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Introduction

The fictitious frequencies, or so called irregular frequencies, have been studied by mathematicians
[1, 2, 3, 4] and boundary element researchers [5, 6, 7, 8, 9, 10]. For the continuous system, Chen
[11, 12] proved analytically using the dual series model that the positions where the fictitious
frequencies occur depends on the integral representation for the solution. The types of boundary
conditions can not change the positions once the integral formulation is chosen. Later, Chen {17]
applied the theory of circulant to understand the occuring mechanism of irregular frequencies
in a discrete system by considering a circular example. However, no numerical examples using
the dual BEM were provided in the two papers [12, 17].

In this paper, a dual BEM program was developed to study the fictitious frequencies numer-
ically. The positions of fictitious frequencies for the exterior problems using the UT (singular
integral equation) or the LM (hypersingular integral equation) formulation are plotted. Two
numerical examples of non-uniform radiation problems with the Dirichlet and Neumann bound-
ary conditions, are illustrated to show the mechanism of fictitious frequencies. Numerical results
using the dual BEM program are verified in comparision with the analytical solutions [19]. It is
shown that the integral formulation, either singular or hypersingular equation, has different fic-
titious frequencies. However, the positions of irregular frequencies are independent of the types
of the boundary conditions, once the method, either the UT or the LM method, is adopted.
Based on the theoretical proof for a continuous system [12], for a discrete system using circulants
[17] and the present numerical study using the dual BEM, some misleading statements for the
positions of irregular values in the literatures can be clarified.

Dual integral formulation for a two-dimensional exterior acoustic radiation problem

The governing equation for an exterior acoustic problem is the Helmholtz equation as follows:
(vz + kz)u(zhmz) = 01 (xla 1:2) € D1

where V2 is the Laplacian operator, D is the domain of the cavity and & is the wave number,
which is angular frequency over the speed of sound. For simplicity, a radiation problem is
considered only. The boundary conditions can be either the Neumann or Dirichlet type.

Based on the dual formulation, the dual equations for the boundary points are
ru(z) = C.P.V. / T(s,z)u(s)dB(s) — R.P.V. /B U(s, z)t(s)dB(s), « € B (1)
B
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nt(z) = H.P.V./BM(s,:c)u(s)dB(s) —C.P.V./BL(s,m)t(s)dB(s), c€B 2)

where C.P.V., R.P.V. and H.P.V. denote the Cauchy principal value, the Riemann principal
value and the Hadamard principal value, t(s) = a—‘;‘%, B denotes the boundary enclosing D and
the explicit forms of the four kernels, U/, T, L and M, can be found in (11, 14, 15].

Dual BEM formulation for a two-dimensional exterior acoustic radiation problem

The linear algebraic equations for an interior problem discretized from the dual boundary

integral equations can be written as
[Tol{ug} = Uy it} (3)

[M;q]{uf]} = [L;q}{t’l}‘ (4)

where the superscript “i” denotes the interior problem, {u,} and {t,} are the boundary potential
and flux, and the subscripts p and ¢ correspond to the labels of the collocation element and inte-
gration element, respectively. The influence coeflicients of the four square matrices [U], [T}, [L]

and [M] can be represented as

Upg = RPV. /B Ulses 2B (5)
T}, = ~mbyg + C.P.V. /B T(sq,2,)dB(s,) 6)
L., = w8y + C.P.V. /B L(sg2,)dB(s,) (7)
Mi, = H.PV, /;?q M{(s,2,)dB(s,), (8)

where B, denotes the g** element and dpg = 1 if p = ¢; otherwise it is zero. The detail to

determine the influence coefficients can be found in [15]. For the exterior problem, we have
[Tool{ug} = [Upgl{te} (9)

[M;q]{u‘q} = [L;q}{tf]}' (10)

where the superscript “e” denotes the exterior problem. According to the dependence of the
outnormal vectors in these four kernel functions for the interior and exterior problems, their

relationship can be easily found as shown below [16]:
Ui = U, ()
Mpy = My, (12)

Ti :{ _T;qv prié(L (13)

pa T ifp=gq
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1 ={ ~Ly,, ifp#q, (14)

Ly ifp=4q¢

Based on the relations in Eqs.(11) ~ (14), the dual BEM program can be easily extended to
solve for exterior problems. )

In order to avoid the problem of fictitious frequency, the Burton and Miller formulation [1]
is employed by considering the following equation,

(5] + £ IM Hugh = {IUR] + L1LS 1} o) (15)

where %2 = —1.

Numerical examples

For the first example, a non-uniform radiation problem from a sector of a cylinder [19] is con-
sidered. The model has a constant inhomogeneous value on an arc {(—a < # < @) and vanishing
elsewhere. Two points of potential discontinuity in the boundary data can be found. The gov-
erning equation and boundary condition are shown in Fig.1. The normalized analytical solution

to this cylinder problem of a radius a is

2 & sin(na HS) kr
‘U.(’!‘,G)Z—Z‘ ( ) (1)( )
EL—rt " Hp'(ka)

cos(nb), (16)

where Hﬁl)(kr) is the Hankel function of the first kind of order n, and the symbol ‘ denotes
that the first term (n = 0) is halved. We select o = 20°. Fig.2 shows the contour plot for the
real part of the analytical and numerical solutions. The analytical solution is obtained by using
20 terms series representations. Sixty-three elements are adopted in the dual BEM mesh. The
positions where the irregular values occur can be found in Fig.3 for the solution t(a,0) versus k
by using either the UT or the LM equation only. It is found that irregular values occur at J*,
the zeros of the Bessel function of the first kind of order n, J,,(ka), for the UT formulation, while
LM formulation has the irregular values of J'™, the zeros of the derivative of the Bessel function
of the first kind of order n, J/,(ka) = 0. The zeros for the Bessel functions and their derivatives
are shown in Table 1. Also, the Burton and Miller formulation can avoid the numerical resonace
and the UT and LM results agree well except at the irregular wave numbers as shown in Fig.3.
The UT method is found to be superior to LM method since the participation factor [17] for the
fictitious modes is lower. The performance of the dual BEM in comparison with the analytical
solution and the DtN results [19] is quite good. Also, the analytical solution is shown in Fig.3
by methods of accelerating convergence [18] although the series solution is oscillating.

In order to clarify how the irregular frequencies depend on the types of boundary conditions,
the second example with the Neumann boundary condition is designed in Fig.4. The analytical

solution is
cos(nb). (17)

2 & ~1sin(na) H,(ll)(lcr)
u(r,6) = ;:2:0 % n Y (ka)
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where H,(ll)l(ka) denotes the derivative of the Hankel function of the first kind of order n. The
contour plot for the real-part solution is shown in Fig.5. It indicates that numerical results agree
well with the analytical solution. Also, it is interesting to find that the irregular frequencies in
Fig.6 occurs at the same positions in comparison with those of Fig.3. The UT method agrees
better than LM method since the participation factor {17] for the fictitious modes is lower.
This confirms the conclusion in [12, 17] that the irregular frequencies depend on the integral
formulation (UT or LM method) instead of the types of boundary conditions (Dirichelet or
Neumann).

Concluding remarks

The mechanism why fictitious frequencies occur in the dual BEM has been examined by consid-
ering non-uniform radiation problems of a cylinder. It is found that the irregular values depend
on the integral formulation, the UT or the LM equation, instead of the types of boundary
condition. The examples show that the first UT equation results in fictitious frequencies at the
zeros of J,(ka) = 0, which are associated with the interior acoustic frequencies of essential ho-
mogeneous boundary conditions, while the second LM equation produces fictitious frequencies
at the zeros of J/(ka) = 0, which are associated with the interior eigenfrequency of natural
homogeneous boundary conditions. The numerical results using the dual BEM program agree

very well with the analytical solutions.
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Table 1 Zeros of the Bessel functions for J,(k) and J/ (k)

Jn m=1 m=2 m=3 m =4 m=35
Jo(k) =0,n=0 2.4048 5.5201 8.6537 11.7915 14.9309
Ji(k)=0,n=1 3.8317 7.0156 10.1735 13.3237 16.4706
Jo(k)=0,n=2 5.1356 8.4172 11.6198 14.7960 17.9598
J3(k)=0,n=3 6.38016 9.76102 13.0152 16.22346 19.40941
Ja(k) =0,n =4 7.58834 11.0647 14.3725 17.6160 20.8269
Js(k)=0,n=5 8.77148 12.3386 15.7002 18.9801 22.2178

Jim m=1 m=2 m=3 m=4 m=5
Ji(k)y=0,n=0 0 3.83171 7.01559 10.17346 13.3237
Ji(k)=0,n=1 1.84118 5.33144 8.53632 11.70600 14.8636
Ji(k)=0,n=2 3.05424 6.70713 9.96947 13.17037 16.3475
Ji(k) =0,n=3 4.20119 8.01524 11.3459 14.5858 17.7887
Jiy(k)=0,n=4 5.31755 9.2824 12.6819 15.9641 19.1960
Ji(k) =0,n=5 6.41562 10.5199 13.9872 17.3128 20.5755

J™ and J/™ are the mth zeros of the Bessel functions, J,(k) and J;(k), respectively.
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Fig 1. The nonuniform radiation problem Fig 4. The nonuniform radiation problem
(Dirichlet type) for a cylinder. (Neumann type) for a cylinder.
2. 2.5
2.04 2.09
154 1.54
1.04 1.04
0.5 0.5
0.04 Oﬂ
0.5 -0.51
1.04 1.04
-1.54 1.5
.z_()J -2.09
J -
25530 A5 d0 45 00 o5 10 15 20 7% 258 20 15 10 05 00 05 10 15 20 25
Fig 2. The contour plot for the real-part Fig 5. The contour plot for the real-part
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line, numerical result: solid line). line, numerical result: solid line).
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Fig3. The positions of irregular values Fig6. The positions of irregular values

using different methods. using different methods.



