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The dual multiple reciprocity method (MRM) has been employed by the
authors’ group [3] to solve the acoustic modes of a cavity with or without a thin
partition. In this paper, we propose the singular-value decomposition technique to
filter our spurious eigenvalues and to determine the multiplicity of true eigenvalues
by combining the dual equations in MRM. Also, the role of the dual MRM for
problems with a degenerate boundary is examined. Four examples, including
a square cavity with multiple eigenvalues, a rectangular cavity, a rectangular cavity
with a zero thickness partition and a rectangular cavity with a partition with finite
thickness, are presented to demonstrate the validity of the proposed method. Also,
the analytical solution if available, the finite element method results obtained by
Petyt et al. and by ABAQUS and experimental measurements are compared with
those of the proposed method, and it is found that the agreement between them is
very good. © 2000 Academic Press

1. INTRODUCTION

The multiple reciprocity method (MRM) has been widely used to transform the
domain integrals into boundary integrals for Helmholtz and the Poisson equations
[1]. For the Helmholtz equation, one advantage of using the MRM is that only real
variable computation is considered instead of the complex variable computation as
used in the complex-valued boundary element method. However, two drawbacks of
MRM have been found to be the occurrence of spurious eigenvalues [2] and the
failure when it is applied to problems with a degenerate boundary [3]. To deal with
these two problems, the framework of dual MRM was constructed to filter out
spurious eigenvalues and to avoid the non-uniqueness solution for problems with
a degenerate boundary. As for the former problem, the reason why spurious
eigenvalues occur in MRM is the loss of the imaginary part, which was investigated
in reference [4]. Also, the relation between MRM and complex-valued BEM was
discussed in a keynote lecture by Chen [5]. By employing dual MRM, spurious
eigenvalues can be filtered out by checking the residual between the singular and
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hypersingular equations in the dual MRM. A two-dimensional case was studied in
reference [3]. However, the boundary modes (including true and spurious modes)
should be determined in advance before finding the residue. To find a more efficient
method to distinguish whether an eigenvalue is true or not is not trivial, and this
was the main motivation of the present study. The SVD technique was employed to
filter our spurious modes for an Euler-Bernouli beam [6] more coefficiently than
can be done using the residue method presented in reference [3]. The examples in
reference [6] are one-dimensional problems and their multiplicities are only one.
For two-dimensional cases, degenerate eigenvalues with multiplicity two are often
encountered. After finding the true eigenvalue, how to determine its multiplicity is
also our concern. As for the latter problem, the dual formulation is the key to
solving problems with a degenerate boundary [3, 7-11]. A detailed review article
including the 300 references by Chen and Hong [12] can be examined. In other
words, dual MRM can solve the problems of spurious eigenvalues and a degenerate
boundary at the same time.

In this paper, we employ dual MRM to solve the acoustic problems of a cavity
with or without a thin partition. After assembling the dual equations in MRM,
a singular-value decomposition (SVD) technique presented in reference [6] is
extended to filter our spurious eigenvalues for two-dimensional cavities more
efficiently than can be done using the residue method described in reference [3].
Also, the multiplicities of the true eigenvalues are determined using the same
method. These two roles of the SVD technique in dual MRM are both examined.
Four examples, a square cavity, a rectangular cavity with a finite-thickness
partition, and a rectangular cavity with zero thickness and no partition, are
employed to check the validity of the proposed method. Finally, the solutions are
compared with the exact solutions, experimental data and FEM results obtained by
ABAQUS [13] and Petyt et al. [14, 15] to check the validity of the present
formulation.

2. DUAL INTEGRAL FORMULATION OF MRM FOR A TWO-DIMENSIONAL
ACOUSTIC CAVITY WITH OR WITHOUT A THIN PARTITION

The governing equation for an acoustic cavity is the Helmholtz equation
(V2 + k) u(xy, x2) =0, (x1, x2) € D,

where V2 is the Laplacian operator, D is the domain of the cavity and k is the wave
number, which is the frequency over the speed of sound. The boundary conditions
can be either of the Neumann or Dirichlet type.

Based on the dual multiple reciprocity method (MRM) [1, 3], the dual MRM
equations for the boundary points are

nu(x) = CPV j

B

T (s, x)u(s) dB(s) — RPV f U(s, x)t(s) dB(s), xeB, (1)

B

nt (x) = HPV j

B

M (s, x)u(s) dB(s) — CPV f L(s, x)t(s)dB(s), xe€B, (2)

B
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where CPV, RPV and HPV denote the Cauchy principal value, the Riemann
principal value and Hadamard principal value, t(s) = du(s)/ons, and B denotes the
boundary enclosing D and the four kernels are series forms which can be found in
reference [3].

3. DUAL MRM FOR AN ACOUSTIC CAVITY WITH OR WITHOUT A THIN
PARTITION

By discretizing the boundary B into boundary elements in equations (1) and (2),
we have the dual algebraic system as follows:

miuy = [T] {uj — [U] {1}, (3)
m{ty = [M] {uj — [L] {1}, )

where the [U], [T], [L] and [M] matrices are the corresponding influence
coefficient matrices resulting from the 10-terms of the U, T, L. and M series kernels,
respectively. Equation (3) and (4) can be rewritten as

[T] {u} = [U1{1}, (5)
[M] {u} = [L]{t}, (6)

where [T] =[T] — =[I] and [L] = [L] + =n[I]. The detailed scheme for dual
MRM can be found in reference [3]. The developed DUALMRM program was
utilized in this study.

4. DETECTION OF SPURIOUS EIGENVALUES AND DETERMINATION
OF THE MULTIPLICITIES OF THE TRUE EIGENVALUES USING THE
SINGULAR-VALUE DECOMPOSITION TECHNIQUE FOR DUAL MRM

According to equations (5) and (6), we can obtain the eigenvalues independently
for the problem without degenerate boundaries. However, spurious roots are
imbedded if the U T equation (5) or LM equation (6) is used alone. As mentioned by
Kamiya et al. [16], the equation derived using MRM is no more than a real part of
the complex-valued formulation. The loss of the imaginary part in MRM results in
spurious roots. Yeih et al. [4] extended the general proof for one and two
dimensional problems and demonstrated it by using a one-dimensional case. The
imaginary part in the complex-valued formulation is not present in MRM, and the
number of constraints for the eigenequation is insufficient. These findings can
explain why spurious roots occur using MRM when either equation (5) or (6) only
is employed, i.e., the mechanism of the spurious roots can be understood in this
way. The technique used to filter out spurious eigenvalues in reference [3] is
summarized as follows.

Since only the real part is of concern in MRM, another approach to obtaining
enough constraints for the eigenequation instead of the imaginary part of the
complex-valued formulation is obtained by differentiation with respect to the
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conventional MRM. This method results in the hypersingular formulation for
MRM. For simplicity, we will deal with the Neumann problem. Therefore,
equations (5) and (6) reduce to

[T1(k)] {u} = {0}, (7)
[M (k)] {u} = {0}. (&)

In reference [3], an approach to detecting spurious roots is to the use criterion of
the residue to satisfy equation (5) (or equation (6)) when substituting the boundary
modes obtained from equation (6) (or equation (5)) for the characteristic wave
number, k. The spurious modes obtained from equation (5) will not satisfy equation
(6). Neither will the spurious modes obtained from equation (6) will satisfy equation
(5) in controversa. Therefore, two residual norms can be defined as follows:

er = [T (km)] {un}, )
where {uy} is the boundary mode which satisfies [M (ky)] {uy} = {0};
em = [M (kp)] {ur}, (10)

where {ur} is the boundary mode which satisfies [T (kr)] {ur} = 0; er and & are
the residue norms induced by equations (9) and (10) respectively; and k,; and k are
the possible (true or spurious) eigenvalues obtained by equations (7) and (8),
respectively. By setting an appropriate value of the threshold, we can determine
whether the root is true or spurious. To double check, the acoustic modes can be
examined by means of the distribution of nodal lines and orthogonal properties
after the possible true eigenvalues are determined [3].

It is noted that the above technique needs to find the spurious boundary modes
first from one equation (either the UT or LM equation) in the stage in which we
directly search for the eigevalue, and then substitute it into another eigenequation
(either the LM or UT equation) to check the residuals. Now, we will present a more
efficient way to filter out spurious eigenvalues which can avoid determining the
spurious boundary mode in advance.

The eigenequation obtained from the UT and LM equations in equations (7) and
(8) can be rewritten as

[T ()]vxn {Ufns1 = {0}, (11)
[M (K)]nn {ujnw1 = {0} (12)

For problems with a degenerate boundary, we do the following. We first denote the
normal boundary by S and the degenerate boundaries by C* and C~, where C™
and C~ are the two surfaces on the degenerate boundary, and they coincide with
each other, mathematically. This means that B=S + C* + C~. The UT method,
combined with the additional constraint LM equations by collocating the points
on the degenerate boundary, has the eigenequation

T'ij;
Tic+js Tic+jg+ Tic+jc— Ujo+ )= {0}, (13)
Mic+js ‘]\/[i(“*'jc+ Mic+jc_ ujc_

Tigje+ Tigje- uj
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where the dependent rows in the [ T] matrix are replaced with rows obtained from
the [M] matrix, is and ic, denote the collocation points on the S and C*
boundaries, respectively, and js and jc; denote the element ID on the S and C*
boundaries, respectively.

In a similar way, the LM method, combined with the additional constraint UT
equations by collocating the degenerate boundary point, has the eigenequation

Misjs Misjc+ Misjc— ujs
Tic+ Js Tic+jr+ Tichjc* Uje+ 1= {0}’ (14)
Mic‘*'js Ml'c+jc+ Mic+jc— Uj. -

where the dependent rows in the [ M ] matrix are replaced with rows obtained from
the [ T] matrix. To solve for the eigenequation, a direct search method has been
employed to find the eigensolutions according to equations (13) and (14) [3]. It is
found that equation (13) or equation (14) can independently determine the possible
eigenvalues (true and spurious) by using the direct-search method.

To distinguish spurious eigenvalues using the SVD technique, we can merge the
two matrices in equations (11) and (12) together to obtain

[C(K)]anun {ufnx1 = {0}, (15)
where the [C (k)] matrix is derived from the [T] and [M] matrices as
| Tk
[C(K)]anwn = [M(k)} (16)

Even though the [C] matrix has dependent rows resulting from the degenerate
boundary, the SVD technique can still be employed to find all the true eigenvalues
since enough constraints are imbedded in the overdeterminate matrix, [C]. As for
the true eigenvalues, the rank of the [ C] matrix with dimension 2N x N must at the
most be N — 1 to obtain a non-trivial solution. As for the spurious eigenvalues, the
rank must be N to obtain a trivial solution. Based on this criterion, the SVD
technique can be employed to detect the true eigenvalues by checking whether or
not the first minimum singular values, ¢, are zeros. Since discretization creates
errors, very small values for a4, but not zeros, will be obtained when k is near the
critical wave number. In order to avoid determining the threshold for the zero
numerically, a value of ¢, closer to zero must be obtained using a smaller increment
near the critical wave number, k. Such a value is confirmed to be a true eigenvalue.

Since equation (15) is overdeterminate, we will consider a linear algebra problem
with more equations than unknowns:

[A]mxn {X}nxl = {b}mxl 5 m > n, (17)

where m is the number of equations, n is the number of unknowns and [A] is the
leading matrix, which can be decomposed into

[A]mxn = [U]mxm [Z]mxn [V];lkxna (18)

where [U] is the left unitary matrix constructed by the left singular vectors, [X] is
a diagonal matrix which has singular values ¢, 0,, ..., and ¢, allocated in
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a diagonal line as

o 0 -
[£1=]|0 - o |m>n, (19)
L0 - 0 |

in which ¢, > 6,_; --- = o and [V]* is the complex conjugate transpose of a right
unitary matrix constructed by the right singular vectors. As we can see in equation
(19), there exist at the most n non-zero singular values. This means that we can find
at the most n linear independent equations in the system of equations. If we have
p zero singular values (0 < p < n), this means that the rank of the system of
equations is equal to n — p. However, the singular value may be very close to zero
numerically, resulting in rank deficiency. For a general eigenproblem as shown in
this paper, the [ C] matrix with dimension 2N x N will have a rank of N — 1 for the
true eigenvalue with multiplicity 1 and ¢; = 0. For true eigenvalues with multipli-
city M, the tank of [ C] will be reduced to N — M in where 64, 65, ..., G are zeros
theoretically. In the case of spurious eigenvalues, the rank for the [C] matrix is N,
and the minimum singular value is not zero.

Determining the eigenvalues of the system of equations has now been
transformed into finding the values of k which make the rank of the leading
coefficient matrix smaller than N. This means that when m = 2N, n= N and
b,n.1 =0, the eigenvalues will make p = M, such that the minimum singular
values must be zero or very close to zero.

To find the boundary eigenvector associated with the eigevalue of multiplicity 1,
we can set one of the elements in the boundary eigenvector to be one and then
reduce the equations into the form of equation (17), where b is now a non-trivial
vector, m=2Nand n=N — 1.

Then, the pseudo-inverse matrix, [A]" of [A], is expressed as [18]

[A]:xm = [V]nxn [2]:><m [U];')xr(lxma (20)

where X" is constructed by taking the transpose of ¥ and then replacing the
diagonal singular value terms with its inverse, expressed as

L .0 0
Th= e et m>n 1)
0o - L ... 0

g1

Since we set a normal quantity in {x} of equation (17), all the singular values are not
ZerOS.

The above-mentioned SVD method has been proved to be equivalent at the
least-squares errors solution in determining the unknown vector when the number
of equations is larger than the number of unknowns [17]. After introducing the
SVD method, we do not need to worry about how to select a specific group of
equations such that the rank of the leading coefficient is sufficiently high to solve for
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the boundary eigenvector. On the other hand, we can take all the 2N equations into
account, which apparently causes the rank of the leading coefficient matrix to be
equal to N — 1 for the true eigenvalue with multiplicity 1. Thus, the boundary
eigenvector can be easily found in the sense of the least-squares errors. Another
advantage for using SVD is that it can determine the multiplicities for the true
eigenvalues by finding the number of near zeros in the singular values. One square
cavity example with eigenvalues of multiplicity 2 will be considered to demonstrate
the SVD technique.

To check the validity of the proposed method, four examples will be examined in
the following section.

5. NUMERICAL EXAMPLES

Example 1. Rectangular cavity without partitions subject to the Neumann
boundary condition
In this case, an analytical solution is available as follows:

eigenvalues: k,,, = 7 \/(m/Lx)z + (n/L,)* myn=0,1,2,...),

eigenmode: Uy, (x, y) = cos (mnx/L,) cos (nmy/L,),

where L, and L, denote the length and width of the cavity respectively. In this case,
L,=0236mand L, = 0-112 m for comparison with experiment data in references
[14, 15]. Twenty four elements are considered in the boundary element mesh. The
true eigenvalues contaminated by spurious eigenvalues can be found as shown in
Figure 1(a) by considering the near zero minimum singular values if only the UT
equation is chosen. In a similar way, the true eigenvalues contaminated by spurious
eigenvalues can be found as shown in Figure 1(b) by considering the near-zero
minimum singular values if only LM equation is chosen. It is interesting to find that
no spurious eigenvalues occur in Figure 1(c) because the UT and LM equations are
combined. This shows that the SVD technique used to filter out spurious
eigenvalues has been applied successfully. After obtaining the true eigenvalues, their
multiplicities can be determined as given in Figure 1(d) from the locations where the
second minimum singular values approach zero. It is found that no double roots
are available in this case. Since no degenerate boundary is present, either the UT or
LM method can be used to solve the problems. In Table 1, two BEM results (using
the UT and LM methods) can be found to have higher accuracy than the ABAQUS
solution [13] after comparison with the exact solution. Also, the FEM solution
obtained by Petyt et al. [14, 15] can be obtained using the ABAQUS program. To
test the present program, DUALMRM, the results are compared with the exact
solutions, two ABAQUS results [13], experimental data [14, 15] and
complex-valued dual BEM in [8-11] as shown in Table 1. A good agreement has
been found.

Example 2. Rectangular cavity with a partition of finite thickness subject to the
Neumann boundary condition.

In this case, a partition with a finite thickness of 0-01 m and a height of 0-056 m as in
Example 1 is considered. UT combined with the LM method can make the BE
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Figure 1. (a) The minimum singular values ¢ versus k using the UT equation only for example 1.
(b) The minimum singular values o, versus k using the LM equation only for example 1. (c) The
minimum singular values ¢ versus k results using the UT and LM equations for example 1. (d) The
second minimum singular values ¢, versus k using the UT and LM equations for example 1.
T: True eigenvalue; S: spurious eigenvalue; T, : true eigenvalue with multiplicity n; ( ): experimental
data.

model more well-conditioned. Twenty-five elements for the normal boundary and
13 elements on the partition are adopted in the boundary element mesh. The true
eigenvalues contaminated by spurious eigenvalues can be obtained as shown in
Figure 2(a) by considering the near-zero minimum singular values if only the UT
equation is chosen. In a similar way, the true eigevalues contaminated by spurious
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TABLE 1

The former five critical wave numbers for a rectangular cavity (no partition) using
different methods

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Multiplicity 1 1 1 1 1

Analytical 13:3 26:6 281 311 387
solution

Complex from 133 267 280 311 387
(UT)

Complex from 133 269 280 314 387
(LM)

MRM* 133 22:5% 267 281 31.2  31:3* 369* 371
(UT)

MRM' 85% 133  17:2*% 20-7* 21-8* 22:0%* 267 279 31-8  324* 356% 367
(LM)

Dual MRM* 13-3 267 279 317 356
(SVD)

FEM by 134 262 277 30-1 362
ABAQUS
(AC2D4)

FEM by 13:5 269 284 31-4 39-1
ABAQUS
(AC2Dg8)

Mesurement 13-3 28:0 31-0 33-8 41-8

*Data from Figure 1(a).
TData from Figure 1 (b).
*Data from Figure 1(c), and “*” denotes a spurious root.

eigenvalues can be obtained as shown in Figure 2(b) by considering the near-zero
minimum singular values if only the LM equation is chosen. No spurious
eigenvalues occur in Figure 2(c) because the UT and LM equations are combined.
This shows that the SVD technique used to filter out spurious eigenvalues has been
applied successfully. After obtaining the true eigenvalues, their multiplicities can be
found from the locations where the second minimum singular-values approach zero
as shown in Figure 2(d). It is found that no double roots are available in this case.
The critical acoustic wave numbers are shown in Table 2. FEM results obtained by
Petyt et al. [14, 15] and ABAQUS [13], complex-valued dual BEM results and
experimental data obtained by Petyt et al. are also compared with the present
solutions, and the agreement between them is found.

Example 3. Rectangular cavity with a partition to zero thickness (UT combined
with the LM technique)

When the thickness of the partition in Example 2 became zero, the dual
formulation for MRM was employed to solve the problem. Twenty-five elements
for the normal boundary and 12 elements on the partition are adopted in the
boundary element mesh. Since two alternatives, the UT or LM equation, can be
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Figure 2. (a) The minimum singular values ¢ versus k using the UT equation only for example 2.
(b) The minimum singular values o, versus k using the LM equation only for example 2. (c) The
minimum singular values ¢ versus k results using the UT and LM equations for example 2. (d) The
second minimum singular values ¢, versus k using the UT and LM equations for example 2.
T: True eigenvalue; S: spurious eigenvalue; T, : true eigenvalue with multiplicity n; ( ): experimental
data.

chosen when collocating on the outer normal boundary, two results from the UT
and LM methods can be obtained. Figure 3(a) shows the minimum singular value
versus k. The true eigenvalues contaminated by spurious eigenvalues can be
obtained as shown in Figure 3(a) by considering the near-zero minimum singular
values if only the UT equation combined with the LM equation by collocating the
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TABLE 2

The former five critical wave numbers for a rectangular cavity with a finite thickness
partition using different methods

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Multiplicity 1 1 1 1 1

Complex form 109 267 280 28-6 340
(UT)

Complex form 109 267 280 284 34-0
(LM)

MRM* 104 22:6% 271 282 286 313
(UT)

MRM' 84* 104 167* 209* 21:9*%  272% 281 285 32:6% 328
(LM)

Dual MRM# 104 271 281 285 32-8
(SVD)

FEM by 109 267 27-8 282 330
ABAQUS
(AC2D4)

FEM by 107 27-4 28-5 289 343
ABAQUS
(AC2D8)

FEM by 107 26-8 286 29-8 344

Petyt

Mesurement 10-5 272 284 287 34-0

*Data from Figure 2(a).
fData from Figure 2(b).
*Data from Figure 2(c), and “*” denotes a spurious root.

point on the partition is chosen. In a similar way, the true eigenvalues
contaminated by spurious eigenvalues can be obtained as shown in Figure 3(b) by
considering the near-zero minimum singular values if only the LM equation
combined with the UT equation by collocating the point on the partition is chosen.
No spurious eigenvalues occur in Figure 3(c) because the UT and LM equations
are combined. This shows that the SVD technique used to filter out spurious
eigenvalues has been applied successfully. After obtaining the true eigenvalues, their
multiplicities can be determined as shown in Figure 3(d) from the locations where
the second minimum singular-values approach zero. It is found that no double
roots are available in this case. The critical acoustic wave numbers are shown in
Table 3. FEM results obtained by Petyt et al. [14, 15] and ABAQUS [13],
complex-valued dual BEM [8-10] results and experimental data obtained by Petyt
et al. [14, 15] have also been compared with the present solutions, and the
agreement has been found between the numerical results and experimental data.

The following example with degenerate eigenvalues will be considered. The
multiplicity is two for the degenerate eigenvalues. In the direct search method using
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The first minimum singular value for different
wave numbers using the [7+M] of dual MRM
for the Neumann problem (¢=0).

The second minimum singular value for different
wave numbers using the [T+M] of dual MRM for
the Neumann problem (z=0).

Figure 3. (a) The minimum singular values ¢ versus k using the UT equation only for example 3.
(b) The minimum singular values o, versus k using the LM equation only for example 3. (c) The
minimum singular values ¢ versus k results using the UT and LM equations for example 3. (d) The
second minimum singular values ¢, versus k using the UT and LM equations for example 3.
T: True eigenvalue; S: spurious eigenvalue; T, : true eigenvalue with multiplicity n; ( ): experimental
data.

the half-method or false position method, the degenerate eigenvalues may be lost
since no zero crossing can be found numerically. Therefore, use of the SVD
technique is strongly suggested to filter out the spurious eigenvalues and to
determine the multiplicity for the true eigenvalues.

Example 4. A square cavity of area 1 m? with multiple roots subject to the
Neumann boundary conditions
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TABLE 3

The former five critical wave numbers for a rectangular cavity with a zero thickness
partition using different methods

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Multiplicity 1 1 1 1 1

Complex form 10-8 266 281 28-4 33-6
(UT + LM)

Complex form 10-8 266 281 28-4 33-6
(LM + UT)

MRM™ 10-8 22:5% 267 281 284  31:3* NA
(UT)

MRM' 8.6% 107 17-3* 20-6* 21-6* 21:9* 268 279 283 32:5% 326
(LM)

Dual MRM* 10-7 26-8 279 283 32:6
(SVD)

FEM by 114 263 277 282 329
ABAQUS

(AC2D4)

FEM by 112 269 284 28.9 342
ABAQUS
(AC2Dg8)

FEM by Petyt 10-9 27-3 285 29-0 344

Mesurement 10-5 27-2 284 287 34-0

*Data from Figure 3(a).

fData from Figure 3(b).

*Data from Figure 3(c), and “*” denotes a spurious root.

NA: not available since only ten series terms in the MRM are chosen.

In this case, an analytical solution is available as follows:

eigenvalues: k,,, = 7 \/(m/L)z +m/L)?* (mn=0,1,2,...),

eigenmode: u,,, (x, y) = cos (mnx/L) cos (nmy/L).

Twenty-eight elements are adopted in the boundary element mesh. Since two
alternatives, the UT or LM equation, can be chosen when collocating on the
boundary, two results from the UT and LM methods can be obtained. Figure 4(a)
shows the minimum singular value versus k. The true eigenvalues contaminated by
spurious eigenvalues can be obtained as shown in Figure 4(a) by considering the
near-zero minimum singular values if only the UT equation is chosen. In a similar
way, the true eigenvalues contaminated by spurious eigenvalues can be obtained as
shown in Figure 4(b) by considering the near-zero minimum singular values if only
the LM equation is chosen. No spurious eigenvalues occurs as shown in Figure 4(c)
when the UT and LM equations are combined. After obtaining the true
eigenvalues, their multiplicities can be determined as shown in Figure 4(d) from the
locations where the second minimum singular values approach zero. It is found
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Figure 4. (a) The minimum singular values ¢ versus k using the UT equation only for example 5.
(b) The minimum singular values o, versus k using the LM equation only for example 5. (c) The
minimum singular values ¢ versus k results using the UT and LM equations for example 5. (d) The
second minimum singular values ¢, versus k using the UT and LM equations for example 5.
T: True eigenvalue; S: spurious eigenvalue; T, : true eigenvalue with multiplicity n; ( ): experimental
data.

that double roots are obtained in this case. Since no triple roots are present, the plot
of a3 versus k is not provided. The critical acoustic wave numbers are shown in
Table 4. A good agreement among the different methods, complex-valued BEM
[8-10], analytical solution, FEM by ABAQUS and the present method, can be
obtained.



TABLE 4

The former five critical wave numbers for a square cavity (Neumann type) using different methods

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Multiplicity 2 1 2 2 1
Analytical 314 4-44 628 7-02 8-87
solution
Complex form 314 4-44 6-32 7-02 8-89
(UT)
Complex form 314 4-44 632 7-02 8-89
(LM)
FEM by ABAQUS 318 4-49 6-36 7-10 899
MRM* 2-18* 315 4-45 5:28%  630*  6:38%  676% 693*  7-12*%  §17*  8-68%*
(UT)
MRM' 314 4-44 5-83*  610* 614% 6-34 6-45% 670 878
(LM)
Dual MRM# 314 4-44 633 NA 877
(SVD)

*Data from Figure 4(a).

"Data from Figure 4(b).

iData from Figure 4(c), and denotes a spurious root.

NA: not available since only ten series terms in the MRM are chosen.
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6. CONCLUSIONS

The dual MRM in conjunction with the SVD technique has been applied to
determine the critical wave numbers of a cavity with or without a thin partition.
The frequency-dependent eigenmatrix obtained using BEM, the non-uniqueness of
the solution due to the zero thickness partition, and spurious eigenvalues which is
encountered when using the conventional MRM can be treated at the same time.
Also, the multiplicity for the true eigenvalues can be determined. A general purpose
program, DUALMRM, has been developed to determine the acoustic
eigenfrequencies and eigenmodes of an arbitrary cavity with or without a partition.
The spurious eigenvalues in dual MRM have been successfully filtered out and the
multiplicity for the true eigenvalues for the square cavities has been determined by
using the SVD technique. Numerical results show that the present method can
predict the acoustic eigenfrequencies more efficiently than can FEM. Also, the
numerical results match the experimental data well.
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