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Abstract

In this paper, a semi-analytical approach is proposed to solve natural frequencies and natural modes for circular plates
with multiple circular holes by using the indirect formulation in conjunction with degenerate kernels and Fourier series. All
the kernels in the indirect formulation are expanded into degenerate form. By uniformly collocating points on the
boundary, a linear algebraic system can be constructed. The direct searching approach is adopted to determine the natural
frequency through singular value decomposition (SVD). After determining the unknown Fourier coefficients, the
corresponding mode shape is obtained by using the indirect boundary integral formulations. The results of the annular
plate, as a special case, are compared with the analytical solution to verify the validity of the present method. For the cases
of circular plates with multiple circular holes, the results are also compared with those of finite element method (FEM)
using ABAQUS. Besides, the effect of eccentricity of the hole on the natural frequencies is also considered. Good accuracy,
high rate of convergence and computational efficiency are the main features of the present method due to the semi-
analytical procedure.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Circular plates with multiple circular holes are widely used in engineering structures [1], e.g. missiles,
aircraft, etc., either to reduce the weight of the whole structure or to increase the range of inspection. These
holes in the structure usually cause the change of natural frequency as well as the decrease of the
corresponding strength. The comprehension of the associated effects is helpful to the work of mechanical
design and flight control of the structure. As quoted by Leissa [2]: “‘the free vibrations of circular plates have
been of practical and academic interest for at least a century and a half”’, we revisit this problem by using a
semi-analytical approach. Although the results for circular or annular plates are available in the literature
[1-8]; however, few studies except [1] have done on the problem of plate with an eccentric hole. On the other
hand, a large amount of papers on the circular membrane vibration with an eccentric hole have been published
[9,10]. Recently some results on the problem of plate with an eccentric hole [11,12] or multiple holes [13] have
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been reported. A study of the effect of the eccentricity on the free vibration of annular-like plates was
previously conducted using the FEM [1,11]. In this case, more than 1500 elements [11] were required to achieve
accurate solutions for the lower order vibration modes. The Rayleigh—Ritz variational method was also
applied to the free vibration of circular plate with an eccentric hole [12].

In the past, some analytical solutions [3] for natural frequencies of the circular or annular plates were
solved. Frequency equations are obtained by substituting the general solution, satisfied the governing equation
of plates, into the boundary conditions. These results were confirmed experimentally but some analytic
solutions corresponding to the clamped boundary condition showed an obvious deviation from the
experimental results due to the lack of stiffness of the clamped boundary condition in reality. Since an
analytical solution of natural frequencies requires the solution of special functions (e.g. Bessel function and
modified Bessel function), Vera et al. [4-6] obtained analytical solutions by implementing the same procedure
as [3] in the Maple V system and pointed out some inaccurate results in Ref. [14]. Regarding to the circular
plate with multiple holes, the analytical solution of the natural frequencies and the corresponding mode shapes
have not so far been solved due to the fourth-order partial differential equation and complex geometry
configurations. To propose a semi-analytical approach for solving the circular plate with circular holes is not
trivial and is the main goal of this research.

On the other hand, diverse numerical methods were resorted to the solution of plate problems, which
include finite difference method (FDM), finite element method (FEM) and boundary element method (BEM).
BEM has some advantages in comparison with domain discretization methods (FEM, FDM). The main gain
is that the BEM reduces the dimension of the original problem by one, thus, the number of the introduced
unknowns is much less than that of the traditional domain type methods. In addition, the domain mesh
generation is not required, which is generally the most difficult and time consuming task. For the BEM
applications to plate problems, readers may consult with the review article [15]. It is noted that improper
integrals on the boundary should be handled particularly when the BEM is used. In the past, many researchers
proposed several regularization techniques to deal with the singularity and hypersingularity. The
determination of the Cauchy principal value (CPV) and the Hadamard principal value (HPV) in the singular
and hypersingular integrals are critical issues in BEM/BIEM [16,17]. For the plate problem, it is more difficult
to calculate the principle values since the kernels are involved with transcendental complex functions. Based
on direct boundary integral formulation, Chen et al. [13,18,19] recently proposed null-field integral equations
in conjunction with degenerate kernels and Fourier series to solve boundary value problems with circular
boundaries. Some applications were done in the static stress calculations of anti-plane and plate problems. For
the indirect BEM, Ventsel [20] has solved the static plate problems. In this paper, we utilize degenerate kernels
and Fourier series to solve the plate eigenproblem. The expressions for the degenerate kernel can be derived by
expanding the fundamental solution into a series form on each side of the boundary of the domain by
employing the addition theorem. The introduction of degenerate kernel in companion with Fourier series can
yield the exponential convergence [21,22] instead of the linear algebraic convergence in BEM. In reality,
addition theorems are expansion formulae for the special functions (e.g. Bessel function, Legendre functions,
spherical harmonics, etc.) in a selected coordinate system [23]. Therefore, degenerate kernel, namely separable
kernel and Fourier series, are vital tools to study the circular plate with circular holes.

The purpose of this paper is to propose a semi-analytical approach to solve the natural frequencies and
natural modes of circular plate with multiple circular holes by using the indirect boundary integral
formulation in conjunction with degenerate kernels and Fourier series. The indirect formulation by choosing
the single- and double-layer potential is proposed and the fictitious density distribution on the boundary is
represented by using Fourier series in the adaptive coordinate system. A linear algebraic system is constructed
by uniformly locating the collocation points on the boundary. By matching the boundary conditions, the
determinant of the matrix must be zero to obtain the non-trivial eigensolution. The direct searching approach
[24] is adopted to determine the natural frequency by using singular value decomposition (SVD). After
determining the Fourier coefficients, the corresponding mode shape of the circular plate with multiple circular
holes can be obtained by using the indirect boundary integral equations. For the plate problem, the slope
(bending angle), moment and effective shear force in the normal and tangential directions for the non-
concentric domain must be determined with care under the adaptive observer system. Therefore, the technique
of vector and tensor transformation is adopted to deal with the problem for the non-concentric plate. Finally,
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the analysis result of the annular plate, as our special case, is compared with the analytical solution [3-5,14] to
verify the validity of the present method. The results of the circular plate with eccentric circular hole and
multiple circular holes are compared with those of Khurasia [1], Cheng [11], Laura [12] and FEM using
ABAQUS to demonstrate the generality of the proposed method.

2. Problem statement and indirect boundary integral formulation
2.1. Problem statement of plate eigenproblem

The governing equation for the free flexural vibration of a uniform thin plate with randomly distributed
circular holes as shown in Fig. 1 is written as follows:

Viu(x) = u(x), xeQ, (1)

where u is the lateral displacement, 1* = w?poh/D, /. the dimensionless frequency parameter, o the circular
frequency, po the volume density, D the flexural rigidity expressed as D = Eh*/12(1—v?) in terms of the
Young’s modulus E, the Poisson ratio v and the plate thickness 4, and Q the domain of the thin plate.

2.2. Indirect boundary integral formulation

The kernel function U(s, x) is the fundamental solution which satisfies
VAU (s, x) — A U(s, x) = d(s — x), )

where V* is the biharmonic operator, d(s—x) is the Dirac-delta function, and s and x are the source and field
points, respectively. Considering the two singular solutions (Yy(4r) and Ky(Ar), which are the zeroth order of
the second-kind Bessel and modified Bessel functions, respectively) [25] and two regular solutions (Jo(Ar) and
Iy(Ar), which are the zeroth order of the first-kind Bessel and modified Bessel functions, respectively) in the
fundamental solution, we have

U(s,x) = é [Yo()vr) +1Jo(4r) + %(Ko(ﬂ,r) +ily(Ar)) |, 3)

where i = —1 and r=|s—x| denotes the distance between the field point x(p, ¢) and source point s(R,0) in the
polar coordinate. Based on the indirect boundary integral formulation, the displacement field of plate
vibration can be represented by [9]

u(x) = /B P(s, )b(s) dB(s) + /B (s, )(s) dB(s), 4@

where P(s, x) and Q(s, x) are any two of the four kernel functions (U, @, M and V), which will be elaborated
on later; ¢(s) and Y(s) are the unknown fictitious density distributions on the boundary. U(s, x) is the

Viu(x)= Yulx),

Fig. 1. Problem statement for an eigenproblem with multiple circular holes.
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fundamental solution in Eq. (3) and the other three kernels, @(s, x), M(s, x) and V(s, x), can be obtained by
applying the following operators defined by

K@:aa (5)
2
K =0+ (-1 20 ©
e, oo (a
KV—EV(')‘FU—V)&[&(&('))] (7)

to the kernel U(s, x) with respect to the source point, where 0/On and 0/0¢ are the normal and tangential
derivatives, respectively. In the polar coordinate of (R, 0), the normal and tangential derivatives can be
expressed by 0/0R and (1/R)(0/00), respectively, and then the three kernel functions can be rewritten as

05, ) = Ko(Uls, 1) = o, ®
2
M(s,x):KM(U(s,x))zszU(s,x)+(1—v)%, 9)
d INoafa /10
V(s.x) = Kp(Us, ) = = (V2U(5, ) + (1 =) (E) 4 [ﬁ (E Ua(‘; x))] . (10)

Since the kernels P(s, x) and Q(s, x) can be selected from any two of the four kernels, U(s, x), @(s, x),
M(s, x) and V(s, x), six (szt) formulations can be considered. According to the result of Ref. [26], any
combination of kernel can yield the acceptable results. However, the higher the layer potential is chosen, the
lower the convergence rate is obtained. More computation is required for using more higher-layer kernel so
that the computational efficiency is decreasing. For simplicity, the kernels U(s, x) and @(s, x) are chosen as
P(s, x) and Q(s, x) in Eq. (4). In addition to the displacement, the slope, normal moment and effective shear
force can be derived by applying the three operators in Egs. (5)—(7) to Eq. (4) with respect to the field point.
Then, the indirect boundary integral representations of the displacement, slope, moment and effect shear force
are expressed as follows:

u(x) = /B U(s, x)¢(s) dB(s) + /B O(s, )Y(s)dB(s), x€Q, (11)
0(x) = /B Us(s, x)(s) dB(s) + /B Ou(s. Y(s)dB(s), x€Q, (12)
m(x) = /B U (s, X)(s) dB(s) + /B O(s, x)(s)dB(s), x€Q, (13)
v(x) = /B U,(s, X)(s) dB(s) + /B O.(s, X)W (s)dB(s), xe€ Q. (14)

By applying the field point x to the boundary using appropriate expression of degenerate kernel, we have the
indirect BIEs for boundary points. For the clamped case, the lateral displacement u(x) and the slope 6(x) on
the boundary are specified to zero. For the free case, the normal moment m(x) and effective shear force v(x) on
the boundary are set to zero. The simply supported condition can be obtained by specifying both the lateral
displacement u(x) and the normal moment m(x) to zero.
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2.3. Degenerate kernels and Fourier series for the fictitious boundary densities

In the polar coordinate, the field point and source point can be expressed as x = (p, ¢) and s = (R, 0),
respectively. By employing the separation technique for the source and field points, the kernel functions
U(s, x) and O(s, x) are expanded in the series form as follows [27]:

(U5, = & f:o en{ TGO Y mGiR) + iR+ 2L (p) K m(AR) + i(—1)"1,y(2R)]}

m=

x cos[m(0 — ¢)], p<R

U: 00 (15)
U (s, x) = g 20 em{ ImRY m(Ap) + i n(2p)] + 2 Ln(AR)K,n(2p) + i(=1)"1,,(2p)] }
L x cos[m(0 — ¢)], p=R

O'(s,x) =& i em{ Im(2p)Y 1, (AR) 4 iJ,, (AR)] + 2 Ln(2p)K,,(AR) + i(=1)"I,, (AR)]}

m=0
o xcoim(@—@], pP<R (16)
0" (s,x) =& Z}O en{ L ORY m(2p) 4 iTu(Zp)) + 2 1, (AR)K (2p) + i(=1)"1,,(2p)] }

x cos[m(0 — ¢)], p>R

where ¢, is the Neumann factor (¢,,=1, m=0; ¢,, =2, m=1,2,...,00) and the superscripts “I’’ and “E”
denote the interior and exterior cases for U(s, x) and ©(s, x) degenerate kernels to distinguish p<R and p> R,
respectively, as shown in Fig. 2. The other degenerate kernels Uy(s, x), O(s, x), U,.(s, x), O,,(s, x), Uy(s, x) and
O,(s, x) in the indirect boundary integral equations can be obtained by applying the operators of Egs. (5)—(7)
to the degenerate kernel U(s, x) and @(s, x) in Egs. (15) and (16) with respect to the field point x.

In order to fully utilize the geometry of circular boundary, the fictitious boundary densities, ¢(s) and (s),
can be expanded by employing the Fourier series. Therefore, we obtain

d(s) = ag + Z(am cos mb + b, sin mf), s € B, (17)
m=0

W(s) = py + Z(pm cos ml + p,, sin m0), s € B, (18)
m=0

where ay, a,,, b, po. Py and gq,,, are the Fourier coefficients and 0 is the polar angle. In the real computation,
only the finite M terms are used in the summation of Egs. (17) and (18).

x=(p,§)
s=(R,0)

Fig. 2. Degenerate kernel for U(s, x).
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3. Adaptive observer system and transformation of tensor components
3.1. Adaptive observer system

Consider a plate problem with circular boundaries as shown in Fig. 1. Since the indirect boundary integral
equations are frame indifferent (i.e. rule of objectivity), the origin of the observer system can be adaptively
located on the center of the corresponding boundary contour under integration. Adaptive observer system is
chosen to fully employ the circular property by expanding the kernels into degenerate forms. Fig. 3 shows the
boundary integration for the circular boundaries in the adaptive observer system. The dummy variable in
the circular contour integration is the angle (6) instead of radial coordinate (R). Using the adaptive system, all
the boundary integrals can be determined analytically free of principal value senses.

3.2. Transformation of tensor components

Since the calculation of the slope, moment and effective shear force are involved in the plate problem,
potential gradient or higher-order gradient is required to calculate carefully. For the non-concentric case,
special treatment for the potential gradient should be taken care as the source and field points locate on
different circular boundaries. As shown in Fig. 4, the angle ¢; of the collocation point x; is described in the
center of the circle under integration and the angle ¢, is described in the center of the circle on which
collocation point is located. According to the transformation of the component of the vector equation (19)
and the tensor equation (20) [28], we have

(D cos(0)  sin(d) | | (),
[(-),] - [— sin(s) cos(a)] [(-)0]’ (1)
P W) . (')rr
()n B cos?(9) sin”(d) 2 sin(8) cos(d) 0 -0
O | = | = sin(d) cos(8)  sin() cos(9) cos2(d) — sin*(d) ()"9 ‘ (20)
Jrl
The three operators in Egs. (5)—(7) can be transformed as follows:
o(- . o(-
Kg = cos(é)% + s1n(5)g, (21)

Fig. 3. Adaptive observer system when integrating the corresponding circular boundaries.
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A —s=4.-9,
x; = (pp )

1, 2: transformed normal
and tangential component

3, 4: original normaland
tangential component

Fig. 4. Transformation of tensor components.

K% = [v + (1 — v)sin (5)] V2(+) + cos(20)(1 — v) ( ) + sin(26)(1 — )— (%) (22)
K{i = cos(é)— V2(-) + sin()(1 + (1 — v) COS(5)) Vz( )
2
—sin(26)(1 — v) = o [8 (- )} + cos(20)(1 — v)— [— < (- )>] (23)

where 0 = ¢.—¢;. When the angle ¢. equals to the angle ¢; or the angle difference 6 equals to zero,
Eqgs. (21)—(23) are simplified to the Egs. (5)—(7). Considering non-concentric cases, the degenerate kernels,
Ug(s, x), Oy(s, x), U,(s, x), O,,(s, x), Uss, x), and O,(s, x), can be obtained by applying the operators of
Egs. (21)—(23) to the degenerate kernel U(s, x) and (s, x) in Egs. (15) and (16) with respect to the field point
x. The explicit forms of these degenerate kernels are listed in Appendix A.

4. Linear algebraic system

Consider the plate problem with circular domain containing H randomly distributed circular holes centered
at the position vector ¢; (j =1, 2,...,L), (L = 1 + H and ¢, is the position vector of the outer circular boundary
for the plate), as shown in Fig. 5 in which R; denotes the radius of the jth circular region, x; is the collocation

point and B; is the boundary of the jth 01rcu1ar hole. By uniformly collocating the N( = 2M + 1) collocation
points on each circular boundary in Eqgs. (11)—(14), we have

L
w0 = [ {U6066)+ 06000} dB(5). x e B 4)
=18

L
0(x) = Z/B {U@(S, X)P(s) + Og(s, x)l,b(s)} dB;(s), xe€ B, (25)
=1 B
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o : Collocation point x to B from Q

Fig. 5. Collocation point and boundary contour integration in the boundary integral equation.

L
) =3 [ {Uns.0000) + 0,5 WO} o). x € B (26)
J=1 B

L
W)=Y / {U(s.0)¢(5) + @5, )(s)} dBi(s), x € B. 27
j=17B;

It must be noted that U, ©, Uy, @y and U, are weakly singular, ®,, and U, are singular and @, is
hypersingular [29] since x and s may coincide. The main gain by using degenerate kernel in the BIE is
that singular integrals due to the kernels can be transformed to series sum free of facing principal values.
The selection of interior or exterior degenerate kernel depends on p>R or p<R, respectively, according
to the observer system. For the B; integral of circular boundary, the degenerate kernels of U(s, x), O(s, x),
Uy(s, x), Og(s, x), U, (s, x), O,,(s, x), Us, x) and @ (s, x) are utilized while the fictitious boundary density ¢(s)
and y(s) along the circular boundary are substituted by using the Fourier series of Eqgs. (17) and (18),
respectively. In the B; integration, the origin of the observer system is adaptively set to collocate at the center ¢;
to utilize the degenerate kernels and Fourier series. By considering the outer circular boundary clamped and
inner circular boundary free as an example, a linear algebraic system can be written due to orthogonal
property as follows:

B Ull @ll U12 @12 . UlL @lL_ @1 P 0
op oy op op v o |lw | |
Up O, U, 0, U 0n || @ 0
2 21 22 22 2 2
le 0; U; Ch T UUL @vL p2 L _ 00 , (28)
unoey uko e .. Uik ert|| ot 0
vkt ettt ytr et ... Uk L || ¥E 0

where L denotes the number of circular boundaries (including inner and outer circular boundaries). For
brevity, a unified form [UY] (i = 1,2,3,...,L and j = 1,2,3,...,L) denote the response of U(s, x) kernel at the ith
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circle point due to the source at the jth circle. Otherwise, the same definition is for [0, [Ug], [@g], [U7],[07],
[U7] and [@]] kernels. The explicit expressions for sub-vectors [@'] and [¥’] can be described as follows:

aé ( P
a P
R _ g,
QD’ = lpl == (29)
dyy P
b | I |

The explicit expressions for the sub-matrices of [U”], [@7], [UZ], [@Z], [U7], [@Zq], [U{{] and [@3’] can be
obtained through replacing K in Eq. (30) by U, @, Uy, ©,, U,, ©,,, U, and 6,

[ Kic(pd)  Klc(pnd)  Klsor, ¢ -+ Ko d) ]
Kgc(ﬂz» $,) Kijc(ﬂza ®>) Klljs(pb by - Kg{;IS(pZ’ $2)
Ki — : : ; : : (30)
_KgC(PN>¢N) Kiljc(PNs oN) KijS(pN’qu) K%S(pN’(bN)_

NxN

where ¢ and p(k =1, 2, 3,...,N) are the kth collocation angle and radius of the collocation point on each
boundary in the observer system and the element of the sub-matrices can be integrated by

B 2m
ch(piv ¢l) = 0 K(Rn 9: Pi> q'l)l) COS(”Q)(R d@), n= 0) 13 29 R Ma (31)

B 2n
Ks(pi ;) = ; K(R,0;p;; ;) sin(n0)(Rd0), n=12,....M (32)

in which the interior degenerate kernels are used for j =1, i=1, 2, 3,...,N; otherwise, exterior degenerate
kernels are used. According to the direct-searching scheme, the eigenvalues can be obtained by applying the
SVD [30] technique to the matrix in the left-hand side of Eq. (28). Once the eigenvalues are obtained, the
associated mode shape can be obtained by substituting the corresponding eigenvectors (i.e. the Fourier series
representing the fictitious boundary density) into the indirect boundary integral representation. The procedure
of solution is described in a flowchart as shown in Fig. 6.

5. Numerical results and discussions
5.1. Case I: an annular plate [1,14]

An annular plate with the outer radius of one meter (¢ = 1 m), the inner radius of 0.25m (b = 0.25m),
thickness of 0.002m and the Poisson ratio v = 1/3 are considered as shown in Fig. 7. The outer and inner
boundaries are subject to the clamped and free boundary conditions, respectively. Figs. 8(a) and (b) show the
first and the second minimum singular values of the influence matrix of Eq. (28) versus the frequency
parameter A. Since the direct-searching scheme is used, the drop location indicates the eigenvalue. The
simultaneous appearance of drop indicates the multiplicities as given in Fig. 8(b). The annular case was also
solved by using the FEM software (ABAQUS) [31] with 8903 elements and 9099 nodes. The general-purpose
shell elements, S4, of ABAQUS were used to model the plate problem. Although the thickness of the plate
is 0.002m, these elements do not suffer from transverse shear locking based on the theory manual of
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Fundamental solutions :
(Degenerate kernels are listed |
in Appendix) |

Plate eigenproblem with circular
boundaries

A 4

Indirect boundary integral
equations in Eqgs. (11)-(14)

Collocating the collocation point
and matching the BCs

v

Boundary integration in observer system

h 4

Linear algebraic system of Eq. (28)

Obtain the unknown
Fourier coefficients using
Eq. (28)

A 4

BIEs for the domain point
using Eqgs. (11)-(14)

A 4

Mode
Shape

Fig. 6. Flowchart of the present method.

Fictitious boundary densities
for circular boundaries using
Fourier series in Eqgs. (17)-(18)

frequency
parameter
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Case 1:

Geometric data:
a=lm

b=0.25m
thickness=0.002m
Boundary condition:
Inner circle : free
Outer circle: clamped

Fig. 7. An annular plate with clamped—free boundary condition.
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Fig. 8. The first and the second minimum singular values versus the frequency parameter for an annular plate (¢ = 1.0, 5 = 0.25).

ABAQUS [31]. The unknown fictitious boundary densities of the plate are represented in terms of Fourier
series. The former six natural frequency parameters versus the number of degrees of freedom of two methods
for an annular plate are shown in Fig. 9. The number of degrees of freedom of the present method is
q = 2(2M + 1) where M is the number of terms of Fourier series. The number of scaling degrees of freedom of
the FEM is sd = 2 In(x) where x (6 times the number of nodes) is the total number of degrees of freedom for
the finite element model. Actually, the value of x ranges from 96 to 7722 in the case. In order to achieve the
same accuracy to the analytic solution, the required number of degrees of freedom by using the present
method is much less than that of the FEM. Consequently, the computational efficiency and convergence of the
present method over FEM is obvious. It is found that some modes such as third and fifth mode are lost when
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13 T T T T T T T T

12
—— ABAQUS
—e— The present method|
—— The analytic method

1T

10

Sixth Mode 1
= . FifthMode

. =

W\R ‘Fourth Mode
6 r .. _Third Mode

—

5t %\,\%A\L Second Mode -

Natural frequency parameter
(o]

47 First Mode
e ¥ *

N
>k B
3 i i I ! I f I

4 6 8 10 12 14 16 18 20 22
Degree of freedom (g,sd)

Fig. 9. Natural frequency parameter versus the number of degrees of freedom of two methods for an annular plate (@ = 1.0, b = 0.25).
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Present
method
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ABAQUS
/
3.1623 4.4159 6.7823 6.9138 N/A
<2.9155> <4.1593>

<6.4807> N/A N/A

N/A

Khurasia ¥
and ;
Rawtani KA Q‘X
[ ¢
/)> I s

'3}.‘-"‘:»' -i- 7{’} 7

Exact[14] 3.2719 44623 5.7640 6.8183 7.0680 7.5391

Fig. 10. The former six natural frequency parameters and modes of an annular plate (¢ = 1.0, b = 0.25). { )>: experimental data [1];
*: multiplicity.

only one term (M = 1) is involved in the Fourier series. The reason is that the third mode shape, shown in
Fig. 9, has two diametrical nodes. The same explanations can be applied to the fifth mode which does not
appear until three terms (M = 3) are used due to its mode shape with three diametrical nodes. Besides, the
number of terms used will influence the number of mode appeared, but the value of natural frequency
parameter of the captured mode can be well predicted. From the study of the convergence, only three terms
(M = 3) in the Fourier series is taken to capture the former sixth modes. Then seven collocation points are
required in each circular boundary. Fig. 10 shows the former six natural frequency parameters and modes by
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using FEM [1,31], the analytical method [14] and the present method. The results of the present method are
good in agreement with the exact solutions and the FEM results using ABAQUS. A slight deviation is shown
in the results of Khurasia and Rawtani due to the rough mesh of finite element model.

5.2. Case 2: a circular plate with an eccentric hole [1]

A circular plate weakened by an eccentric hole with the same outer and inner radii as the Case 1 is
considered. The offset distance e of the eccentric hole is 0.45 m (e/a = 0.45) as shown in Fig. 11. The former six
natural frequency parameters versus the number of degrees of freedom of two methods for the Case 2 are
shown in Fig. 12. Following the same treatment in Fig. 9, the scaling degrees of freedom of the FEM is
sd = 4.5In(x). All the notations are the same as the Case 1. The total number of degrees of freedom by using
the finite element model ranges from 96 to 7686. In this case, the present method still has the feature of high
efficiency and fast convergence. Since the point-collocation approach was adopted in this paper, neither upper
bound nor lower bound solution can be proved. It shows that the number of terms used influences the natural

N

Case2:

Geometric data:
a=lm

b=0.25m

e=0.45m
thickness=0.002m
Boundary condition:

Inner circle : free
Outer circle: clamped

Fig. 11. A circular plate with an eccentric hole in clamped—free boundary condition.
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5 10 15 20 25 30 35 40 45 50
Degree of freedom (q,sd)

Fig. 12. Natural frequency parameter versus the number of degrees of freedom of two methods for a circular plate with an eccentric hole
(a=1.0,b=0.25 e =0.45).
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frequency parameter as well as the number of mode. Since the induced eccentric hole affects the axial
symmetric characteristics, some diametric nodes, e.g. the second, the fourth and the sixth modes, are lost when
insufficient terms of Fourier series are used. Fig. 13 indicates the minimum singular value of the influence
matrix versus the frequency parameter 4 using seven terms of Fourier series (M = 7). The multiplicity is one
only due to the lack of axial symmetry. The FEM model of the ABAQUS used 8217 elements and 8404 nodes.

1 0_2 T T T T T T T T T

103

10

Minimum singular values

10‘5 1 1 1 1 1 1 1 1 1
3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

Frequency parameter (A)

Fig. 13. The minimum singular value versus the frequency parameter for a circular plate with an eccentric hole (¢ = 1.0, b = 0.25,
e = 0.45).

MODE 1 2 3 4 5 6
Present
method
ABAQUS
3.1623 N/A 4.6690 N/A 5.8138
<2.8810> N/A <4.6904> N/A <5.6391>
Khurasia
and /
Rawtani
N/A N/A N/A
[1]
4

Fig. 14. The former six natural frequency parameters and modes of a circular plate with an eccentric hole (¢ = 1.0, b = 0.25, ¢ = 0.45).
{ »:experimental data [1].
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The former six natural frequency parameters and modes by using FEM [1,31] and the present method are
shown in Fig. 14. The results of the present method match well with those of FEM using ABAQUS. In the
results of Khurasia and Rawtani [1], the first mode was not reported and the second and fourth modes are lost.
An obvious deviation can be seen in the sixth mode of results reported by Khurasia and Rawtani due to the
coarse mesh. Our result also agrees well with that of Cheng et al. [11]. Owing to the lack of stiffness of the
clamped boundary condition in reality, it is expected that the experimental data [1] are less than those obtained
by the other methods.

The effect of eccentricity of e/a versus frequency parameters is shown in Fig. 15 which includes the results of
the present method and FEM using ABAQUS for comparison. Good agreement with the data of [11] is also
made. The values of m and n in mode (m, n) are the numbers of diametrical and circular nodes, respectively.
The repeated frequencies occurring in annular case, i.e. m#0, are gradually separated into two distinct values
as the variation in eccentricity increases due to initial axial symmetry broken. Considering different boundary
conditions, clamped and simply supported at the outer edge, Table 1 lists former six eigenvalues (1%) of
circular plate with a circular hole of radius b/a = 0.4 and eccentricity e/a changing from 0.1, 0.3 to 0.5. Except

8 T T T T T
—oe— ABAQUS
75 7| ——The presem%a
7 @ & — E
- [ S
g65F Mode (0,1 .
© 6 | —_— &
© g N——]
> 55| Mode (2,0)
o
c
T 454 = &
4t ]
35| N Mode (0,0) ]
3 L L T( L bl L
0 0.1 0.2 0.3 0.4 0.5 0.6

Eccentricity (e/a)

Fig. 15. Effect of variation in e/a on frequency parameters.

Table 1

The former six eigenvalues (4) for clamped-free and simple supported—free circular plate with a circular hole of radius b/a = 0.4 and

eccentricity e/a changing from 0.1, 0.3 to 0.5

Eccentricity BC Method 1 2 3 4 5 6
ela=0.1 C-F 1 13.0465 19.6249 21.0314 31.8999 31.9451 47.1969
2 13.0480 N/A 21.0260 N/A 31.9530 47.2310
S-F 1 4.7524 12.0270 12.2500 23.2131 23.2131 37.2832
2 4.7486 N/A 12.2530 N/A 23.2180 37.2930
ela=0.3 C-F 1 11.2359 19.8025 26.0508 34.0356 39.2377 41.9127
2 11.2409 N/A 26.0740 N/A 39.1730 41.6860
S-F 1 4.6483 12.1661 14.1075 23.6002 24.1867 31.1364
2 4.6454 N/A 14.1160 N/A 24.2840 31.1370
ela=0.5 C-F 1 10.1124 20.0883 24.3838 34.5744 37.0394 43.6921
2 10.1420 N/A 24.4310 N/A 37.0650 44.2150
S-F 1 4.5199 12.3904 15.3037 23.7754 27.2484 29.5718
2 4.5258 N/A 15.3100 N/A 27.3240 29.6200

Method 1: The present method.
Method 2: Laura [12].
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one of the mode (1,0) and mode (2,0) not given in the Laura’s results [12], where only symmetric conditions
were considered in their trial functions, the results of the present method match well those of Laura et al. The
frequencies of annular-like plate with clamped—free boundary condition are larger than those with simply
supported—free cases due to the stiffness of the clamped condition. No matter what boundary conditions are at
outer edge, the split of repeated frequencies always exists and the difference between two values becomes
obvious as eccentricity increases.

5.3. Case 3: a circular plate with two holes

In order to demonstrate the generality of the present method, a circular plate with two holes is considered as
shown in Fig. 16. The radii of holes are 0.25 and 0.15m and the coordinates of the center are (0.5,0) and

Case3.

Geometric data:
a=lm

b=0.25m

¢=0.15m
thickness=0.002m
Boundary condition:
Inner circle : free
Outer circle: clamped

Fig. 16. A circular plate with two circular holes in clamped—free boundary condition.
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Degree of freedom (g, sd)

Fig. 17. Natural frequency parameter versus the number of degrees of freedom of two methods for a circular plate with two holes (a = 1.0,
b =025, c=0.15).
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Fig. 18. The minimum singular value versus the frequency parameter for a circular plate with two holes (¢ = 1.0, b = 0.25, ¢ = 0.15).

MODE 1 2 3 4
3.1770 4.5290 4.699 5.7510
Present
method
3.1950 4.5296 4.7086
ABAQUS

Fig. 19. The former five natural frequency parameters and modes of a circular plate with two holes (a = 1.0, b = 0.25, ¢ = 0.15).

(—0.4,—0.3), respectively, in the coordinate system with origin at the center of outer circle. The former five
natural frequency parameters versus degrees of freedom of two methods for this case are shown in Fig. 17. The
number of degrees of freedom of the present method is ¢ = 3(2M + 1) and that of the FEM is sd = 7In(x),
where definitions of M and x are the same as the Case 1. The total number of degrees of freedom of the finite
element model ranges from 126 to 7836. When the number of inner circular hole increases, the high efficiency
can also be observed. Owning to the complex geometrical configuration, the fewer terms of Fourier series
(M =1 or 2) cannot capture the second and higher natural frequencies of parameters well. Fig. 18 shows the
minimum singular value of the influence matrix versus the frequency parameter 4 where the number of Fourier
series terms M is taken as 7. Fig. 19 shows the former five natural frequency parameters and modes of FEM
using ABAQUS and the present method. Good agreement between the results of the present method and those
of ABAQUS is obtained.
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6. Concluding remarks

A semi-analytical approach for solving the natural frequencies and natural modes for the circular plate with
multiple circular holes was proposed. Instead of employing the direct formulation, the present method used
indirect boundary integral equations in conjugation with the degenerate kernels and the Fourier series to
represent the fictitious boundary densities in the adaptive observer system. The improper integrals in the
indirect BIEs were avoided by employing the degenerate kernels and were easily calculated through the series
sum. The potential across the circular boundary was described explicitly by the interior and exterior
expressions of degenerate kernels. The degenerate kernels of the slope, moment and effective shear force in the
plate eigenproblems have been derived. Once the Fourier coefficients of fictitious boundary densities have been
determined, the corresponding mode shape can be obtained by using the indirect boundary integral
representation. The effect of eccentricity of the hole on the natural frequencies is considered. The natural
frequencies and corresponding mode shapes for the multiply-connected plate problems with circular
boundaries and multiple circular holes have been solved easily and efficiently by using the present method in
comparison with the available exact solutions and FEM results using ABAQUS.

Appendix A. Degenerate kernels

Ul(x,5) = 21’1 cos(m(0 — §,)

where f| = 811 gm{ TGP Y m(iR) + iJ(AR)] + %Im(ip)[Km(/lR) n i(—l)'”Im(ZR)]},
UE(x,s5) = 2& cos(m(0 — ¢,)

where f, = s {J,nuR)[Ym(Ap) PG+ 2 Ly RK i) +i(~ 1)'“1,,1@;))1},

6U1(x s)

0'(x,5) = Zg1 cos(m(6 — §))

where g, =ésm{fmup)[m(m)+u/m(m)]+%1mup>[ LOR) + i(~ 1)'“1;,1(;10]},

U2(x s)

OF(x,s) = Zgz cos(m(6 — ¢))

1 2
where g, = <t {J’m(m)[ Yulip) + i i) + = 1, K n(2p) + z'(—l)'”lmup)]},

I m=0,
=32 m=0.

Superscripts I and E denote the interior domain (i.e. p<R) and exterior domain (i.e. p > R), respectively:

o0

U(x.9) =Y aif cos(m(® — §) + sof g sin(m(0 — ¢))), k= 1,2,

m=0

OK(0.5) =Y cigy cos(m(0 — ¢)) + sogx sin(m(® — ¢), k= 1,2,

m=0
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c1 = cos(8), 5o = <@> sin(d;),
UK (x,s) = 2[mcof,< merf g+ mesf {1 Cos(m(O — )+ [msaf . + msy ] sin(m(0 — ).
O (x,5) = i;o[mc’ogx + meigy + meagglcos(m(0 — ) + [msog g + msigglsin(m(0 — ¢,)), k=1,2,
mey = — <2m—p212)(1 F v (=1 +v)cos(25)),  mso = <%)(—1 + v)sin(24)),
me; = (2%)(1 F v (=1 4 v)cos(25y), ms) = <pﬂi>(1 ~ v)sin(24)),

mecy = (%)(1 + v+ (1 — v)cos(20;)),

Up(x,s) = i[vSof & +0s1fk + vsaf kIsin(m(0 — §)) + [veof g + verfy + veof k + vesf gl cos(m(6 — ¢)),

m=0
o0
OF(x,5) = Y [usogx + vs19 + v$29%]sin(m(0 — ) + [veogg + verg + veag + vesgi] cos(m(0 — ),
m=0
k=1,2,

m2 n/l3
veg = <_3> (2¢c0s(8;) + (1 — v)cos(267)), wso = — (?) (1 + (1 —v)cos(9,)) sin(9,).
vey = (%) (1 + m?)cos(d;) + m(1 = v)cos(2y)), vsy = <%

1

>(1 + cos(d;) — vcos(d;)) sin(J;),

1

pey = CO;@"), psy = <§>(1 + (v — 1) cos(d;)) sin(3y),

vey = cos(9;).
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