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The dual formulation of the multiple reciprocity method (MRM) is employed
to solve the acoustic mode of a cavity with a thin partition. In order to avoid the
spurious eigenvalues and non-uniqueness of the solution in the case of zero
thickness for the partition, the hypersingular equation for MRM is considered.
To determine the invariant quantity of influence coefficients more efficiently, an
objectivity concept, i.e., a frame of indifference, is used by means of co-ordinate
transformation. A generalized eigenvalue problem is derived and transformed into
a standard eigenvalue problem through the state–space formulation. The spurious
roots in MRM are examined and filtered out by using the hypersingular
formulation. Three examples, including finite thickness of the partition, zero
thickness and no partition, are shown to check the validity of the proposed
method. Also, the analytical solution if available, the FEM results obtained by
Petyt and by ABAQUS and experimental measurements are compared with those
of the proposed method, and it is found that the agreement between them is very
good.
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1. INTRODUCTION

Acoustic modes of cavities with complex geometry, degenerate boundaries and
boundary conditions in general, can only be achieved by using numerical methods,
since an exact solution is not usually available. Although Harris and Feshbach [1]
applied the perturbation method to deal with such a problem, the domain and
boundary in their paper were very simple. Besides the traditional methods, the
finite difference method, finite element method and boundary element method
(BEM) have also been widely used to solve these problems. For example, Petyt
et al. [2, 3] applied the finite element method to solve the problem. Also, the
commercial code, ABAQUS (FEM formulation) and SYSNOISE (BEM
formulation), has a module for solving the acoustic problem. The conventional
BEM, in which the fundamental solution of Helmholtz equation is applied, can
construct the boundary integral equations. Such a fundamental solution is
frequency dependent and is expressed in terms of a complex form of the Hankel
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function. Thus, serious difficulty may be encountered in the numerical calculation.
For instance, in the evaluation of eigenvalues, the eigenequation is transcendental.
Therefore, an alternative way to apply the multiple reciprocity method (MRM)
[4] has been used to avoid using the complex fundamental solution. However, to
the authors’ knowledge, the main applications of MRM are in problems without
degenerate boundaries. For problems with a degenerate boundary, e.g., a partition
in a cavity, a thin partition will make the solution ill-posed without considering
the hypersingular equation in the MRM formulation. Recently, Chen and his
coworkers have applied the dual integral formulation to solve degenerate
boundary problems, e.g., potential flow with a cut-off wall [5], crack in an elastic
body [6, 7] and thin airfoil problems in aerodynamics [8]. Since MRM is no more
than a part of the complex-valued formulation [9], the spurious roots are
embedded [9]. To avoid spurious roots, two alternatives can be employed; one is
the complex-valued formulation, and the other one is the dual formulation for
MRM. The former method has been adopted by many researchers [9]. For the
latter case, the MRM method combined with dual BEM for the one-dimensional
eigenproblem was successfully applied to solve the spurious roots and non-unique
mode [10, 11].

In this paper, MRM is extended to solve the acoustic problems of a cavity with
a thin partition by using dual integral formulations. In this way, the role of the
hypersingular formulation in MRM in filtering the spurious roots is examined. The
kernel functions in the hypersingular equation of the dual integral equation are
found by taking the normal derivative of the kernels in the singular equation, and
a closed-form representation for the kernels using symbolic manipulation software
is derived. To determine the invariant quantity of the influence coefficient more
efficiently, an objectivity concept, i.e., the frame of indifference, is used under a
special co-ordinate transformation. Also, a generalized eigenvalue problem is
derived and transformed into a standard eigenvalue problem by means of the
concept of the state–space formulation. Three examples, including finite thickness
of the partition, zero thickness and no partition, are shown to check the validity
of the proposed method. Finally, the solutions are compared with the exact
solution, experimental data and FEM results obtained by ABAQUS and Petyt,
to check the validity of the present formulation.

2. DUAL INTEGRAL FORMULATION OF MRM FOR A TWO-DIMENSIONAL
ACOUSTIC CAVITY WITH A THIN PARTITION

The governing equation for an acoustic cavity is the Helmholtz equation as
follows:

(92 + k2)u(x1, x2)=0, (x1, x2)$D,

where 92 is the Laplacian operator, D is the domain of the cavity and k is the wave
number, which is frequency over the speed of sound. The boundary conditions can
be either Neumann or Dirichlet type.
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Based on the multiple reciprocity method (MRM) [4], the singular equation is

pu(x)=C.P.V. gB

T(s, x)u(s) dB(s)−R.P.V. gB

U(s, x)t(s) dB(s), (1)

where C.P.V. and R.P.V. denote the Cauchy principal value and the Riemann
principal value, t(s)= 1u(s)/1ns and

U(s, x)=U0(s, x)− k2U1(s, x)+ k4U2(s, x)+ · · · , (2)

T(s, x)=T0(s, x)− k2T1(s, x)+ k4T2(s, x)+ · · · , (3)

in which

Uj(s, x)=A(j)r2j ln (r)−B(j)r2j, j=0, 1, 2, . . . , (4)

Tj(s, x)=
1Uj(s, x)

1ns
, j=0, 1, 2, . . . . (5)

A(j) and B(j) in equation (4) are shown in Table 1. Since a thin partition is
considered in this paper, equation (1) will result in the same constraint equation,
as shown in Figure 1, when the x point collocates on the two sides of the thin
partition. Therefore, the hypersingular integral equation is utilized to construct
another constraint equation as follows:

pt(x)=H.P.V. gB

M(s, x)u(s) dB(s)−C.P.V. gB

L(s, x)t(s) dB(s), (6)

where H.P.V. denotes the Hadamard principal value and

L(s, x)=L0(s, x)− k2L1(s, x)+ k4L2(s, x)+ · · · , (7)

M(s, x)=M0(s, x)− k2M1(s, x)+ k4M2(s, x)+ · · · , (8)

in which

Lj(s, x)=
1Uj(s, x)

1nx
, j=0, 1, 2, . . . , Mj(s, x)=

12Uj(s, x)
1nx 1ns

, j=0, 1, 2, . . . .

(9, 10)

In equation (10), ns and nx are the normal vectors on s and x, respectively. The
explicit forms of the kernel functions in equations (4), (5), (9) and (10) are

Uj(s, x)= r2j ln (r)A(j)− r2jB(j), (11)

Tj(s, x)=−[(2j ln (r)+1)r2j−2yini ]A(j)+ [2jr2j−2yini ]B(j), (12)

Lj(s, x)=+[(2j ln (r)+1)r2j−2yin̄i ]A(j)− [2jr2j−2yin̄i ]B(j), (13)
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n(x) =(n1,n2)

n(s) =(n1,n2)

(xr,yr)

the jth element
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the ith collocation point
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Figure 2. A convenient co-ordinate system.

Mj(s, x)=−[(4j(j−1) ln (r)+4j−2)r2j−4yiniykn̄k ]A(j)

− [(2j ln (r)+1)r2j−2nin̄i ]A(j)

+ [4j(j−1)r2j−4yiniykn̄k ]B(j)

+ [2jr2j−2nin̄i ]B(j), (14)

where r is the distance between x and s, yi = xi − si , ni and n̄i are the ith
components for the normal vectors on s and x, respectively. The dual properties
for the four kernels are shown below:

Uj(s, x)=Uj(x, s), Tj(s, x)=Lj(x, s), Mj(s, x)=Mj(x, s). (15–17)

For the special case of j=0, one has

Uj(s, x)= ln (r), Tj(s, x)=
−yini

r2 , (18, 19)

Lj(s, x)=
yin̄i

r2 , Mj(s, x)=
2yiniykn̄k

r4 −
nin̄i

r2 , (20, 21)

which are the same as the four kernels proposed by Chen and Hong [12].

Figure 3. (a) Rectangular cavity without a partition. (b) Rectangular cavity with a partition with
finite thickness. (c) Rectangular cavity with a partition of zero thickness. (92 + k2)u(x1, x2)=0,
(x1, x2$D; 1u(s)/1ns =0, s on all the boundaries B.
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Figure 4. (a) Boundary element mesh for example 1. (b) Finite element mesh for example 1.

3. DUAL BOUNDARY ELEMENT METHOD FOR AN ACOUSTIC CAVITY
WITH A THIN PARTITION

By discretizing the boundary B into boundary elements in equation (1), one has

p{u}=[T]{u}−[U]{t}, (22)

where

[T]= [T0]− k2[T1]+ k4[T2]− k6[T3]+ · · · , (23)

[U]= [U0]− k2[U1]+ k4[U2]− k6[U3]+ · · · , (24)

in which the elements of [U] and [T] can be determined by

Uj
pq =gB

Uj(sq , xp ) dB(sq ), Tj
pq =gB

Tj(sq , xp ) dB(sq ). (25, 26)

Figure 5. (a) Residual norm of [Mu]: W, true eigenvalue; ×, spurious eigenvalue; T�(l)u=0;
>M(l)u>= o. (b) Residual norm of [T�u]: W, true eigenvalue; ×, spurious eigenvalue; M(l)u=0;
>T�(l)u>= o.
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Figure 6. (a) The pressure contour of the mode shape with numerical results for example 1. (b)
The pressure contour of the mode shape with the exact solution for example 1.
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Figure 7. (a) Boundary element mesh for example 2. (b) Finite element mesh for example 2.

If one subtracts the free term in equation (26), then one has

T�j
pq =Tj

pq − pdpqdj0. (27)

Similarly, the corresponding algebraic equation for equation (6) is

p{t}=[M]{u}−[L]{t}, (28)

where

[L]= [L0]− k2[L1]+ k4[L2]− k6[L3]+ · · · , (29)

[M]= [M0]− k2[M1]+ k4[M2]− k6[M3]+ · · · , (30)

Figure 8. (a) Residual norm of [Mu]: W, true eigenvalue; ×, spurious eigenvalue; T�(l)u=0;
>M(l)u>= o. (b) Residual norm of [T�u]: W, true eigenvalue; ×, spurious eigenvalue; M(l)u=0;
>T�(l)u>= o.
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Figure 9. The pressure contour of the mode shape of the present method for example 2.

in which the elements in [L] and [M] can be determined by

Lj
pq =gB

Lj(sq , xp ) dB(sq ), (31)

Mj
pq =gB

Mj(sq , xp ) dB(sq ). (32)

Similarly, by adding the free term in equation (31), one has

L� j
pq =Lj

pq + pdpqdj0. (33)
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Figure 10. (a) Boundary element mesh for example 3. (b) Finite element mesh for example 3.

4. DETERMINATION OF THE INFLUENCE COEFFICIENTS BY
CO-ORDINATE TRANSFORMATION USING THE OBJECTIVITY POINT

OF VIEW

Since the influence coefficient is a scalar invariant under any co-ordinate
transformation, the objectivity of the invariant integral for the influence
coefficients should be obeyed. Therefore, one can define a convenient co-ordinate,
system as shown in Figure 2, with the following components for the normal vector,
n(x),

n1 =0, n2 =−1. (34)

if (x1, x2) is the interior point, one has

n̄1 = sin (f− u), n̄2 =−cos (f− u), (35)

Figure 11. (a) Residual norm of [Mu]: W, true eigenvalue; ×, spurious eigenvalue; T�(l)u=0;
>M(l)u>= o. (b) Residual norm of [T�u]: W, true eigenvalue; ×, spurious eigenvalue; M(l)u=0;
>T�(l)u>= o.
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Figure 12. The pressure contour of the mode shape of the present method for example 3.

where u and f are defined in Figure 2. After translation and rotation, the
co-ordinate of (x1, x2) changes to

6xr

yr7=$ cos (u)
−sin (u)

sin (u)
cos (u)%6x1 − s1

x2 − s27. (36)

If (x1, x2) is on the boundary, one has

n̄1 =0, n̄2 =−1. (37)
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Therefore, the following equations can be obtained after objective orientation:

yini =−y2, yin̄i =−y2, nin̄i =1, yiniyjn̄j = y2
2. (38–41)

According to equations (38–41), it is found that only the following two types of
integrals must be obtained in the case of the constant element scheme, and they
are

gB

r2j ln (r) ds (j=0, 1, 2, . . . ) and gB

r2j ds (j=0, 1, 2, . . . ).

By using symbolic manipulation software, the analytical formula for the kernel
integration was obtained in reference [11]. The influence coefficients for the
singular element can be obtained by employing L’hospital’s rule for the diagonal
terms of the U, T�, L� and M matrices. In determining the influence coefficients,
two formulations can be employed to change the position of zero in the
denominator into the numerator for the easier implementation in the numerical
computation as follows:

tan−1 (v)+ tan−1 01v1=
p

2
, if vq 0,

tan−1 (v)+ tan−1 01v1=−
p

2
, if vQ 0.

It must be noted that the transformed functions should be consistent in
substituting the boundary values; i.e., the following equation should be obeyed:

tan−1 (v)=ba =−tan−1 01v1b
b

a

, if abq 0.

However, the inequality occurs as shown below:

tan−1 (v)=ba $−tan−1 01v1b
b

a

, if abQ 0.

5. TRANSFORMATION FROM A GENERALIZED EIGENVALUE PROBLEM
TO A STANDARD EIGENVALUE PROBLEM

For simplicity, only the Neumann type boundary condition is considered as
follows:

{t}=0.
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Since convergence for the series of kernels can be obtained [4], a generalized
eigenvalue problem can be derived by considering the former n+1 terms by
assuming that the residue terms can be omitted as follows:

{[T�0]− k2[T1]+ k4[T2]− k6[T3]+ · · ·+ (−1)nk2n[Tn]}{u}=0. (42)

By defining l= k2, one has

{[T�0]− l[T1]+ l2[T2]− l3[T3]+ · · ·+ (−1)nln[Tn]}{u}=0. (43)

By introducing the state variable vector as

u1 u

u2 lu

u3 = l2u , (44)g
G

G

G

G

F

f

h
G

G

G

G

J

j

g
G

G

G

G

F

f

h
G

G

G

G

J

j
···

···
un ln−1u

the generalized eigenvalue problem in equation (43) can be transformed into a
standard eigenvalue problem with a real unsymmetric matrix as follows:

0 I 0 0 0
u1

0 0 I 0 0
u2

0 0 0 I 0
u3G

G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

g
G

G

G

G

F

f

h
G

G

G

G

J

j

· · · · · · · · · · · · · · · ···· · · · · · · · · · · · · · ·
un−(Tn)−1T�0

(−1)n

(Tn)−1T1

(−1)n

−(Tn)−1T2

(−1)n · · ·
−(−1)n−1(Tn)−1Tn−1

(−1)n

I 0 0 0 0
u1

0 I 0 0 0
u2

0 0 I 0 0
u3G

G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

L

l

g
G

G

G

G

F

f

h
G

G

G

G

J

j

= l
· · · · · · · · · · · · · · · ···

, (45)

· · · · · · · · · · · · · · ·
un

0 0 0 0 I

where I is a unit matrix. If the collocation points, xp+ and xp−, are located on the
two sides of the degenerate boundary with the same geometry co-ordinates, the
following two constraints are the same:

[[T�0
p+q]− l[T1

p+q]+ l2[T2
p+q]+ · · · ]{uq}=0, (46)

[[T�0
p−q]− l[T1

p−q]+ l2[T2
p−q]+ · · · ]{uq}=0, (47)
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where [Tj
p+q] and [Tj

p−q] are the pth row vectors in [Tj] for the two points on both
sides of partition, respectively. Figure 1 indicates the result. Similarly, the two
constraints from the LM equation are linearly dependent by a negative sign as
follows:

[[M0
p+q]− l[M1

p+q]+ l2[M2
p+q]+ · · · ]{uq}=0, (48)

[[M0
p−q]− l[M1

p−q]+ l2[M2
p−q]+ · · · ]{uq}=0, (49)

where [Mj
p+q] and [Mj

p−q] are the pth row vectors in [Mj] for the two points on both
sides of partition, respectively. Figure 1 indicates the result. To provide the
sufficient constraint, two equations, one from equation (46) or equation (47) and
another from equation (48) or equation (49), are both required.

6. DETECTION OF SPURIOUS ROOTS USING DUAL FORMULATION
FOR MRM

According to equations (22) and (28), one can obtain the eigenvalues
independently for the problem without degenerate boundaries. However, spurious
roots are imbedded in equation (22) or equation (28). As mentioned by Kamiya
et al. [9], the equation derived using MRM is no more than a real part of the
complex-valued formulation. The loss of the imaginary part in MRM results in
the spurious roots. Yeih et al. [13] and Chen [14] extended the general proof for
any dimensional problems and demonstrated it using a one-dimensional case. The
imaginary part in the complex-valued formulation is not present in MRM, and
the number of constraints for the eigenequation is insufficient. These findings can
explain the reason why the spurious roots occur using the MRM method when
either equation (22) or equation (28) only is employed: i.e., the mechanism of the
spurious roots can be understood in this way.

Since only the real part is concerned in MRM, another approach to obtaining
enough constraints for the eigenequation instead of the imaginary part of the
complex-valued formulation is obtained by differentiation with respect to the
conventional MRM. This method results in the hypersingular formulation for
MRM. For simplicity, we deal with the Neumann problem. Therefore, equations
(22) and (28) reduce to

[T�(l)]{u}=0, [M(l)]{u}=0. (50, 51)

An approach to detecting the spurious roots is the criterion of satisfying both
equations (50) and (51). The spurious roots from equation (50) will not satisfy
equation (51). Also, the spurious roots from equation (51) will not satisfy equation
(50) in controversa. Therefore, a residual norm can be defined as follows:

oT =[T�(lM )]{uM}, (52)

where {uM} satisfies [M(lM )]{uM}=0

oM =[M(lT )]{uT}, (53)
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where {uT} satisfies [T�(lT )]{uT}=0, and oT and oM are the residue norms induced
by equations (52) and (53), respectively, and lM and lT are the eigenvalues obtained
by equations (50) and (51), respectively. By setting an appropriate value of the
threshold, one can determine whether the root is true or spurious. To double
check, the acoustic modes are examined by means of the distribution of nodal lines
and orthogonal properties.

7. NUMERICAL EXAMPLES

7.1.  1.    

In this case, an analytical solution is available as follows:

Eigenvalues: kmn = pX0m
Lx1

2

+0 n
Ly1

2

, (m, n=0, 1, 2, . . . ),

Eigenmode: umn (x, y)= cos 0mpx
Lx 1 cos 0npy

Ly 1,
where Lx and Ly denote the length and width of the cavity, respectively. Also, the
FEM solution obtained by Petyt can be obtained using the ABAQUS program.
To test the present program, DUALMRM, the results were compared with the
above solutions, and experimental data [2], as shown in Table 2. Since no
degenerate boundary is present, either the UT or LM method can be used to solve
the problems. The present results (UT and LM methods) were compared with the
exact solutions, two ABAQUS results and complex-valued dual BEM in references
[14–16]. Good agreement was achieved. Figures 4(a) and (b) show the boundary
element and finite element meshes, respectively. The residual norms, oT in equation
(52) and oM in equation (53), of the spurious roots using the UT and LM methods
are shown in Figures 5(a) and (b), respectively. It is found that the residual of the
true eigenvalue is smaller than that of the spurious roots, as expected. An
appropriate threshold can be chosen to distinguish which eigenvalue is true. The
former five modes are shown in Figure 6(a). Two BEM results (UT and LM
methods) can be found to have higher accuracy than the ABAQUS solution after
comparison with the exact solution.

7.2.  2.        

In this case, a partition with a finite thickness of 10 mm is considered. UT
combined with the LM method can make the BE model more well-conditioned.
Figures 7(a) and (b) show the boundary element mesh and finite element mesh,
respectively. The residual norms of the spurious roots obtained using the UT and
LM methods are shown in Figures 8(a) and (b), respectively. Since there exists a
dependent relationship between UT and LM for the thin partition, an appropriate
threshold can not be determined. Therefore, the mode should be plotted and
detected to determine whether or not it is a true mode. The former five modes is
shown in Figure 9. The acoustic frequencies are shown in Table 3.
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Since two alternatives, the UT or LM equations, can be chosen when collocating
on the outer (normal) boundary, two results, obtained using the UT and LM
methods, can be obtained. FEM results obtained by Petyt and ABAQUS,
complex-valued dual BEM results and experimental data measured by Petyt et al.
have also been compared with the present solutions, and agreement between them
has been found.

7.3.  3.        

(    )

When the thickness of the partition became zero, the dual formulation for
MRM was employed to solve the problem. Figures 10(a) and (b) shows the
boundary element mesh and finite element mesh, respectively. The residual norms
of the spurious roots using the UT and LM methods are shown in Figures 11(a)
and (b), respectively. Since there exists a dependent relationship between UT and
LM for the zero thickness partition, an appropriate threshold could not be
determined. Therefore, the mode was plotted and detected to determine whether
or not it was a true mode. The former four modes are shown in Figure 12. The
acoustic frequencies are shown in Table 4. Since two alternatives, the UT or LM
equation, could be chosen when collocating on the outer (normal) boundary, two
results from the UT and LM methods, could be obtained. FEM results obtained
by Petyt and ABAQUS, complex-valued dual BEM results and experimental data
measured by Petyt et al. were also compared with the present solutions, and
agreement was found between the numerical results and experimental data.

8. CONCLUSIONS

The dual formulation for MRM has been applied to solve the acoustic modes
of a cavity with a thin partition. The frequency dependent eigenmatrix obtained
using BEM and the non-uniqueness of the solution due to the zero thickness
partition could be avoided simultaneously. A general purpose program,
DUALMRM, has been developed to determine the acoustic frequencies and
modes of an arbitrary cavity with or without a partition. Numerical results show
that the present method can predict the acoustic eigenfrequencies more efficiently
than FEM. Also, the numerical results match the experimental data well.
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