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Null-Field Approach for Laplace Problems with
Circular Boundaries Using Degenerate Kernels
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In this article, a semianalytical method for solving the Laplace problems with circular boundaries using the
null-field integral equation is proposed. The main gain of using the degenerate kernels is to avoid calcu-
lating the principal values. To fully utilize the geometry of circular boundary, degenerate kernels for the
fundamental solution and Fourier series for boundary densities are incorporated into the null-field integral
equation. An adaptive observer system is considered to fully employ the property of degenerate kernels in
the polar coordinates. A linear algebraic system is obtained without boundary discretization. By matching
the boundary condition, the unknown coefficients can be determined. The present method can be seen as one
kind of semianalytical approaches since error only attributes to the truncated Fourier series. For the eccen-
tric case, vector decomposition technique for the normal and tangential directions is carefully considered in
implementing the hypersingular equation in mathematical essence although we transform it to summability
to divergent series. The five advantages, well-posed linear algebraic system, principal value free, elimination
of boundary-layer effect, exponential convergence, and mesh free, are achieved. Several examples involving
infinite, half-plane, and bounded domains with circular boundaries are given to demonstrate the validity of
the proposed method. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 00: 000–000, 2008

Keywords: degenerate kernel; Fourier series; multiply-connected domain problem; null-field integral
equation; semi-analytical approach

I. INTRODUCTION

The Laplace equation arises in many branches of physics, from which it recruits a wide group
of researchers. Temperature in case of steady state heat conduction [1–6], electrostatic potential
[7–11], velocity potential in a steady flow of an ideal fluid [12–14], the displacement of an

infinite medium under remote uniformly shear [15–19], and the pure torsion of an elastic bar
by equilibrated end torques [20, 21] are examples in which the Laplace equation is satisfied.
Circular geometries often appear in engineering structures. Although these structures are very
simple, the analytical solutions involve special mapping technique or restricted solution repre-
sentations. Bipolar coordinates was always used to derive the analytical solution for two-holes

Correspondence to: Jeng-Tzong Chen, Department of Harbor and River Engineering, National Taiwan Ocean University,
Keelung 20224, Taiwan (email: jtchen@mail.ntou.edu.tw)

© 2008 Wiley Periodicals, Inc.



J_ID: z8x Customer A_ID: 1173 Cadmus Art: NUM20332 KGL ID: num080003 — 2008/1/31 — page 2 — #2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 CHEN AND SHEN

problems [22]. However, conformal mapping or bipolar coordinates is limited to doubly connected
regions; most efforts have concentrated on special solution representations. Alternative method
has been adopted to solve problems with multiple circular holes [23,24]. Numerical approaches,
e.g. finite difference method (FDM), finite element method (FEM), boundary element method
(BEM), and meshfree method, etc. have been used to deal with engineering problems. Among
diverse numerical approaches, FEM and BEM have become the popular research tools for engi-
neers. In the past decades, FEM has been widely applied to solve many engineering problems, but
one deficiency is that discretizations cost much time to set up the mesh models. Unlike FEM, the
discretizations are restricted only to the boundary when using BEM. The main advantage of BEM
is one-dimension reduction in mesh generation. For stress concentration problems, BEM can cap-
ture the local behavior. It is also ideally suited to the analysis of external problems where domains
extend to infinity, since discretizations are confined to the internal boundaries with no need to
truncate the domain at a finite distance. There is no doubt that BEM has been appreciated as an
alternative numerical method which has been extensively used. Practical engineers and academic
researchers paid attention to theoretical study and applications of BEM in the recent decades.
Although BEM is recognized as an acceptable tool, some pitfalls still exist, e.g. degenerate scale
for potential problems and fictitious frequency for exterior acoustics. Detailed discussions for the
pitfalls of BEM can consult with the plenary lecture by Chen et al. [25].

For problems with circular boundaries, the BIEM can be utilized instead of BEM to improve
the convergence by introducing Fourier series. The Fourier series expansion is specially tailored
to problems with circular geometry. Early attempts to solve problems involving circular boundary
using the series expansion were reported by Mogilevskaya et al. [26, 27], Barone and Caulk
[2, 28–30], and Bird and Steele [3, 31]. Barone and Caulk explored the use of special boundary

integral method for solving Laplace’s equation in two-dimensional regions with circular holes.
On the basis their idea, the boundary potential and its normal derivative were expressed in a finite
series of circular harmonics on each hole. Unlike other approaches, the unknown coefficients
in each hole are determined by a new set of integral equations with special kernel functions.
However, the explicit equations in [20] were limited to the case when a constant potential is
specified on the boundary of each hole. Bird and Steele [3, 31] have adopted the Fourier series
for harmonic and biharmonic problems with circular holes. In their numerical results, only six
terms of Fourier series on each hole were sufficient to yield error of less than 0.05 percent. More
recently, Mogilevskaya and Crouch presented a method for solving problems with randomly
distributed circular elastic inclusions with arbitrary properties [27]. They combined the series
expansion technique with a direct boundary integral method. However, all of them didn’t employ
the null-field integral equation and degenerate kernels [32] in the polar coordinates to fully
capture the circular boundary to the author’s best knowledge although they have employed the
Fourier series. The exponential convergence rate was proved in the Kress’ book [32] for BIEM by
using degenerate kernel and Fourier series. Numerical experiments was performed for the Stokes
flow [33].

In the article, we focus on the problems with circular boundaries and possess a semianalytical
approach. The comparison between the present approach and conventional BEM is arranged in
Table I. A general-purpose program for circular boundaries with different radii and various posi-AQ1

tions of center is developed. A major benefit of using circular boundaries is that all integrations
can be performed analytically. We expand the boundary density along the boundaries of each
hole by using Fourier series expansion and employ the null-field integral equation to develop a
system of linear algebraic equations. Several examples including multiple circular cavities are
demonstrated to check the validity of the present method. Besides, half-plane problem with a
circular hole is considered as the special case.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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NULL-FIELD APPROACH USING DEGENERATE KERNALS 3

II. PROBLEM STATEMENT AND MATHEMATICAL FORMULATION

Suppose there are N randomly distributed circular cavities bounded in the domain D and enclosed

AQ2

with the boundary, Bk(k = 0, 1, 2, . . . , N) as shown in Fig. 1. We define F1

B =
N⋃

k=0

Bk . (1)

In mathematical physics, many engineering problems can be described by the Laplace equation,
the governing equation is written below:

∇2u(x) = 0, x ∈ D, (2)

where ∇2 is the Laplacian operator, u(x) is the potential function and D is the domain of interest.
The integral equation for the domain point can be derived from the third Green’s identity [34],
we have

2πu(x) =
∫

B

T (s, x)u(s)dB(s) −
∫

B

U(s, x)t(s)dB(s), x ∈ D, (3)

2π
∂u(x)

∂nx
=

∫
B

M(s, x)u(s)dB(s) −
∫

B

L(s, x)t(s)dB(s), x ∈ D, (4)

where s and x are the source and field points, respectively, B is the boundary, nx denotes the
outward normal vector at field point x (artificially defined, (1,0) is for the x gradient and (0,1) for
the y gradient on the interior point), and the kernel function

U(s, x) = ln r , (r ≡ |x − s|), is the fundamental solution which satisfies

∇2U(s, x) = 2πδ(x − s), (5)

FIG. 1. Problem statements.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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4 CHEN AND SHEN

in which δ(x − s) denotes the Dirac-delta function. The other kernel functions, T (s, x), L(s, x)

and M(s, x), are defined by

T (s, x) ≡ ∂U(s, x)

∂ns
, L(s, x) ≡ ∂U(s, x)

∂nx
, M(s, x) ≡ ∂2U(s, x)

∂ns∂nx
, (6)

where ns is the outward normal vector at the source point s. By moving the field point to the
boundary, the Eqs. (3) and (4) reduce to

πu(x) = C.P.V.
∫

B

T (s, x)u(s)dB(s) − R.P.V
∫

B

U(s, x)t(s)dB(s), x ∈ B, (7)

π
∂u(x)

∂nx
= H.P.V.

∫
B

M(s, x)u(s)dB(s) − C.P.V
∫

B

L(s, x)t(s)dB(s), x ∈ B, (8)

where CPV, RPV, and HPV denote the Cauchy principal value, Riemann principal value, and
Hadamard principal value, respectively. Although U , T , L, and M kernels are singular, we can
deal with the singular integrals free of principal value sense due to the introduction of degenerate
kernel. Once the field point x locates outside the domain, the null-field integral equation of the
direct method in Eqs. (7) and (8) yield

0 =
∫

B

T (s, x)u(s)dB(s) −
∫

B

U(s, x)t(s)dB(s), x ∈ Dc ∪ B, (9)

0 =
∫

B

M(s, x)u(s)dB(s) −
∫

B

L(s, x)t(s)dB(s), x ∈ Dc ∪ B, (10)

where Dc is the complementary domain. Note that the null-field integral equations are not singular
since s and x never coincide. Equations (9) and (10) can include the boundary point collocation
once the appropriate degenerate kernels are employed. The discontinuity of potentials due to T

and L kernels automatically appears once the different degenerate expressions for T and L kernels
are employed for the collocation point inside or outside the circular boundary. Readers can refer
to the Appendix of [35].

III. EXPANSIONS OF FUNDAMENTAL SOLUTION AND BOUNDARY DENSITY

Now, we adopt the mathematical tools, degenerate kernels, and Fourier series for the purpose of
analytical study. The combination of degenerate kernels and Fourier series plays the major role
in handling problems with circular boundaries.

Degenerate Kernels for Fundamental Solutions On the basis of the separable property, the
kernel function U(s, x) can be expanded into separable form by separating the source point and
field point in the polar coordinates [36]:

U(s, x) =

⎧⎪⎪⎨
⎪⎪⎩

Ui(R, θ ; ρ, φ) = ln R −
∞∑

m=1

1
m

(
ρ

R

)m
cos m(θ − φ), R ≥ ρ

Ue(R, θ ; ρ, φ) = ln ρ −
∞∑

m=1

1
m

(
R

ρ

)m

cos m(θ − φ), ρ > R

, (11)

where the superscripts “i” and “e” denote the interior (R ≥ ρ) and exterior (ρ > R) cases,
respectively. The origin of the observer system for the degenerate kernel is (0,0). Figure 2 showsF2

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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NULL-FIELD APPROACH USING DEGENERATE KERNALS 5

FIG. 2. Graph of the separate form of fundamental solution where the source s located at R = 10.0 and
θ = π

3 . [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

the diagram of degenerate form for fundamental solution where the source point s located at

AQ3

R = 10.0, θ = π/3. By setting the origin at o for the observer system, a circle with a radius R

from the origin o to the source point s is plotted. If the field point x is situated inside the circular
region, the degenerate kernel belongs to the interior case Ui ; otherwise, it is the exterior case.
After taking the normal derivative with respect to Eq. (11), the T (s, x) kernel can be derived as

T (s, x) =

⎧⎪⎪⎨
⎪⎪⎩

T i(R, θ ; ρ, φ) = 1
R

+
∞∑

m=1

(
ρm

Rm+1

)
cos m(θ − φ), R > ρ

T e(R, θ ; ρ, φ) = −
∞∑

m=1

(
Rm−1

ρm

)
cos m(θ − φ), ρ > R

, (12)

and the higher-order kernel functions, L(s, x) and M(s, x), are shown below

L(s, x) =

⎧⎪⎪⎨
⎪⎪⎩

Li(R, θ ; ρ, φ) = −
∞∑

m=1

(
ρm−1

Rm

)
cos m(θ − φ), R > ρ

Le(R, θ ; ρ, φ) = 1
ρ

+
∞∑

m=1

(
Rm

ρm+1

)
cos m(θ − φ), ρ > R

, (13)

M(s, x) =

⎧⎪⎪⎨
⎪⎪⎩

Mi(R, θ ; ρ, φ) =
∞∑

m=1

(
mρm−1

Rm+1

)
cos m(θ − φ), R ≥ ρ

Me(R, θ ; ρ, φ) =
∞∑

m=1

(
mRm−1

ρm+1

)
cos m(θ − φ), ρ > R

. (14)

Since the potential resulted from T (s, x) and L(s, x) kernels are discontinuous across the bound-
ary, the potentials of T (s, x) for R → ρ+ and R → ρ− are different. This is the reason why

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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6 CHEN AND SHEN

R = ρ is not included in the expression of degenerate kernels for T (s, x) and L(s, x) in Eqs. (12)
and (13).

Fourier Series Expansion for Unknown Boundary Densities We apply the Fourier series
expansion to approximate the potential u and its normal derivative on the boundary

u(sk) = ak
0 +

∞∑
n=1

(
ak

n cos nθk + bk
n sin nθk

)
, sk ∈ Bk , k = 1, 2, . . . , N , (15)

t(sk) = pk
0 +

∞∑
n=1

(
pk

n cos nθk + qk
n sin nθk

)
, sk ∈ Bk , k = 1, 2, . . . , N , (16)

where ak
n, bk

n, pk
n and qk

n (n = 0, 1, 2, · · · ) are the Fourier coefficients and θk is the polar angle
measured related to the x-direction.

IV. MATHEMATICAL FORMULATION AND SOLUTION PROCEDURES

A. Adaptive Observer System

In real implementation, the collocation point x in Eq. (9) can be exactly located on the boundary
since the degenerate kernel is introduced. To analytically carry out the ith circular integral in Eq.
(9), we adaptively set the origin of the observer at the center of the ith circle. Adaptive observer
system is chosen to fully employ the property of degenerate kernels. Figure 3(a, b) show the
boundary integration for the circular boundaries in the adaptive observer system. The key idea of
the present approach is that we employ the null field formulation and we can collocate the point
x on the real boundary due to the introduction of degenerate kernel. It is worthy of note that the
origin of the observer system is located at the center of the corresponding integrating circular
boundary to entirely utilize the geometry of circular boundary for the expansion of degenerate
kernels and boundary densities. The dummy variable in the circular integration is the angle (θ)

instead of the radial ordinate (R).

B. Linear Algebraic Equation

By moving the null-field point xk to the kth circular boundary in the sense of limit for Eq. (9) in
Fig. 3(a), we haveF3

0 =
N∑

k=0

∫
Bk

T (sk , xj )uk(s)dBk(s) −
N∑

k=0

∫
Bk

U(sk , xj )tk(s)dBk(s), xj ∈ Dc. (17)

In the real computation, we select the collocation point on the boundary. If the domain is
unbounded, the outer boundary B0 is a circle with an infinite radius. It is noted that the integration
path is counterclockwise for the outer circle. Otherwise, it is clockwise. For the Bk integral of
the circular boundary, the kernels of U(s, x) and T (s, x) are, respectively, expressed in terms of
degenerate kernels of Eqs. (11) and (12), and u(s) and t(s) are substituted by using the Fourier
series of Eqs. (15) and (16), respectively. In the Bk integration, we set the origin of the observer
system at the center ck to fully utilize the degenerate kernels and Fourier series. By collocating the
null-field point on the boundary from outside of the domain, a linear algebraic system is obtained

[U]{t} = [T]{u}, (18)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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NULL-FIELD APPROACH USING DEGENERATE KERNALS 7

FIG. 3. (a) Sketch of the null-field integral equation in conjunction with the adaptive observer system, (b)
sketch of the boundary integral equation for domain point in conjunction with the adaptive observer system.
[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

where [U] and [T] are the influence matrices with a dimension of N(2M + 1) by N(2M + 1),
{u}, and {t} denote the column vectors of Fourier coefficients with a dimension of N(2M + 1)

by 1 in which M indicates the number of truncated terms in Fourier series, [U], [T], {u}, and {t}
can be defined as follows:

[U] =

⎡
⎢⎢⎢⎣

U00 U01 · · · U0N

U10 U11 · · · U1N

...
...

. . .
...

UN0 UN1 · · · UNN

⎤
⎥⎥⎥⎦ , [T] =

⎡
⎢⎢⎢⎣

T00 T01 · · · T0N

T10 T11 · · · T1N

...
...

. . .
...

TN0 TN1 · · · TNN

⎤
⎥⎥⎥⎦ , (19)

{u} =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u0

u1

u2

...
uN

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, {t} =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t0

t1

t2

...
tN

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (20)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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8 CHEN AND SHEN

where the vectors {uk} and {tk} are in the form of {ak
0 ak

1 bk
1 · · · ak

Mbk
M}T and {pk

0 pk
1 qk

1 · · · pk
M qk

M}T ,
respectively; the first subscript “j” (j = 0, 1, 2, . . . , N) in [Ujk] and [Tjk] denotes the index of the
j th circle where the collocation point is located and the second subscript “k” (k = 0, 1, 2, . . . , N)

denotes the index of the kth circle where boundary data {uk} or {tk} are specified, N is the number
of circular holes in the domain. The coefficient matrix of the linear algebraic system is partitioned
into blocks, and each off-diagonal block corresponds to the influence matrices between two differ-
ent circular cavities. The diagonal blocks are the influence matrices due to itself in each individual
hole. After uniformly collocating the point along the j th circular boundary, the submatrix can be
written as

[Ujk] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

U 0c
jk (φ1) U 1c

jk (φ1) U 1s
jk (φ1) · · · UMc

jk (φ1) UMs
jk (φ1)

U 0c
jk (φ2) U 1c

jk (φ2) U 1s
jk (φ2) · · · UMc

jk (φ2) UMs
jk (φ2)

U 0c
jk (φ3) U 1c

jk (φ3) U 1s
jk (φ3) · · · UMc

jk (φ3) UMs
jk (φ3)

...
...

...
. . .

...
...

U 0c
jk (φ2M) U 1c

jk (φ2M) U 1s
jk (φ2M) · · · UMc

jk (φ2M) UMs
jk (φ2M)

U 0c
jk (φ2M+1) U 1c

jk (φ2M+1) U 1s
jk (φ2M+1) · · · UMc

jk (φ2M+1) UMs
jk (φ2M+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(21)

[Tjk] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T 0c
jk (φ1) T 1c

jk (φ1) T 1s
jk (φ1) · · · T Mc

jk (φ1) T Ms
jk (φ1)

T 0c
jk (φ2) T 1c

jk (φ2) T 1s
jk (φ2) · · · T Mc

jk (φ2) T Ms
jk (φ2)

T 0c
jk (φ3) T 1c

jk (φ3) T 1s
jk (φ3) · · · T Mc

jk (φ3) T Ms
jk (φ3)

...
...

...
. . .

...
...

T 0c
jk (φ2M) T 1c

jk (φ2M) T 1s
jk (φ2M) · · · T Mc

jk (φ2M) T Ms
jk (φ2M)

T 0c
jk (φ2M+1) T 1c

jk (φ2M+1) T 1s
jk (φ2M+1) · · · T Mc

jk (φ2M+1) T Ms
jk (φ2M+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(22)

It is noted that the superscript “0s” in Eqs. (21) and (22) disappears since sin θ = 0. The element
of [Ujk] and [Tjk] are defined respectively as

Unc
jk (φm) =

∫
Bk

U(sk , xm) cos(nθk)Rkdθk , n = 0, 1, 2, . . . , M , m = 1, 2, . . . , 2M + 1, (23)

Uns
jk (φm) =

∫
Bk

U(sk , xm) sin(nθk)Rkdθk , n = 1, 2, . . . , M , m = 1, 2, . . . , 2M + 1, (24)

T ns
jk (φm) =

∫
Bk

T (sk , xm) cos(nθk)Rkdθk , n = 0, 1, 2, . . . , M , m = 1, 2, . . . , 2M + 1, (25)

T ns
jk (φm) =

∫
Bk

T (sk , xm) sin(nθk)Rkdθk , n = 1, 2, . . . , M , m = 1, 2, . . . , 2M + 1, (26)

where φm is the polar angle of the collocating points xm along the boundary.
All the undetermined coefficients are easily determined by using Eq. (18) and the prescribed

boundary conditions. Then the unknown boundary values can be determined and the potential at
any point can be obtained according to Eq. (3).

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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NULL-FIELD APPROACH USING DEGENERATE KERNALS 9

C. Vector Decomposition Technique for the Potential Gradient in the
Hyper-Singular Equation

Equation (4) shows the normal derivative of potential for domain points, special treatment is con-
sidered here. Since the hypersingular equation in mathematical essence is also an alternative to
deal with the problem of degenerate scale [37–39], potential gradient on the boundary is required
to calculate. For the nonconcentric case, special treatment for the normal derivative should be
taken care as the source point and field point locate on different circular boundaries. As shown
in Fig. 4, the normal direction on the boundary (1, 1′) should be superimposed by the radial
derivative (3, 3′) and angular derivative (4, 4′). We called this treatment “vector decomposition
technique.” According to the concept of vector decomposition technique, Eqs. (13) and (14) can
be modified as

L(s, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Li(R, θ ; ρ, φ) = −
∞∑

m=1

(
ρm−1

Rm

)
cos m(θ − φ) cos(ζ − ξ)

−
∞∑

m=1

(
ρm−1

Rm

)
sin m(θ − φ) cos

(
π

2 − ζ + ξ
)

, R > ρ

Le(R, θ ; ρ, φ) = 1
ρ

+
∞∑

m=1

(
Rm

ρm+1

)
cos m(θ − φ) cos(ζ − ξ)

−
∞∑

m=1

(
Rm

ρm+1

)
sin m(θ − φ) cos

(
π

2 − ζ + ξ
)

, ρ > R

, (27)

M(s, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mi(R, θ ; ρ, φ) =
∞∑

m=1

(
mρm−1

Rm+1

)
cos m(θ − φ) cos(ζ − ξ)

−
∞∑

m=1

(
mρm−1

Rm+1

)
sin m(θ − φ) cos

(
π

2 − ζ + ξ
)

, R ≥ ρ

Me(R, θ ; ρ, φ) =
∞∑

m=1

(
mRm−1

ρm+1

)
cos m(θ − φ) cos(ζ − ξ)

−
∞∑

m=1

(
mRm−1

ρm+1

)
sin m(θ − φ) cos

(
π

2 − ζ + ξ
)

, ρ > R

,

(28)

where ζ and ξ are shown in Fig. 4. For the special case, the circles with respect to the same origin F4

of observer, the potential gradient is derived free of special treatment since ζ = ξ .

V. ILLUSTRATIVE EXAMPLES AND DISCUSSIONS

Different branches of engineering applications are given to test our formulation, e.g. steady state
heat conduction, electrostatic potential of wires, and flow of an ideal fluid past cylinders. We will
introduce the three topics item by item as follows:

A. Steady State Heat Conduction Problems

One example derived by Carrier and Pearson [40] and three problems with different boundary
conditions found in Caulk’s article [4] are considered.

Case 1. Eccentric case. An eccentric case with radii a1 and a2 (a1 = 2.5, a2 = 1.0) is shown in
Fig. 5(a). The boundary condition on the inner hole is u = 0 and the potential on the outer circle F5

Numerical Methods for Partial Differential Equations DOI 10.1002/num



J_ID: z8x Customer A_ID: 1173 Cadmus Art: NUM20332 KGL ID: num080003 — 2008/1/31 — page 10 — #10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10 CHEN AND SHEN

FIG. 4. Vector decomposition for the potential gradient in the hypersingular equation. [Color figure can
be viewed in the online issue, which is available at www.interscience.wiley.com.]

is u = 1. The numerical result is shown in Fig. 5(b). Good agreement is made after comparing
the result with the exact solution [10],

u(ρ, φ) = 1

2 ln 2
ln

[
16ρ2 + 1 + 8ρ cos φ

ρ2 + 16 + 8ρ cos φ

]
, (29)

as shown in Fig. 5(c). After determining the Fourier coefficients, we obtain the normal flux
on boundaries. The error distribution of flux on the inner boundary using different approaches
is shown in Fig. 6. Since error only stems from the truncated terms of Fourier series using theF6

present formulation, the results are better than those using BEM. In addition, the results of present
method are also compared with Trefftz method and MFS (Method of Fundamental Solution). Fur-
thermore, we adopted the Parseval theorem to study the convergence rate with different number
of terms in Fourier series since the boundary densities are continuous on [0, 2π ]. The Parserval’s
theorem are defined as below

∫ 2π

0
[f (θ)]2dθ � 2πa2

0 + π

M∑
n=1

(
a2

n + b2
n

)
. (30)

According to Eq. (30), we have the Parseval’s sum versus different number of terms in Fourier
series for inner circle which are plotted in Fig. 7. Only a few terms of Fourier series are requiredF7

to yield acceptable results.

Case 2. Two circular holes in a circle. A circular region of radius R0 contains two cir-
cular holes which are placed at a distance b(b = 1) from the origin. Both holes have the
same radius a as shown in Fig. 8(a). The radii of the circular holes and the external bound-F8

ary are a = 0.5 and R0 = 2.0. The results are shown in Fig. 8(b). After comparing the result

Numerical Methods for Partial Differential Equations DOI 10.1002/num



J_ID: z8x Customer A_ID: 1173 Cadmus Art: NUM20332 KGL ID: num080003 — 2008/1/31 — page 11 — #11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NULL-FIELD APPROACH USING DEGENERATE KERNALS 11

FIG. 5. (a) Laplace problem for the eccentric case, (b) contour plot for the present method (42 collocation
points), (c) contour plot for the exact solution [40].

AQ8

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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12 CHEN AND SHEN

FIG. 6. The relative error distribution for eccentric case using four methods (a1 = 2.5, normal scale).
[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

FIG. 7. Parseval’s sum for the inner circle.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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NULL-FIELD APPROACH USING DEGENERATE KERNALS 13

FIG. 8. (a) Problem statements, (b) contour plot for the present method (63 collocation points),
(c) quarter part of contour plot for Caulk’s data [4], (d) contour plot for FEM-ABAQUS (6502
elements). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

with the quarter part of Caulk’s result in Fig. 8(c) [4], good agreement is made. ABAQUS
shows the result as well as the present procedure with plenty of elements (6502 elements) in
Fig. 8(d).

Case 3. Three circular holes in a circle. Consider the same region as in the above exam-
ple, but now add a hole of radius c at the center. The boundary conditions are different from
each other as shown in Fig. 9(a). The radii of the holes are a = c = 0.4 and the distance F9

b = 1.2 from the center of the external boundary. Figure 9(b) shows the numerical results
obtained using the present method. The quarter part of the potential by Caulk [4] is shown in
Fig. 9(c) for comparison, good agreement is made. Figure 9(d) shows the potential contour using
ABAQUS.

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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14 CHEN AND SHEN

FIG. 9. (a) Problem statements, (b) contour plot for the present method (84 collocation points), (c) quarter
part of contour plot for Caulk’s data [4], (d) contour plot for FEM-ABAQUS (8050 elements). [Color figure
can be viewed in the online issue, which is available at www.interscience.wiley.com.]

B. Electrostatic Potential of Wires

Case 1. Electrostatic potential of two parallel cylinders. The first electrostatic of wires
problem reported in [22] is offered to verify the present procedure. Two circular cylindrical con-
ductors of radius a with centers at distance 2l from each other are charged to potentials 1 and −1,
respectively (see Fig. 10(a)). Numerical results and exact solution by Lebedev et al. are shown inF10

Fig. 10(b, c), respectively.

Case 2. Hexagonal electrostatic potential. The other one is a hexagonal electrostatic field
of wires which has been solved by Onishi [41]. All the wires have equal radii and the bound-
ary conditions are shown in Fig. 11(a). Figure 11(b) agrees well with Onishi’s data as shown inF11

Fig. 11(c).

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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NULL-FIELD APPROACH USING DEGENERATE KERNALS 15

FIG. 10. (a) Two parallel cylinder held positive and negative potentials in an infinite plane, (b) contour
plot for the present method (42 collocation points), (c) contour plot for the exact solution [32].

C. Velocity Potential in a Uniform Flow of an Ideal Fluid

Case 1. Uniform flows past a circular cylinder. Panton [42] have solved the ideal flow about
a circular cylinder as shown in Fig. 12(a) with a uniform stream by superposition of a doublet F12

and a stream. The velocity components are computed by complex variables in the cylindrical
coordinates as

vr = v∞
(

1 − a2

r2

)
cos θ , (31)

vθ = −v∞
(

1 + a2

r2

)
sin θ , (32)

where v∞ is the velocity of the flow far from the cylinders and a is the radius of the cylinder.
We also revisited the single-cylinder problem by using the proposed formulation. Our results are

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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16 CHEN AND SHEN

FIG. 11. (a) Hexagonal electrostatic potential in an infinite plane, (b) contour plot for the present method
(126 collocation points), (c) contour plot for Onishi’s data [44].

consistent with those derived by Panton. The velocity fields with different incident angles γ are
shown in Fig. 12(b, c).

Case 2. Uniform flows past two parallel cylinders. The other example is referred to [22].
Two parallel cylinders of radius a as shown in Fig. 13(a) with axes a distance 2l apart are placedF13

in a plane-parallel flow of an ideal fluid, making angle γ with the line joining the centers of the
cylinders. Find the resulting velocity potential. The analytical solution was derived in the bipolar
coordinates by Lebedev et al.

u(α, β) = v∞√
l2 − a2

×
{

cos γ

[
sin hα

cos hα+cos β
+ 2

∞∑
n=1

(−1)n e−nα0

cos hnα0
sin hnα cos nβ

]

+ sin γ

[
sin β

cos hα+cos β
+ 2

∞∑
n=1

(−1)n e−nα0

sin hnα0
cos hnα sin nβ

]}
,

(33)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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NULL-FIELD APPROACH USING DEGENERATE KERNALS 17

FIG. 12. (a) Flow of an ideal fluid past single cylinder [27], (b) velocity field (γ = 3π
4 ), (c) velocity field

(γ = π).

where cos hα0 = l/a and v∞ is the velocity of the flow far from the cylinders. The velocity
fields are plotted as shown in Fig. 13(b, c) when the angle γ is 3π/4 and π . For such unbounded
problems, FEM is not user friendly and needs truncation of the domain.

D. Applications to Half-Plane Problems

Half-plane problems with circular holes [22, 43–45] are considered as the special cases. For the
special cases, the image method [19, 23] was employed to satisfy the boundary condition. To
avoid the boundary integral along B0 in Eq. (9) and to satisfy the homogeneous Dirichlet boundary
condition, the Green’s function using the image point is obtained

U(s; x, x ′) = ln |x − s| − ln |x ′ − s|, (34)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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18 CHEN AND SHEN

FIG. 13. (a) Flow of an ideal fluid past two parallel cylinders [32], (b) velocity field (γ = 3π
4 ), (c) velocity

field (γ = π).

such that

U(s; x, x ′)|s∈B0 = 0. (35)

Then, Eqs. (3) and (9) are reduced to

2πu(x) =
∫

B

T (s; x, x ′)u(s)dB(s) −
∫

B

U(s; x, x ′)t(s)dB(s), x ∈ D, (36)

0 =
∫

B

T (s; x, x ′)u(s)dB(s) −
∫

B

U(s; x, x ′)t(s)dB(s), x ∈ Dc, (37)

where U(s; x, x ′) denotes the Green’s function. On the basis of the Fig. 14, we employ the imageF14

concept and obtain

U(s, x ′) = ln r ′ =

⎧⎪⎪⎨
⎪⎪⎩

Ui(R, θ ; ρ ′, φ′) = ln R −
∞∑

m=1

1
m

(
ρ′
R

)m

cos m(θ − φ′), R > ρ ′

Ue(R, θ ; ρ ′, φ′) = ln ρ ′ −
∞∑

m=1

1
m

(
R

ρ′
)m

cos m(θ − φ′), ρ ′ > R

, (38)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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NULL-FIELD APPROACH USING DEGENERATE KERNALS 19

FIG. 14. Considered problem and the auxiliary system. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

where x ′ = (ρ ′, φ′) is the image point outside the half-plane domain. The degenerate kernels for
the Green’s function are

U(s; x, x ′) = ln r − ln r ′

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ui(R, θ ; ρ, φ, ρ ′, φ′) = ln R −
∞∑

m=1

1
m

(
ρ

R

)m
cos m(θ − φ)

− ln ρ ′ +
∞∑

m=1

1
m

(
R

ρ′
)m

cos m(θ − φ′), ρ ′ > R ≥ ρ

Ue(R, θ ; ρ, φ, ρ ′, φ′) = ln ρ −
∞∑

m=1

1
m

(
R

ρ

)m

cos m(θ − φ)

− ln ρ ′ +
∞∑

m=1

1
m

(
R

ρ′
)m

cos m(θ − φ′), ρ ′ > ρ > R

,

(39)

After taking the normal derivative with respect to Eq. (38), the kernel function, T (s; x, x ′), can be
derived as

T (s; x, x ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T i(R, θ ; ρ, φ, ρ ′, φ′) = − 1
R

−
∞∑

m=1

(
ρm

Rm+1

)
cos m(θ − φ)

−
∞∑

m=1

(
Rm−1

ρ′m
)

cos m(θ − φ′), ρ ′ > R > ρ

T e(R, θ ; ρ, φ, ρ ′, φ′) =
∞∑

m=1

(
Rm−1

ρm

)
cos m(θ − φ)

−
∞∑

m=1

(
Rm−1

ρ′m
)

cos m(θ − φ′), ρ ′ > ρ > R

. (40)

First, a steady state heat transfer problem with semicircle removed [46] is considered as shown in
Fig. 15(a). After introducing the image concept, we determine the isotherms in the semi-infinite F15

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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20 CHEN AND SHEN

FIG. 15. (a) Steady state heat conduction in a half-plane with semicircle removed, (b) contour plot for the
present method (21 collocation points), (c) contour plot for the analytical solution [42].

plane. Figure 15(b, c) show the contour plot for the present method and the analytical solution,
respectively. Figure 16(a) give the sketches of the half-plane problems with mixed-type bound-
ary conditions. Figure 16(b) denotes the contour plot of potential using the present method, and
Fig. 16(c) is the available exact solutions [22]. The relative error is addressed in Fig. 16(d), and it isF16

found that the results of mixed-type case agree well after comparing them with the exact solution.

VI. CONCLUDING REMARKS

For the Laplace problems with circular boundaries, we have proposed a special BIEM by using
degenerate kernels, null-field integral equation and Fourier series in an adaptive observer system.
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NULL-FIELD APPROACH USING DEGENERATE KERNALS 21

FIG. 16. (a) Half-plane problem subject to mixed-type boundary conditions, (b) contour plot for the present
method (21 collocation points), (c) contour plot for the exact solution [32], (d) relative error of boundary
potential by using the present method.

The method shows great generality and versatility for the problems with multiple circular holes
of arbitrary radii and positions. Numerical results agree very well with the available exact solu-
tion and FEM (ABAQUS) and data for only ten terms in Fourier series. Engineering problems
with circular boundary which satisfy the Laplace equation can be solved by using the proposed
approach in the unified manner.
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