, x) =
∂U(s, x)
∂nx

=
ikπH

(1)
1 (kr)
2

yin̄i

r
, (6)

M(s, x) =
∂2U(s, x)
∂nx∂ns

=
−ikπ

2

[
−kH

(1)
2 (kr)
r2

yiyjnin̄j +
H

(1)
1

r
nin̄i

]
, (7)

where H(1)
n (kr) is the nth order Hankel function of the first kind, r = |x− s|, yi = si − xi,

i2 = −1, ni and n̄i are the ith components of the outer normal vectors at s and x, respec-
tively. Equations (2) and (3) are referred to singular and hypersingular boundary integral
equation (BIE), respectively.
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2.3. Null-field integral formulation in conjunction the degenerate

kernel and Fourier series

By collocating x outside the domain (x ∈ DE), we obtain the null-field integral equations
as shown below13:

0 =
∫

B
T (s, x)u(s)dB(s) −

∫
B
U(s, x)t(s)dB(s), x ∈ DE , (8)

0 =
∫

B
M(s, x)u(s)dB(s) −

∫
B
L(s, x)t(s)dB(s), x ∈ DE . (9)

By using the polar coordinate, we can express x = (ρ, φ) and s = (R, θ). The four kernels,
U , T , L and M can be expressed in terms of degenerate kernels as shown below13:

U(s, x) =




U I(s, x) =
−πi
2

∞∑
m=−∞

Jm(kρ)H(1)
m (kR) cos(m(θ − φ)), R ≥ ρ

UE(s, x) =
−πi
2

∞∑
m=−∞

H(1)
m (kρ)Jm(kR) cos(m(θ − φ)), ρ > R

, (10)

T (s, x) =




T I(s, x) =
−πki

2

∞∑
m=−∞

Jm(kρ)H ′(1)
m (kR) cos(m(θ − φ)), R > ρ

TE(s, x) =
−πki

2

∞∑
m=−∞

H(1)
m (kρ)J ′

m(kR) cos(m(θ − φ)), ρ > R

, (11)

L(s, x) =




LI(s, x) =
−πki

2

∞∑
m=−∞

J ′
m(kρ)H(1)

m (kR) cos(m(θ − φ)), R > ρ

LE(s, x) =
−πki

2

∞∑
m=−∞

H ′(1)
m (kρ)Jm(kR) cos(m(θ − φ)), ρ > R

, (12)

M(s, x) =




M I(s, x) =
−πk2i

2

∞∑
m=−∞

J ′
m(kρ)H ′(1)

m (kR) cos(m(θ − φ)), R ≥ ρ

ME(s, x) =
−πk2i

2

∞∑
m=−∞

H ′(1)
m (kρ)J ′

m(kR) cos(m(θ − φ)), ρ > R

, (13)

where i2 = −1, I and E denote the interior and exterior cases for the expressions of kernel,
respectively. It is noted that the degenerate kernels for T and L expression for ρ = R are
not given since they are not continuous across the boundary. In order to fully utilize the
geometry of circular boundary, the potential u and its normal flux t can be approximated
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by employing the Fourier series. Therefore, we obtain

u(s) = a0 +
∞∑

n=1

(an cosnθ + bn sinnθ), s ∈ B (14)

t(s) = p0 +
∞∑

n=1

(pn cosnθ + qn sinnθ), s ∈ B (15)

where a0, an, bn, p0, pn and qn are the Fourier coefficients and θ is the polar angle which
is equally discretized. Equations (8) and (9) can be easily calculated by employing the
orthogonal property of Fourier series. In the real computation, only the finite M terms are
used in the summation of Eqs. (14) and (15).

2.4. Adaptive observer system

Since the boundary integral equations are frame indifferent, i.e. rule of objectivity is obeyed.
Adaptive observer system is chosen to fully employ the property of degenerate kernels.
Figure 2 shows the boundary integration for the circular boundaries. It is worthy noted that
the origin of the observer system can be adaptively located on the center of the corresponding
circle under integration to fully utilize the geometry of circular boundary. The dummy
variable in the integration on the circular boundary is just the angle (θ) instead of the
radial coordinate (R). By using the adaptive system, all the boundary integrals can be
determined analytically free of principal value.

Fig. 2. Adaptive observer system.



July 7, 2008 18:6 WSPC/130-JCA 00339

Null-Field Integral Equation Approach for Eigenproblems with Circular Boundaries 407

2.5. Vector decomposition technique for the potential gradient in the

hypersingular formulaion

Since the hypersingular equation is a key ingredient to deal with spurious eigenvalues,
potential gradient on the boundary is required to calculate. For the eccentric case, the field
point and source point may not locate on the circular boundaries with the same center except
the two points on the same circular boundary or on the annular cases. Special treatment
for the normal derivative should be taken care. As shown in Fig. 3(a) where the origins of

(a) Eccentric case.

(b) Annular case.

Fig. 3. Vector decomposition for potential gradient in the hypersingular equation.
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observer system are different, the true normal direction ê1 with respect to the collocation
point x on the Bj boundary should be superimposed by using the radial direction ê3 and
angular direction ê4. We call this treatment “vector decomposition technique”. According
to the concept, Eqs. (12) and (13) can be modified as

L(s, x) =




LI(s, x) =
−πki

2

∞∑
m=−∞

J ′
m(kρ)H(1)

m (kR) cos(m(θ − φ)) cos(φc − φj)

− m

kρ
Jm(kρ)H(1)

m (kR) sin(m(θ − φ)) sin(φc − φj), R > ρ

LE(s, x) =
−πki

2

∞∑
m=−∞

H ′(1)
m (kρ)Jm(kR) cos(m(θ − φ)) cos(φc − φj)

− m

kρ
Jm(kρ)H(1)

m (kR) sin(m(θ − φ)) sin(φc − φj), ρ > R

,

(16)

M(s, x) =




M I(s, x) =
−πki

2

∞∑
m=−∞

J ′
m(kρ)H ′(1)

m (kR) cos(m(θ − φ)) cos(φc − φj)

− m

kρ
Jm(kρ)H ′(1)

m (kR) sin(m(θ − φ)) sin(φc − φj), R ≥ ρ

ME(s, x) =
−πki

2

∞∑
m=−∞

H ′(1)
m (kρ)J ′

m(kR) cos(m(θ − φ)) cos(φc − φj)

− m

kρ
Jm(kρ)H ′(1)

m (kR) sin(m(θ − φ)) sin(φc − φj), ρ > R

.

(17)

For the annular case as shown in Fig. 3(b), the true normal direction ê1 on the boundary
is nothing but the radial derivative ê3. The angular derivative ê4 is perpendicular to the
normal direction ê1.

2.6. Linear algebraic equation

In order to calculate the 2M + 1 unknown Fourier coefficients, 2M + 1 boundary points
on each circular boundary are needed to be collocated. By collocating the null-field point
exactly on the kth circular boundary for Eqs. (8) and (9) as shown in Fig. 4(a), we have

0 =
Nc∑
j=0

∫
Bj

T (s, xj)u(s)dB(s) −
Nc∑
j=0

∫
Bj

U(s, xj)t(s)dB(s), xj ∈ De ∪B (18)

0 =
Nc∑
j=0

∫
Bj

M(s, xj)u(s)dB(s) −
Nc∑
j=0

∫
Bj

L(s, xj)t(s)dB(s), xk ∈ De ∪B (19)

where Nc is the number of inner circles and the path is anticlockwise for the outer circle.
Otherwise, it is clockwise. It is noted that Eqs. (18) and (19) are also valid for x ∈ B since
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(a) Null-field integral equation (x move to B from De).

(b) Boundary integral equation for the domain point.

Fig. 4. Boundary integral formulation.
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the appropriate kernel expression is adopted. For the Bj integral of the circular boundary,
the kernels of U(s, x), T (s, x), L(s, x) and M(s, x) are respectively expressed in terms of
degenerate kernels of Eqs. (10), (11), (16) and (17) with respect to the observer origin at
the center of Bj. The boundary densities of u(s) and t(s) are substituted by using the
Fourier series of Eqs. (14) and (15), respectively. In the Bj integration, we set the origin
of the observer system to collocate at the center cj of Bj to fully utilize the degenerate
kernel and Fourier series. By collocating the null-field point which can be much close to the
boundary Bj from outside of the domain, a linear algebraic system is obtained

[U]{t} = [T]{u} (20)

[L]{t} = [M]{u} (21)

where [U], [T], [L] and [M] are the influence matrices with a dimension of N × (2M +1) by
N×(2M+1) and {t} and {u} denote the vectors for t(s) and u(s) of the Fourier coefficients
with a dimension of N × (2M + 1) by 1. For simplicity, the Dirichlet case of u(s) = 0 is
considered. We can obtain the nonlinear characteristic equation as follows,

[U]{t} = {0}, (22)

[L]{t} = {0}, (23)

where, [U], [L] and {t} can be defined as follows:

[U] =




U00 U01 · · · U0Nc

U10 U11 · · · U1Nc

...
...

. . .
...

UNc0 UNc0 · · · UNNc


 , [L] =




L00 L01 · · · L0Nc

L10 L11 · · · L1Nc

...
...

. . .
...

LNc0 LNc0 · · · LNcNc


 , (24)

{t} =




t0

t1

t2

...
tN



, (25)

where the vectors {tj} is in the form of {pj
0 pj

1 qj
1 · · · pj

M qj
M}T and [Uij ] denotes the

influence matrix. The first subscript “i” (i = 0, 1, 2, . . . , Nc) in the [Uij ] denotes the index
of the ith circle where the collocation point is located and the second subscript “j” (j =
0, 1, 2, . . . , Nc) denotes the index of the jth circle where the boundary data {tj} are specified.
Nc is the number of circular holes in the domain and M indicates the highest harmonic of
truncated terms in Fourier series. The coefficient matrix of the linear algebraic system is
partitioned into blocks, and each diagonal block (Ujj) corresponds to the influence matrices
due to the same circle of collocation and Fourier expansion. After uniformly collocating the
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point along the ith circular boundary, the submatrix can be written as

[Uij ] =




U0c
ij (φ1) U1c

ij (φ1) U1s
ij (φ1) · · · UMc

ij (φ1) UMs
αβ (φ1)

U0c
ij (φ2) U1c

ij (φ2) U1s
ij (φ2) · · · UMc

ij (φ2) UMs
αβ (φ2)

U0c
ij (φ3) U1c

ij (φ3) U1s
ij (φ3) · · · UMc

ij (φ3) UMs
αβ (φ3)

...
...

...
. . .

...
...

U0c
ij (φ2M ) U1c

ij (φ2M ) U1s
ij (φ2M ) · · · UMc

ij (φ2M ) UMs
αβ (φ2M )

U0c
ij (φ2M+1) U1c

ij (φ2M+1) U1s
ij (φ2M+1) · · · UMc

ij (φ2M+1) UMs
αβ (φ2M+1)



(26)

[Lij] =




L0c
ij (φ1) L1c

ij (φ1) L1s
ij (φ1) · · · LMc

ij (φ1) LMs
αβ (φ1)

L0c
ij (φ2) L1c

ij (φ2) L1s
ij (φ2) · · · LMc

ij (φ2) LMs
αβ (φ2)

L0c
ij (φ3) L1c

ij (φ3) L1s
ij (φ3) · · · LMc

ij (φ3) LMs
αβ (φ3)

...
...

...
. . .

...
...

L0c
ij (φ2M ) L1c

ij (φ2M ) L1s
ij (φ2M ) · · · LMc

ij (φ2M ) LMs
αβ (φ2M )

L0c
ij (φ2M+1) L1c

ij (φ2M+1) L1s
ij (φ2M+1) · · · LMc

ij (φ2M+1) LMs
αβ (φ2M+1)



(27)

where φm, m = 1, 2, . . . , 2M + 1 is the polar angle of the collocating points xm around
boundary. It is noted that the superscript “0s” in Eq. (26) disappears since sin 0θ = 0. And
the element of [Uij] and [Lij] are defined as

Unc
ij (φm) =

∫
Bj

U(sj , xm) cos(nθj)Rjdθj, n = 0, 1, 2, . . . ,M, (28)

Uns
ij (φm) =

∫
Bj

U(sj , xm) sin(nθj)Rjdθj, n = 0, 1, 2, . . . ,M, (29)

Lnc
ij (φm) =

∫
Bj

L(sj , xm) cos(nθj)Rjdθj, n = 0, 1, 2, . . . ,M, (30)

Lns
ij (φm) =

∫
Bj

L(sj , xm) sin(nθj)Rjdθj, n = 0, 1, 2, . . . ,M, (31)

where φm is in the ith circle. By employing the direct-searching scheme, SVD technique
can obtain the eigenvalues and boundary mode at the same time. After obtaining the
eigenvalues and unknown Fourier coefficients, the origin of observer system is set to cj
in the Bj integration as shown in Fig. 4(b) to obtain the interior potential by employing
Eq. (2). The difference with BEM is shown in Table 1.
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Table 1. The difference between the present method and BEM where RPV, CPV and HPV denote
Riemann principle value, Cauchy principle value and Hardmard principle value.

System

Boundary Density Auxiliary Coordinate Boundary
Method Discretization System System Integral Formulation

Present
method

Degenerate
kernel

Adaptive
observer
system

No principal
Value

Null-field
integral
equations

BEM Fundamental
solution

Fixed
observer
system

Principal
values
(CPV, RPV
and HPV)

Boundary
integral
equation for
boundary
point

3. Discussions on Spurious Eigenvalues

For the multiply-connected eigenproblem with an inner circular boundary of radius a,
Eq. (22) yields


· · · J0(ka)H0(kρ0) · · · JM (ka)HM (kρ0) cos Mφ1 JM (ka)HM (kρ0) sin Mφ1 · · ·
· · · J0(ka)H0(kρ1) · · · JM (ka)HM (kρ1) cos Mφ2 JM (ka)HM (kρ1) sin Mφ2 · · ·

· · ·
.
.
.

. . .
.
.
.

.

.

. · · ·
· · · J0(ka)H0(kρM ) · · · JM (ka)HM (kρM ) cos Mφ2M+1 JM (ka)HM (kρM ) sin Mφ2M+1 · · ·
− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −−
· · · J0(ka)H0(ka) · · · JM(ka)HM (ka) cos Mφ1 JM(ka)HM (ka) sin Mφ1 · · ·
· · · J0(ka)H0(ka) · · · JM(ka)HM (ka) cos Mφ2 JM(ka)HM (ka) sin Mφ2 · · ·

· · ·
.
.
.

. . .
.
.
.

.

.

. · · ·
· · · J0(ka)H0(ka) · · · JM (ka)HM (ka) cos Mφ2P+1 JM (ka)HM (ka) sin Mφ2M+1 · · ·







p1
0

.

.

.

p1
M

q1
M

− − −
p2
0

.

.

.

p2
M

q2
M




= 0
˜

(32)

for the Dirichlet problems by using the singular formulation. The determinant of the influ-
ence matrix is zero for Jm(ka) = 0, m = 0, 1, 2, 3, . . . ,M for Eq. (32). Similarly, the hyper-
singular equation the determinant is zero for J ′

m(ka) = 0, m = 0, 1, 2, 3, . . . ,M . It indicates
that the eigenvalue for the Dirichlet problems of circular domain with the radius a, is the
possible eigenvalue in the UT formulation for the considered multiply-connected problem.
The possible eigenvalues of Jm(ka) = 0 and J ′

m(ka) = 0, m = 0, 1, 2, 3, . . . ,M are found
to be the true eigenvalues of a circular domain with radius a subject to the Dirichlet and
Neumann boundary conditions, respectively. However, they are not true eigenvalues of the
multiply-connected domain problems. This is the reason why we term them spurious eigen-
values. This finding extends the proof of existence of spurious eigenvalues for the annular
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case10 by using circulants and degenerate kernels. We can claim that any inner circle results
in the spurious eigenvalue for the multiply-connected eigenproblems. The spurious eigenval-
ues are found to be the true eigenvalues of the associated eigenproblem of inner circles. To
overcome the spurious eigenvalues, we use the Burton & Miller method and SVD updating
technique.

4. Burton & Miller Method and SVD Updating Technique Review

4.1. Burton & Miller method

In the exterior acoustics, Burton & Miller utilized the product of hypersingular equa-
tion with an imaginary constant to the singular equation to deal with fictitious frequency
which is the non-uniqueness solution problem. We will extend this concept to suppress the
appearance of spurious eigenvalues for multiply-connected problems. By combining the two
equations (25) and (26) using Burton & Miller approach, the linear algebraic equations can
be obtained as follows:

[ikU(s, x) + L(s, x)]{t} = [ikT (s, x) +M(s, x)]{u}. (33)

Equation (38) is valid for filitering out the spurious eigensolutions in the multiply-connected
problem.

4.2. SVD updating techniques

By employing the UT and LM formulations, we have the Eqs. (20) and (21). A conventional
approach to detect the nonunique solution is the criterion of satisfying both Eqs. (20) and
(21) at the same time. The UT or LM method in conjunction with SVD techniques can
filter out the spurious eigenvalues for multiply-connected problems. Employing the SVD
technique, one can decompose Eq. (20) into

φT

∑
T

ψH
T {u} = φU

∑
U

ψH
U {t}, (34)

where H denotes the Hermitian conjugate, φU , ψU , φT and ψT are the unitary matrices,∑
U and

∑
T are the diagonal matrices composed by the singular values σ(U)

i and σ(T )
i of U

and T matrices, respectively. When k is a spurious eigenvalue (ks), there exists a φs vector
which satisfies

[UH(ks)]{φs} = 0, (35)

and

[TH(ks)]{φs} = 0, (36)

respectively. Combining Eqs. (35) and (36), we have[
UH(ks)

TH(ks)

]
{φs} = 0, (37)
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In order to verify the existence of vectorφs, we can employ the Fredholm alternative
theorem.1 By taking the Hermitian conjugate with respect to Eq. (37), we have

{φs}H [U(ks)T (ks)] = 0, (38)

where φs is the spurious boundary mode encountered in the “singular” equation. The assem-
ble of U and T matrices in Eqs. (37) and (38) are found to be the SVD updating terms and
documents, respectively. It will be found that the spurious modes can be extracted out from
the left unitary vector in U and T matrices. Similarly, Eqs. (37) and (38) can be rewrit-
ten by replacing the U and T matrices into L and M matrices, respectively, when using
hypersingular equation. In a similar way, the spurious boundary mode can be extracted out
from the left unitary vector in L and M matrices. According to the Eqs. (22) and (23), for
extracting out the true eigensolution we can merge the two matrices of U and L together
to obtain an overdeterminated system,[

U

L

]
{t} = 0, (39)

for the Dirichlet type problem (u = 0). Consequently, the SVD techniques of updating term
is also employed in the overdeterminated matrix of Eq. (44) to find the true eigenvalues and
true boundary modes. The right unitary vectors in SVD1 for U and L kernel corresponding
to the zero singular value are found to be the true boundary eigenvectors.

5. Numerical Results and Discussion

In order to demonstrate the validity of the present method, several examples are given.

Example 1. Membrane vibration for a circular domain with an annular circular hole

An annular case with radii r1 and r2 (r1 = 0.5, r2 = 2.0) is shown in Fig. 5. The Dirichlet
boundary condition is considered. Table 2 shows the former five true eigenvalues by using
different methods for comparison with analytical solution. It can be found that the present
result is acceptable. Chen et al.15 had proved by using the singular value decomposition
(SVD) technique that both the singular and hypersingular equations result in spurious
eigenvlaues which are the associated interior Dirichlet and Neumann problems of interior
domain of ineer circles, respectively. Figure 6(a) shows the minimum singular value versus
k where the drop indicates the possible eigenvalues by using the singular formulation, it is
found that the accuracy of present method is better than that of BEM. Figure 6(b) shows
the minimum singular value versus k where the drop indicates the possible eigenvalues by
using the hypersingular formulation. It is found in Fig. 6(b) that the zero spurious eigenvalue
is well shown than BEM where k = 0.34 is predicted. This indicates that the low frequency
behavior is better modeled by using the present method than BEM. Figure 6(c) shows
the minimum singular value versus k where the drop indicates all the true eigenvalues
by employing the Burton & Miller approach. The present method by using the singular
formulation agree with the analytical results better than BEM10 does where a spurious



July 7, 2008 18:6 WSPC/130-JCA 00339

Null-Field Integral Equation Approach for Eigenproblems with Circular Boundaries 415

Fig. 5. Eigenproblem with an annular domain.

Table 2. The former five eigenvalues of the Helmholtz eigenproblem for
the annular cavity.

Eigenvalues

Methods k1 k2 k3 k4 k5

FEM1 (ABAQUS) 2.03 2.20 2.62 3.15 3.71

BEM1 (Burton & Miller) 2.06 2.23 2.67 3.22 3.81

BEM9 (CHIEF) 2.05 2.23 2.67 3.22 3.81

BEM9 (null-field) 2.04 2.20 2.65 3.21 3.80

BEM9 (fictitious) 2.04 2.21 2.66 3.21 3.80
Present method 2.05 2.22 2.66 3.21 3.80

Analytical solution9 2.05 2.23 2.66 3.21 3.80

eigenvalue appears at k = 4.81 (J0(4.81r1) = 0) instead of 4.83 in BEM. The present method
by using the hypersingular formulation agree with the analytical solution better than BEM10

does where a spurious eigenvalue appears at k = 0.0 and 3.68(J ′1
0 (0r1) = 0 J ′1

0 (0r1) = 0
and J ′2

0 (3.68r1) = 0 where the superscript “1” and “2” mean the first and second roots)
instead of 0.34 and 3.68 in BEM. The present method is superior to BEM especially in the
low frequency range and it is more accurate than BEM under the same number of degree of
freedoms. In order to filter out spurious eigenvalues, the Burton & Miller method is utilized
as shown in Fig. 6(c). It is found that only true eigenvalues exist and spurious eigenvalues
are filtered out.10 By adopting the truncated Fourier series (M = 10), the former five mode
shapes are compared well with FEM and BEM shown in Table 3.
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Fig. 6. The minimim singular value σ1 versus k for the Dirichlet annular problem by using the present
method and BEM.
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Table 3. The former three eigenmodes for the annular case by using the present method,
FEM and BEM.

Mode Present method (M = 10) BEM10 FEM10

1

k = 2.05 k = 2.06 k = 2.03

2

k = 2.22 k = 2.23 k = 2.20

3

k = 2.66 k = 2.67 k = 2.62

Example 2. Membrane vibration for a circular domain with an eccentric circular hole

An eccentric case with radii r1 and r2 (r1 = 0.5, r2 = 2.0) is considered as shown in
Fig. 7. The boundary condition is subject to the Dirichlet type. Special treatment for vector
decompositions in potential gradient should be taken care here. Table 4 shows the former
five eigenvalues by using different methods. Good agreement is made. Figure 8(a) shows the
minimum singular value versus k where the drop indicates the possible eigenvalues by using
the singular formulation. Figure 8(b) shows the minimum singular value versus k where
the drop indicates the possible eigenvalues by using the hypersingular formulation. As the
same with the example 1, the efficiency and accuracy of the present method is obviously
shown in Figs. 8(a) and 8(b). Figure 8(c) shows the minimum singular value versus k where
the drop indicates all the true eigenvalues by using the Burton & Miller approach. The
present method by using the singular formulation agree with the analytical results better
than BEM10 does where a spurious eigenvalue appears at k = 4.81 (J0(4.81r1) = 0) instead
of 4.83 in BEM. The present method by using the hypersingular formulation agree with
the analytical solution better than BEM10 does where a spurious eigenvalue appears at
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Fig. 7. Eigenproblem with an eccentric domain.

Table 4. The former five eigenvalues for an eccentric
domain by using different methods.

Wave Number

Method 1 2 3 4 5

FEM33 1.73 2.13 2.45 2.76 2.95

Chen and Zhou2 1.75 2.14 2.47 2.78 2.97

BEM32 1.74 2.14 2.47 2.78 2.98
Present method 1.74 2.14 2.46 2.78 2.96

k = 0.0 and 3.68(J ′1
0 (0r1) = 0 and J ′2

0 (3.68r1) = 0) instead of 0.35 and 3.77 in BEM. The
present method is superior to BEM especially in the low frequency range and it is more
accurate than BEM under the same number of degree of freedoms. The spurious eigenvalue
was filtered out by using the Burton and Miller approach.1 By adopting the truncated
Fourier series (M = 10), the former five mode shapes are compared well with those by
FEM and BEM also shown in Table 5. For the convergence study of Fourier series, we plot
the Parseval’s sum versus truncated M terms in Fig. 9. The Parserval’s theorem are defined
as below

∫ 2π

0
f2(θ)dθ ≈ 2πa2

0 + π

M∑
n=1

(a2
n + b2n). (40)

It is found that no matter real-part, imaginary-part or absolute values are all convergent
by selecting seven terms of Fourier series for both the inner and outer circles. Although
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Table 5. The former five eigenmodes for eccentric case by using the present method, FEM and BEM.

Mode Present Method (M = 10) BEM10 FEM10

1

k = 1.74 k = 1.74 k = 1.74

2

k = 2.14 k = 2.14 k = 2.13

3

k = 2.46 k = 2.47 k = 2.45

4

k = 2.78 k = 2.78 k = 2.76

5

k = 2.94 k = 2.97 k = 2.95
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Fig. 9. The Parserval sum of t versus the truncated term M .
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they are not monotonically decreasing, they converge to a value due to the constraint of the
null-field integral equations.

Example 3. Membrane vibration for a circular domain with two equal circular holes

A circular region of radius R with two equal circular with the eccentricity e = 0.5 are
shown in Fig. 10. The radii of the circular holes and the external boundary are c = 0.3
and R = 1.0. The Dirichlet boundary condition is considered. By adopting the truncated
Fourier series (M = 10), the former five mode shapes are compared by BEM and FEM as
shown in Table 6. For the double roots, mode 1 and mode 2 are quite different. Mode 1 is
symmetric with respect to the x axis, while the mode 2 is antisymmetric with respect to
the x axis. The same situation is for the mode 3 and mode 4. Good agreement is made.

Example 4. Membrane vibration for a circular domain with two unequal circular holes

A circular region of radius R with two unequal circular holes with the eccentricity e = 0.5
are shown in Fig. 11. The radii of the circular holes and the external boundary are c1 = 0.3,
c2 = 0.4 and R = 1.0. The Dirichlet boundary condition is considered. Table 7 shows the
former five eigenvalues by using different methods. Good agreement is made. The spurious
eigenvalus are detected by using the present method and BEM in conjunction with SVD
technique of updating document as shown in Fig. 12 where only seven terms are adopted in
the Fourier series. By adopting the truncated Fourier series (M = 10), the former five mode
shapes are compared with those by BEM and FEM as shown in Table 8. For the double
roots, mode 1 and mode 2 are quite different. Mode 1 is symmetric with respect to the x
axis, while the mode 2 is antisymmetric with respect to the x axis. The same situation is
for the mode 3 and mode 4.

R=1 

0.3c =

e=0.5 

0.3c =

2 2( )∇ = = ∈( ) 0,k u x x D

Fig. 10. Two equal circular holes in a circular domain.
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Table 6. The former five modes for a circle domain with two equal holes by using the present method,
BEM and FEM.

Mode Present Method (M = 10) BEM10 FEM10
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to x-axis

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

+

+

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-

-

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

+

+

k = 4.53 k = 4.50 k = 4.45

2
Antisymmetric with

respect to x-axis

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

+

-

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

+

-

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

+

-

k = 4.53 k = 4.50 k = 4.45

3
Symmetric with respect

to x-axis

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

+

+

-

-

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-

-

+

+

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

- +

k = 6.4 k = 6.37 k = 6.27

4
Antisymmetric with

respect to x-axis

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-

-

+

+

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-

-

+

+

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-+

k = 6.4 k = 6.37 k = 6.27

5
Symmetric with respect

to x-axis

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

+

+

-

-

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-

-

+

+

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 -

-

+

k = 7.1 k = 7.16 k = 6.93



July 7, 2008 18:6 WSPC/130-JCA 00339

424 J. T. Chen, C. T. Chen & I. L. Chen

0 1 2 3 4 5 6 7 8 9

0.001

0.01

0.1

1

10

100

The minimum singular values 1 for the updating document by BEM  (90 constant element))

The minimum singular values 1 for the updating document by BIEM (21 collocation points)

( ): exact solution
[ ]: BEM
< >: present method

ks=<6.01> ks=<8.02>

Fig. 11. Detection of spurious eigenvalues by using SVD updating document in the present method and
BEM.

Table 7. The former five eigenvalues for a multiply-connected problem
with two unequal holes by using different approaches.

ki

Method k1 k2 k3 k4 k5

Burton & Miller method 4.82 4.82 6.72 6.72 7.82
Direct BEM + SVD Updating 4.81 4.81 6.73 6.73 7.81
Null-field BEM + SVD Updating 4.81 4.81 6.73 6.73 7.82
Fictitious BEM + SVD Updating 4.80 4.80 6.72 6.72 7.79
Direct BEM + CHIEF method 4.81 4.81 6.73 6.73 7.82
Null-field BEM + CHIEF method 4.83 4.83 6.74 6.74 7.84
Fictitious BEM + CHIEF method 4.77 4.77 6.68 6.68 7.88
FEM 4.79 4.80 6.62 6.63 7.80
Present method 4.85 4.85 6.77 6.77 7.91

6. Conclusions

For the eigenproblems with circular boundaries, we have proposed a special BIEM by using
degenerate kernels, null-field integral equation and Fourier series in companion with adaptive
observer systems. This method is a semi-analytical approach since only truncation error
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R=1 

c1=0.3 
c2=0.4 

e=0.5 

2 2( )∇ = ∈=( ) 0,k u x x D

Fig. 12. Two unequal circular holes in a circular domain.

in the Fourier series is involved. The method shows great generality and versatility for the
problems with multiple circular holes of arbitrary radii and positions. Also, the occurrence of
spurious eigenvalue was examined and filtered by using SVD updating technique. Numerical
results agree very well with those of the BEM and FEM. By using the same number of degree

Table 8. The former five modes for a circle domain with two unequal holes by using the present
method, BEM and FEM.

Mode Present Method (M = 10) BEM15 FEM15

1
Symmetric with respect

to x-axis

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

+

+

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

+

+

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

+

+

k = 4.85 k = 4.82 k = 4.80

2
Antisymmetric with

respect to x-axis

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

+

-

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-

+

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-

+

k = 4.85 k = 4.82 k = 4.80
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Table 8. (Continued)

Mode Present Method (M = 10) BEM15 FEM15

3
Symmetric with respect

to x-axis

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

+

+

-

-

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-

-

+

+

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-
+

k = 6.77 k = 6.72 k = 6.62

4
Antisymmetric with

respect to x-axis

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-

-

+

+

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

+

+

-

-

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

- +

k = 6.77 k = 6.72 k = 6.63

5
Symmetric with respect

to x-axis

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-

-

+
+

+
+

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

++

+ +

-

-

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

- -

-
-

+

+

k = 7.91 k = 7.82 k = 7.80

of freedom, the present approach yields better result than BEM. Since the circular geometry
is well captured by using Fourier series and degenerate kernel.
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