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Abstract

In this paper, the degenerate kernels and Fourier series expansions are adopted in the null-field integral equation to solve the exterior

Helmholtz problems with alluvial valleys. The main gain of using degenerate kernels in integral equations is free of calculating the

principal values for singular integrals by locating the null-field point exactly on the real boundary. An adaptive observer system is

addressed to fully employ the property of degenerate kernels for circular boundaries in the polar coordinate. Image concept and

technique of decomposition are utilized for half-plane problems. After moving the null-field point to the real boundary and matching the

boundary conditions, a linear algebraic system is obtained without boundary discretization. The unknown coefficients in the algebraic

system can be easily determined. The present method is treated as a ‘‘semi-analytical’’ solution since error only attributes to the

truncation of Fourier series. Earthquake analysis for the site response of alluvial valley or canyon subject to the incident SH-wave is the

main concern. Numerical examples including single and successive alluvial valleys are given to test our program. Limiting cases of a

single canyon and two successive canyons are also addressed. Amplification of soft basin is also observed in this study. The validity of the

semi-analytical method is verified. Our advantages, well-posed model, principal value free, elimination of boundary-layer effect and

exponential convergence and mesh-free, by using the present method are achieved.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the major concerns of engineering seismology is
to understand and explain vibrational response of the soil
excited by earthquakes. The problem of the scattering and
diffraction of SH-waves by a two-dimensional arbitrary
number and location of cavities and inclusions in full and
half-planes is revisited in this paper by using our unified
formulation. In 1971, Trifunac [1] has solved the problem
of a single semi-circular alluvial valley subject to SH-wave.
Later, Pao and Mow [2] have published a book on the
stress concentration in 1972. In 1973, Trifunac [3] has also
derived the closed-form solution of a single semi-circular
canyon subject to the SH-wave. The earliest reference to a
closed-form solution of the scattering and diffraction of the
incident SH-wave by an underground inclusion exists in an
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article concerning an underground circular tunnel by Lee
and Trifunac [4]. In order to extend to arbitrary shape
inclusion problems, Lee and Manoogian [5] have used the
weighted residual method to revisit the problem of
scattering and diffraction of SH-wave with respect to an
underground cavity of arbitrary shape in a two-dimen-
sional elastic half-plane. In the following years, they
extended to the half-plane problem with an inclusion of
arbitrary shape [6,7]. According to the literature review, it
is observed that exact solutions for boundary value
problems (BVPs) are only limited for simple cases, e.g.
half-plane with a semi-circular canyon, a cavity under half-
plane, an inclusion under half-plane. Numerical approach
using boundary integral formulation was employed to
study diffraction of seismic waves in half-plane [8].
Therefore, proposing a systematic approach for solving
exterior Helmholtz problems with circular boundaries of
various numbers, positions and radii is our goal in this
paper.
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For a problem with several holes, various numerical
methods, e.g. finite difference method (FDM), finite
element method (FEM), boundary element method
(BEM) and meshfree method, etc. are always resorted to
solve. A much more general problem for SH-waves, the
numerical solution of time-harmonic transition problems
in elasticity, in general, and with soil amplification in
inhomogneous alluvial valleys, was obtain by using
boundary element–finite element (BEM–FEM) [9] formu-
lation. Among diverse numerical approaches, FEM and
BEM have become popular research tools for engineers. In
the past decade, FEM has been widely applied to carry out
many engineering problems, but one disadvantage is that
discretizations on the domain are time-consuming to set up
the mesh models. Regarding to the benefit of using BEM,
only discretizations on boundaries are required and the
boundary conditions at infinity are automatically satisfied.
Discrete wave number BEM [10–12] utilized discrete wave
number approach to calculate Green’s function in the
BEM or boundary integral equation method (BIEM).
Indirect BEM [13] employs only single-layer potential
representation for the solution. However, the discrete wave
number BEM determines Green’s function using the sum
of discrete wave number. Although BEM has been
involved as an alternative method for solving engineering
problems, four critical issues are of concern.
1.
 In the dual BIEM/BEM formulation, the singular and
hypersingular integrals need special care on the sense of
the Cauchy and Hadamard principal values, respec-
tively. How to determine accurately the free terms has
received more attentions in the past decade and a large
amount of papers can be found. Two conventional
approaches were employed to regularize the singular
and hypersingular integrals. First, Guiggiani [14] has
derived the free terms for Laplace and Navier equations
using differential geometry and bump contour ap-
proach. Second, Gray and Manne [15] have employed
a limiting process to ensure a finite value from an
interior point to boundary by using symbolic software.
Two alternatives, fictitious BEM and null-field approach
(off boundary approach), can avoid the singularity since
the source and field points never coincide in the
boundary integration. However, they result in an ill-
posed matrix which will be elaborated on later.
2.
 On the other hand, many researchers tried to regularize
the approach to regular formulation. In order to avoid
directly calculating the singular and hypersingular
integrals, null-field approach [16,17] or fictitious BEM
[18] yields an ill-conditioned system which needs
regularization. In the paper, we may wonder whether
it is possible to push the null-field point on the real
boundary but free of calculating singularity and
hypersingularity. The answer is yes. Instead of deter-
mining the singular (hypersingular) integrals using the
definition of CPV (HPV), the kernel function is
described in an analytical form from each side (interior
and exterior) by employing the separable technique since
the double-layer potential is discontinuous across the
boundary. Therefore, degenerate kernel, namely separ-
able kernel, is employed to represent the potential of
the perforated domain which satisfies the governing
equation.
3.
 Boundary-layer effect is inherent in BEM. In real
applications, data near boundary can be artificially
smoothened since Laplace field satisfies maximum and
minimum principles. Nevertheless, it also deserves study
to know how to manipulate the nearly singular integrals.
We may wonder whether it is possible to develop a
BIEM formulation which is free of boundary-layer
effect. Readers can find the answer in this paper.
4.
 Convergence rate is the main concern of BEM. It is no
doubt that dual BEM is very versatile for BVPs with
general geometries including circular holes, ellipse,
square and crack boundaries. Regarding to constant,
linear and quadratic elements, the discretization scheme
does not take the geometry into consideration. For
problems with special geometries, one can propose the
special function to approximate the geometry. Fourier
series is specially tailored to problems with circular
geometries. In the book of Kress and Atkinson [19,20],
the degenerate kernel is defined that the source and field
points in the fundamental solution can be separated.
Kress also proved that expansion of degenerate kernel
and Fourier series yields the exponential convergence
instead of linear algebraic convergence using BEM. The
numerical experiment was performed for Helmholtz
problems is his paper [21]. This paper takes the
advantage of this expansion to deal with problems
containing circular boundary using Fourier series in
conjunction with degenerate kernel.

A new approach to have the four gains: (1) principal
value free, (2) well-posed, (3) elimination of boundary-
layer effect and (4) exponential convergence, is the goal of
this paper. Table 1 shows the comparisons of the present
method and conventional BEM.
In this paper, the BIEM is utilized to solve the half-plane

radiation and scattering problems with circular boundaries.
To fully utilize the geometry of circular boundary after
introducing image concept, not only Fourier series for
boundary densities as previously used by many researchers
but also the degenerate kernel for fundamental solutions in
the present formulation is incorporated into the null-field
integral equation. The key idea is that we can push the null-
field point exactly on the real boundary by using
appropriate degenerates kernel in real computation. All
the improper boundary integrals are free of calculating the
principal values (Cauchy and Hadamard) in place of series
sum. In integrating each circular boundary for the null-
field equation, the adaptive observer system of polar
coordinate is considered to fully employ the property of
degenerate kernel. For the hypersingular equation, vector
decomposition for the radial and tangential gradients is
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Fig. 1. A half-plane problem with a semi-circular alluvial valley subject to

the SH-wave.

Table 1

Comparisons of the present method and conventional BEM

Boundary density discretization Auxiliary system Formulation Observer system Singularity

Present method

Fourier series Degenerate kernel Null-field integral

equation

Adaptive observer

system

No principal value

Conventional BEM

Constant element Fundamental

solution

Boundary integral

equation

Fixed observer system Principal value (CPV, RPV and

HPV)

CPV, RPV and HPV are the Cauchy principal value, Riemann principal value and Hadamard principal value, respectively.
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carefully considered, especially in the non-focal case.
A scattering problem subject to the incident wave is
decomposed into two parts, incident plane wave field and
radiation field. The radiation boundary condition is the
minus quantity of incident wave function for matching the
boundary condition of total wave for a cavity. Not only a
semi-analytical approach is proposed but also the ampli-
fication of site response for alluvial valleys is studied. Our
approach can deal with a cavity problem as a limiting case
of an inclusion problem with zero shear modulus.

2. Problem statement

Half-plane problems with alluvial to be analyzed is
shown in Fig. 1. The matrix and alluvial are assumed to be
elastic, isotropic and homogenous, and the interface
between the alluvial and matrix is assumed to be perfect.
The governing equation of the anti-plane SH-wave
harmonic motion is

mr2wðxÞ þ ro2wðxÞ ¼ 0; x 2 O, (1)

where m, r and o are the material properties of shear
modulus, the density and the frequency, r2 and O are the
Laplacian operator and the domain of interest, respec-
tively. The anti-plane displacement field is defined as

u ¼ v ¼ 0; w ¼ wðx; yÞ, (2)

where w is the only non-vanishing component of displace-
ment with respect to the Cartesian coordinate which
is a function of x and y. The traction free boundary
condition at the ground surface of the half-plane is defined
as follows:

tyz ¼ m
@w

@y
¼ 0; y ¼ 0, (3)
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or can be represented in the polar coordinate as

ty ¼
m
r

@w

@y
¼ 0; y ¼ 0 and p. (4)

The incident excitation of the half-plane, win, is defined
as a steady-state plane SH-wave, and motion in the z

direction. It is expressed as

win ¼W 0e
ikðx sin gþy cos gÞ, (5)

where W0 is the constant amplitude, and g is the angle of
incidence.
3. Dual boundary integral equations and dual null-field

integral equations

For the SH-wave problem, the integral equation for the
domain point can be derived from the third Green’s
identity [22], yields

2puðxÞ ¼

Z
B

Teðs; xÞuðsÞdBðsÞ

�

Z
B

U eðs;xÞtðsÞdBðsÞ; x 2 O [ B, ð6Þ

2ptðxÞ ¼

Z
B

Meðs;xÞuðsÞdBðsÞ

�

Z
B

Leðs; xÞtðsÞdBðsÞ; x 2 O [ B, ð7Þ

where the four kernels should be selected in a degenerate
form of exterior region with the superscript ‘‘e’’, s and x are
the source and field points, respectively, B is the boundary,
and the kernel function, U(s, x), is the fundamental
solution which satisfies

ðr2 þ k2
ÞUðx; sÞ ¼ 2pdðx� sÞ, (8)

where d(x�s) denotes the Dirac-delta function. Then, we
can obtain the fundamental solution as follows:

Uðs; xÞ ¼
�ipH

ð1Þ
0 ðkrÞ

2
, (9)

Tðs;xÞ ¼
@Uðs; xÞ

@ns

; Lðs;xÞ ¼
@Uðs;xÞ

@nx

,

Mðs;xÞ ¼
@2Uðs;xÞ

@nx@ns

, ð10Þ

where H ð1Þn ðkrÞ is the nth-order Hankel function of the first
kind, r � s� xj j, nx denotes the outward normal vector at
the field point x. By collocating x outside the domain
(xAOc), we obtain the dual null-field integral equations as

0 ¼

Z
B

T iðs;xÞuðsÞdBðsÞ

�

Z
B

U iðs;xÞtðsÞdBðsÞ; x 2 Oc
[ B, ð11Þ
0 ¼

Z
B

M iðs;xÞuðsÞdBðsÞ

�

Z
B

Liðs;xÞtðsÞdBðsÞ; x 2 Oc
[ B, ð12Þ

where Oc is the complementary domain and the four
kernels are chosen appropriately using degenerate expres-
sion of interior region with the superscript ‘‘i’’ in the
following section.

4. Expansions of fundamental solution and boundary density

In the present method, we adopt the mathematical tools,
degenerate kernels, for the purpose of analytical study. The
combination of degenerate kernels and Fourier series plays
the major role in handling problems with circular
boundaries. Based on the separable property, the kernel
function U(s, x), T(s, x), L(s, x) and M(s, x) can be
expanded into separable form by separting the source point
(s ¼ (R, y)) and field point (x ¼ (r, f)) in the polar
coordinate [23].

Uðs; xÞ ¼

U iðs; xÞ ¼ �pi2

P1
m¼0

�mJmðkrÞH ð1Þm ðkRÞ cosðmðy� fÞÞ; RXr;

U eðs; xÞ ¼ �pi2

P1
m¼0

�mHð1Þm ðkrÞJmðkRÞ cosðmðy� fÞÞ; r4R;

8>>><
>>>:

(13)

Tðs; xÞ ¼

T iðs; xÞ ¼ �pki
2

P1
m¼0

�mJmðkrÞH 0
ð1Þ
m ðkRÞ cosðmðy� fÞÞ; R4r;

Teðs; xÞ ¼ �pki
2

P1
m¼0

�mH ð1Þm ðkrÞJ
0
mðkRÞ cosðmðy� fÞÞ; r4R;

8>>><
>>>:

(14)

Lðs; xÞ ¼

Liðs; xÞ ¼ �pki
2

P1
m¼0

�mJ 0mðkrÞH ð1Þm ðkRÞ cosðmðy� fÞÞ; R4r;

Leðs; xÞ ¼ �pki
2

P1
m¼0

�mH 0
ð1Þ
m ðkrÞJmðkRÞ cosðmðy� fÞÞ; r4R;

8>>><
>>>:

(15)

Mðs; xÞ ¼

M iðs; xÞ ¼ �pk2i
2

P1
m¼0

�mJ 0mðkrÞH 0
ð1Þ
m ðkRÞ cosðmðy� fÞÞ; RXr;

Meðs; xÞ ¼ �pk2i
2

P1
m¼0

�mH 0
ð1Þ
m ðkrÞJ

0
mðkRÞ cosðmðy� fÞÞ; r4R;

8>>><
>>>:

(16)

where i2 ¼ �1 the superscripts ‘‘i’’ and ‘‘e’’ denote the
interior and exterior cases for the expressions of kernel,
respectively, and em is the Neumann factor

�m ¼
1; m ¼ 0;

2; m ¼ 1; 2; :::;1:

(
(17)

It is noted that the larger argument is imbedded in the
complex Hankel function (H) instead of real Bessel
function (J) to ensure the H0(kr) singularity and series
convergence. Since the potential resulted from T(s, x) and
L(s, x) kernels are discontinuous across the boundary, the
potentials of T(s, x) for R! rþ and R! r� are different.
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Fig. 2. (a) Sketch of the null-field integral equation in conjunction with

the adaptive observer system. (b) Sketch of the boundary integral equation

for the domain point in conjunction with the adaptive observer system.
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This is the reason why R ¼ r is not included in expressional
degenerate kernels of T(s, x) and L(s, x) in Eqs. (14) and
(15). The analytical evaluation of the integrals for each
element in the influence matrix is listed in the Appendix
and they are all non-singular. Besides, the limiting case to
the boundary is also addressed. The continuous and jump
behavior across the boundary is well described by using the
Wronskian property of Jm and Ym

W JmðkRÞ;Y mðkRÞð Þ ¼ Y 0mðkRÞJmðkRÞ � Y mðkRÞJ 0mðkRÞ

¼
2

pkR
ð18Þ

to display the jump behavior asZ 2p

0

T iðs;xÞ � Teðs;xÞ
� �

cosðnyÞRdy

¼ kRp2JnðkRÞ Y 0nðkRÞ � iJ 0nðkRÞ
� �

cosðnfÞ

� kRp2J 0nðkRÞ Y nðkRÞ � iJnðkRÞ½ � cosðnfÞ

¼ 2p cosðnfÞ, ð19Þ

Z 2p

0

T iðs;xÞ � Teðs;xÞ
� �

sinðnyÞRdy

¼ kRp2JnðkrÞ Y 0nðkrÞ � iJ 0nðkRÞ
� �

sinðnfÞ

� kRp2J 0nðkrÞ Y nðkrÞ � iJnðkRÞ½ � sinðnfÞ

¼ 2p sinðnfÞ, ð20Þ

where J and Y functions are similar to the Wronskian of
two bases, 1 and x, for one-dimensional rod case.

Since only circular boundary is considered in this study,
we employ the Fourier series expansions to approximate
the potential u and its normal derivative t on the circular
boundary, we have

uðskÞ ¼ ak
0 þ

X1
n¼1

ðak
n cos nyk þ bk

n sin nykÞ,

sk 2 Bk; k ¼ 1; 2; . . . ;N, ð21Þ

tðskÞ ¼ pk
0 þ

X1
n¼1

ðpk
n cos nyk þ qk

n sin nykÞ,

sk 2 Bk; k ¼ 1; 2; . . . ;N, ð22Þ

where tðskÞ ¼ @uðskÞ=@ns in which ns denotes the outward
normal vector at the source point s, ak

n , bk
n , pk

n and qk
n

(n ¼ 0, 1, 2,y) are the Fourier coefficients and yk is the
polar angle for the kth circular boundary.

5. Adaptive observer system

Consider a BVP with circular boundaries of arbitrary
locations. The rule of objectivity is obeyed since the
boundary integral equations are frame indifferent. An
adaptive observer system is addressed to fully employ the
property of degenerate kernels for circular boundaries in
the polar coordinate as shown in Figs. 2(a) and (b). For the
integration, the origin of the observer system can be
adaptively located on the center of the corresponding
boundary contour. The dummy variable in the circular
boundary integration is the angle (y) instead of radial
coordinate (R). By using the adaptive system, all the
integrations can be easy to calculate.
6. Linear algebraic system

In order to calculate the Fourier coefficients, 2L+1
boundary nodes are needed. By locating the null-field point
exactly on the jth circular boundary for Eq. (11) and (12),
we have

0 ¼
XN

j¼1

Z
Bj

Tðs;xÞuðsÞdBðsÞ

�
XN

j¼1

Z
Bj

Uðs;xÞtðsÞdBðsÞ; x 2 Oc
[ B, ð23Þ
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0 ¼
XN

j¼1

Z
Bj

Mðs;xÞuðsÞdBðsÞ

�
XN

j¼1

Z
Bj

Lðs;xÞtðsÞdBðsÞ; x 2 Oc
[ B. ð24Þ

It is noted that the integration path is anticlockwise for
the outer circle. Otherwise, it is clockwise. For the Bj
wM = wM -(w

tM = tM (tin
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integral of the circular boundary, the kernel of U(s,x) is
expressed in terms of degenerate kernel of Eq. (13), and
T(s,x), L(s,x) and M(s,x) are, respectively obtained by
applying the differential operators defined in Eq. (10). The
boundary densities u(s) and t(s) are substituted by using the
Fourier series of Eqs. (21) and (22), respectively. In the Bj

integration, we set the origin of the observer system to
collocate at the center cj to fully utilize the degenerate
kernel and Fourier series. By moving the null-field point to
Bj, a linear algebraic system is obtained

½U�ftg ¼ ½T�fug, (25)

where [U] and [T] are the influence matrices with a
dimension of N�N, {u} and {t} denote the column vectors
of Fourier coefficients with a dimension of N� 1 in which
those can be defined as follows

½U� ¼

U11 U12 � � � U1N

U21 U22 � � � U2N

..

. ..
. . .

. ..
.

UN1 UN2 � � � UNN

2
6666664

3
7777775
,

T½ � ¼

T11 T12 � � � T1N

T21 T22 � � � T2N

..

. ..
. . .

. ..
.

2
6666664

3
7777775
, ð26Þ
TN1 TN2 � � � TNN

Matrix

in + wre)

 + tre)

Matrix

Matrix 

SH-Wave

 

SH-Wave 

win + wre

tin + tre

Inclusion

wI

tI

wM = wI, �M tM = -�ItIt t

�

�

+

n of superposition of an alluvial valley.
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fug ¼

u1

u2

u3

..

.

uN

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
; ftg ¼

t1

t2

t3

..

.

tN

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
, (27)

where the vectors {u} and {t} are the Fourier coefficients
and the first subindex ‘‘j’’ (j ¼ 1,2,y,N) in [Ujk] and [Tjk]
denotes the jth circle where the collocation point is located
and the second subindex ‘‘k’’ (k ¼ 1,2,y,N) denotes the
kth circle with boundary data {uk} and {tk}. The coefficient
matrix of the linear algebraic system is partitioned into
blocks, and each off-diagonal block corresponds to the
influence matrices between two different circular bound-
aries. The diagonal blocks are the influence matrices due to
themselves in each individual circle. After uniformly
collocating 2L+1 points along the kth circular boundary,
the submatrix can be written as
Ujk

h i
¼

U0c
jk ðf1Þ U1c

jk ðf1Þ U1s
jk ðf1Þ � � � ULc

jk ðf1Þ ULs
jk ðf1Þ

U0c
jk ðf2Þ U1c

jk ðf2Þ U1s
jk ðf2Þ � � � ULc

jk ðf2Þ ULs
jk ðf2Þ

U0c
jk ðf3Þ U1c

jk ðf3Þ U1s
jk ðf3Þ � � � UMc

jk ðf3Þ ULs
jk ðf3Þ

..

. ..
. ..

. . .
. ..

. ..
.

U0c
jk ðf2LÞ U1c

jk ðf2LÞ U1s
jk ðf2LÞ � � � ULc

jk ðf2LÞ ULs
jk ðf2LÞ

U0c
jk ðf2Lþ1Þ U1c

jk ðf2Lþ1Þ U1s
jk ðf2Lþ1Þ � � � ULc

jk ðf2Lþ1Þ ULs
jk ðf2Lþ1Þ

2
6666666666664

3
7777777777775
, (28)

Tjk

� �
¼

T0c
jk ðf1Þ T1c

jk ðf1Þ T1s
jk ðf1Þ � � � TLc

jk ðf1Þ TLs
jk ðf1Þ

T0c
jk ðf2Þ T1c

jk ðf2Þ T1s
jk ðf2Þ � � � TLc

jk ðf2Þ TLs
jk ðf2Þ

T0c
jk ðf3Þ T1c

jk ðf3Þ T1s
jk ðf3Þ � � � TLc

jk ðf3Þ TLs
jk ðf3Þ

..

. ..
. ..

. . .
. ..

. ..
.

T0c
jk ðf2LÞ T1c

jk ðf2LÞ T1s
jk ðf2LÞ � � � TLc

jk ðf2LÞ TLs
jk ðf2LÞ

T0c
jk ðf2Lþ1Þ T1c

jk ðf2Lþ1Þ T1s
jk ðf2Lþ1Þ � � � TLc

jk ðf2Lþ1Þ TLs
jk ðf2Lþ1Þ

2
6666666666664

3
7777777777775
, (29)
where fj, j ¼ 1; 2; � � � ; 2Lþ 1, are the angles of collocation
along the circular boundary. Although both the matrices in
Eqs. (28) and (29) are not sparse, it is found that the higher
order harmonics is considered, the lower influence coeffi-
cients in numerical experiments is obtained. It is noted that
the superscript ‘‘0s’’ in Eqs. (28) and (29) disappears since
sinð0 � yÞ ¼ 0. The elements of [ujk] and [Tjk] are defined
respectively as

Unc
jk ðfmÞ ¼

Z
Bk

Uðsk; xmÞ cosðnykÞRk dyk,

n ¼ 0; 1; 2; . . . ;L; m ¼ 1; 2; . . . ; 2Lþ 1, ð30Þ

Uns
jk ðfmÞ ¼

Z
Bk

Uðsk;xmÞ sinðnykÞRk dyk,

n ¼ 0; 1; 2; . . . ;L; m ¼ 1; 2; . . . ; 2Lþ 1, ð31Þ
Tns
jk ðfmÞ ¼

Z
Bk

Tðsk;xmÞ cosðnykÞRk dyk,

n ¼ 0; 1; 2; . . . ;L; m ¼ 1; 2; . . . ; 2Lþ 1, ð32Þ

Tns
jk ðfmÞ ¼

Z
Bk

Tðsk;xmÞ sinðnykÞRk dyk,

n ¼ 0; 1; 2; . . . ;L; m ¼ 1; 2; . . . ; 2Lþ 1, ð33Þ

where k is no sum, k ¼ ðRk; ykÞ, and fm is the polar angle of
the collocation point xm. The physical meaning of influence
coefficients in Eqs. (30)–(33) denotes the response at fm on
the jth circles due to singularity distribution of cosðnyÞ or
sinðnyÞ on the kth circle as shown in Fig. 3. Chen [24] has
provided the analytical evaluations of the integrals for each
element in the influence matrix which are all non-singular.
From the limiting process, the continuous and jump
behavior across the boundary is also described. The
direction of contour integration should be taken care, i.e.
counterclockwise and clockwise directions are for the
interior and exterior problems, respectively. By rearranging
the known and unknown sets, the Fourier coefficients can
be obtained.
7. Image technique for solving half-plane scattering

problems

7.1. Image concept for half-plane problems

For the half-plane problem with an alluvial valleys as
shown in Fig. 4, we extend the problem into a full plane
with the scatter by using the image concept such that our
formulation can be applied. By applying the concept of
even function, the symmetry condition is utilized to satisfy
the traction free (t ¼ 0) condition on the ground surface.
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We merge the half-plane domain into the full-plane
problem by adding with the reflective wave. To solve the
problem, the decomposition technique is employed by
introducing two plane waves, one is incident and the other
is reflective, instead of only one incident wave. After taking
the free body of full-plane problem through the ground
surface, we obtain the desired solution which satisfies the
Helmholtz equation and all the boundary conditions in the
half-plane domain.

7.2. Decomposition of scattering problem into incident wave

field and radiation problems

For the scattering problem subject to the incident wave,
this problem can be decomposed into two parts. One is
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Fig. 5. Surface amplitudes of the alluvial valley problem for mI=mM ¼ 1
6
and rI=

(d) g ¼ 901, (e) g ¼ 01, (f) g ¼ 301, (g) g ¼ 601, (h) g ¼ 901.
the incident wave field and another is the radiation field
as shown in Fig. 4. The relations between two parts are
shown as

uM
t ¼ uin þ ure þ uM, (34)

tMt ¼ tin þ tre þ tM, (35)

where the ‘‘tMt ’’ denotes the total field of matrix including
radiation and scattering. The subscripts ‘‘in’’ and ‘‘re’’
are the incident and reflected waves and the ‘‘tM’’ denotes
the radiation part of matrix and needs to be solved.
To match the boundary condition for the cavity case,
the total traction is defined as tMt ¼ 0. For the inclusion
case, we have the two constraints of the continuity
of displacement and equilibrium of traction along the
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kth interface (Bk, k ¼ 1,y,N) as

uM
t ¼ uI on Bk, (36)

mMtMt ¼ �m
ItI on Bk. (37)

The radiation parts of matrix (uM and tM) and inclusion
(uI and tI) can be solved by employing our method.
8. Matching of interface conditions for problems of inclusion

According to the linear algebraic system, the two systems
of matrix and inclusion yield

UM
� �

tM
� �

¼ TM
� �

uM
� �

, (38)
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Fig. 6. Limiting case of a canyon (mI=mM ¼ 10�8 and rI=rM ¼ 2
3
). (a)–(d) Z ¼ 1

g ¼ 301, (g) g ¼ 601, (h) g ¼ 901.
U½ � tI
� �
¼ TI
� �

uI
� �

. (39)

By employing the image concept and the decomposition
of superposition, Eq. (38) can be rewritten as

UM
� �

tMt � tinþre
� �

¼ TM
� �

uMt � uinþre
� �

. (40)

According to Fig. 4, an alluvial valley problem can be
extended to a full-plane problem with a circular inclusion.
In order to satisfy the traction free condition on the
surface, the reflective wave is chosen to satisfy the
symmetry condition as

wre ¼W 0e
ikðx sin g�y cos gÞ, (41)

and we have the two constraints of the continuity of
displacement and equilibrium of traction along the jth
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; (e)–(h) Z ¼ 2. (a) g ¼ 01, (b) g ¼ 301, (c) g ¼ 601, (d) g ¼ 901, (e) g ¼ 01, (f)
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interface (Bj). We will employ the two constrains into the
formulation as

uMt
� �

¼ uI
� �

on Bk, (42)

lM
� �

tMt
� �

¼ � lI
� �

tI
� �

on Bk, (43)

where [lM] and [lI] can be defined as follows:

lM
� �

¼

mM 0 � � � 0

0 mM � � � 0

..

. ..
. . .

. ..
.

0 0 � � � mM

2
6666664

3
7777775
,

lI
� �
¼

mI 0 � � � 0

0 mI � � � 0

..

. ..
. . .

. ..
.

0 0 � � � mI

2
6666664

3
7777775
, ð44Þ

where mM and mI denote the shear modulus of the matrix
and the kth inclusion, respectively. By assembling the
matrices in Eqs. (39), (40), (42) and (43), we have

TM �UM 0 0

0 0 TI �UI

I 0 �I 0

0 lM 0 lI

2
66664

3
77775

uMt

tMt

uI

tI

8>>><
>>>:

9>>>=
>>>;
¼

uðxÞinþre

0

0

0

8>>><
>>>:

9>>>=
>>>;
, (45)
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where [I] is the identity matrix, and uðxÞinþre
� �

as

uðxÞinþre
� �

¼ TM �UM
� 	 uin þ ure

tin þ tre

( )
. (46)

After obtaining the unknown Fourier coefficients, the
origin of observer system is set to cj in the Bj integration as
shown in Fig. 2(b) to obtain the potential by employing
Eq. (6). For the problem of multiple scatters (N alluvial
valleys), the dimension of influence matrices becomes N �

½4� ð2Lþ 1Þ� by N � ½4� ð2Lþ 1Þ�. In the recent investi-
gation, we have extended to the four inclusions problem in
our thesis [24].

In order to check the validity of the formulation, the
Manoogian [6] and Trifunac’s [1] problem with an alluvial
valley is revisited. We follow the same parameter, Z, for
comparison purpose. The dimensionless frequency Z is
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defined as

Z ¼
2a

l
¼

kMa

p
¼

oa

pcM
, (47)

where a is the half-width of the alluvial valley, o is the
angular frequency, kM and cM are the shear wave number
and the velocity of shear wave for the matrix medium, and
the shear wave number k is defined as

k ¼
o
c
. (48)

Substituting Eq. (47) into Eq. (48), the wave number of
matrix field is rewritten as

kM
¼

pZ
a
, (49)
Alluvial 
Matrix 

a

SH-Wave 

x

y

a

3a 

� : the angleof incident wave and y-axis

�M : shear modulus of matrix 

�I : shear modulus of alluvial 

�M : density of matrix 

�I : density of alluvial

�

Fig. 11. A half-plane problem with two alluvial valleys subject to the

incident SH-wave.
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and the shear wave number for the inclusion field is
obtained by

kI

kM
¼

cE

cI
¼

mM

mI
�
rI

rM


 �1=2

. (50)

Eq. (50) indicates that various mediums yield different
wave numbers. The surface amplitude is an important
index for the earthquake engineering. If the amplitude of
incident plane SH-wave is one, the responses at different
locations represent amplifications of the incident wave. The
resultant motion is defined by the modulus

Amplitude ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2 wð Þ þ Im2 wð Þ

q
, (51)

where Re(w) and Im(w) are the real and imaginary parts of
total displacement, respectively.
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9. Illustrative examples and discussions

In the section, we revisit the same problems of
Manoogian and Lee [7], Trifunac [1] and Tsaur et al. [25]
for the alluvial problem. In order to check the accuracy of
the present method, the limiting case is conducted. All the
numerical results are given below by using 10 terms of
Fourier series.

Case 1: Half-plane problem with an alluvial valley subject

to the SH-wave.
In the following examples, we choose the same para-

meters, mI=mM ¼ 1
6
and rI=rM ¼ 2

3
which were previously

adopted in the Ph.D. dissertation of Manoogian [6]. Fig. 5
shows the surface amplitudes for the parameters of Z ¼ 1
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). (a)–(d) Z ¼ 1.0; (e)–(h) Z ¼ 2.0. (a) g ¼ 01, (b) g ¼ 301, (c) g ¼ 601,
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and 2. For two states of Z, four various incident angles
(g ¼ 01, 301, 601 and 901) are considered. The figures show
the displacement amplitude on the ground surface only.
Displacements are plotted with respect to the dimensionless
distance x/a for a specified parameter Z. In order to verify
the limiting case of the general program, we set
mI/mM ¼ 10�8 to reduce to two canyon cases of Z (1.0 and
2.0). In Fig. 6, good agreements are obtained after
comparing with Lee and Manoogian’s results [26] for
various frequency parameters of Z for the semi-circular
canyon case. Others are shown in the master thesis [24].
Another limiting case of the rigid alluvial is also of interest
in the foundation engineering. For example, rigid footing
-4 -3 -2 -1 0 1 2 3 4 5 6 7
0

2

4

6

8

A
m

pl
itu

de

x/a

-4 -3 -2 -1 0 1 2 3 4 5 6 7
0

2

4

6

8

A
m

pl
itu

de

x/a

-4 -3 -2 -1 0 1 2 3 4 5 6 7
0

2

4

6

8

A
m

pl
itu

de

x/a

-4 -3 -2 -1 0 1 2 3 4 5 6 7
0

2

4

6

8

A
m

pl
itu

de

x/a

Fig. 13. Limiting case of two canyons (mI=mM ¼ 10�8 and rI=rM ¼ 2
3
). (a)–(

(e) g ¼ 01, (f) g ¼ 301, (g) g ¼ 601, (h) g ¼ 901.
is a popular model in geotechnical engineering. By setting
mI/mM to be infinity, the limiting case of rigid inclusion can
be obtained. Fig. 7 plots the surface displacement by setting
mI/mM ¼ 104 and Z ¼ 2 in the real computation. In the range
of x/a ¼ �1 to 1, the amplification is a constant as expected,
because it is undeformed due to the rigid alluvial.
Figs. 8 and 10 show the surface displacement for

Z ¼ 0.25,y, 2.25 and 2.50 , for various values of rI/rM

and cI/cM, subject to the vertically incident SH-wave
(g ¼ 01) whose amplitude is one. The point x/a ¼ 1
corresponds to the edge of the alluvial valley, and the
position of x/a ¼ 0, shows the center of alluvial valley.
Since all displacement amplitudes are symmetric about the
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d) Z ¼ 1; (e)–(h) Z ¼ 2. (a) g ¼ 01, (b) g ¼ 301, (c) g ¼ 601, (d) g ¼ 901,
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center, for the vertically incident SH-wave, only the
positive x/a-axis is illustrated. In Figs. 8 and 10, they
show the effect of cI/cM on the surface amplitudes. The
soft-basin effect of high amplitude is observed in this study.
Fig. 10(b) is an example of harder material in the alluvial
valley and softer matrix. It is found that the surface
amplitude is two as expected when Z is small. For the far
field response, the surface amplitude is found to be two
since the perturbation due to the alluvial/inclusion is small.
All of the figures have good agreement after comparing
with Trifunac’s [1] results. Amplitudes of the points near
the corner for the interface boundary are shown as Fig. 9
and no boundary-layer effect of the present method is
found Fig. 10.

Case 2: Half-plane problem with two alluvial valleys

subject to the SH-wave.
Two semi-circular alluvial valleys subject to the incident

SH-wave of g angle are shown in Fig. 11. Fig. 12 shows the
surface displacements versus x/a for various incident angles
with mI=mM ¼ 1

6 and rI=rM ¼ 2
3 subject to two cases of Z (1.0

and 2.0). By setting mI=mM ¼ 10�8, the limiting case of
successive canyons is obtained as shown in Fig. 13. Tsaur
et al. [25] and Fang [27] have both calculated the problem
of two semi-cylindrical alluvial valleys for the incident SH-
wave. Tsaur et al. [25] pointed out that the deviation by
Fang [27] is that Fang improperly used the orthogonal
property. Good agreement is made after comparing with
the results of Tsaur et al. [25]. In the literature, we can find
the case of successive alluvial valleys to compare with our
data, but we have high confidence of our results according
to previous experiences. For the incident angle of zero-
degree, the surface displacement amplitude is symmetric.
By increasing the incident angle, the displacement ampli-
tude is gradually smaller in the back side of the alluvial
valley or canyon due to the shield effect of two alluvial
valleys or canyons. As the incident angle approaches 901,
the surface displacement amplitudes are all smaller than the
‘‘free field’’ in the back of the second alluvial. It indicates
that two alluvial valleys can be the wave trap for the
incident wave.

10. Conclusions

The first attempt to employ degenerate kernel in BIEM
for problems with circular boundaries subject to the SH-
wave was achieved. Not only canyon but also alluvial
valley problems were treated. We have proposed a BIEM
formulation by using degenerate kernels, null-field integral
equation and Fourier series in companion with adaptive
observer systems and vector decomposition. This method is
a semi-analytical approach for problems with circular
boundaries since only truncation error in the Fourier series
is involved. Two limiting cases of inclusions, canyon and
rigid footing, was also addressed. Good agreements are
obtained after comparing with previous results. The
surface motion of half-plane problem with alluvial valleys
was determined. Parameter study on the surface amplitudes
was also addressed. The analysis of amplification and
interference effects for valley and inclusions subject to SH-
waves may explain the ground motion either observed or
recorded during earthquake. The method shows great
generality and versatility for the problems with multiple
circular cavities and inclusions of arbitrary radii and
positions. Five advantages of singularity-free, no bound-
ary-layer effect, well-posed model, exponential conver-
gence and mesh-free approach are the main features of the
proposed approach.
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