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Analytical study and numerical experiments for spurious eigensolutions
of interior problem and the fictitious wave number of exterior acoustic

problem using BEM
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Abstract

In this report the reason why the spurious solution occursin the interior eigenproblem

using red-pat BEM and why the fictitious solution occurs in numerica computations of the
exterior Helmholtz integrd equation a certain characteristic frequencies is investigated. It was
recently found that the redl-part BEM for the interior problem results in spurious eigensolutions. The
real-part BEM results in spurious solutions for interior problems in a amilar way thet the sngular
integral equation results in fictitious solutions for the exterior problem. Both the two problems stem
from the rank deficiency of the influence matrix. By using the circulant properties and degenerate
kernels, an andyticd scheme in a discrete sysem of a circular case is achieved. Numerical

experiments are found to agree with the analytica results.




1 INTRODUCTION

Acoudtic problems are generdly modeed using the wave equation. While the solution to the
origind boundary vaue problem in the domain exterior to the boundary is perfectly unique for 4l
wave numbers, thisis not the case for the corresponding integra equation formulation, which bresks
down at certain frequencies known as irregular frequencies or fictitious frequencies. This problem is
completely nonphysica because there are no eigenvaues for the exterior problems. Schenck [1]
proposed a CHIEF (Combined Helmhoaltz Interior integrd Equation Formulation) method, which is
easy to implement and is efficient but ill has some drawbacks. Burton and Miller [2] proposed an
integrd equation that was vdid for al wave numbers by forming alinear combination of the sngular
integral equation and its normd derivetive. In the case of a fictitious frequency, the resulting
coefficient matrix for the exterior acoustic problems becomes singular o ill-conditioned. This means
that the boundary integra equations are not linearly independent and the matrix is rank deficient. In
the fictitious-frequency case, the rank of the coefficient matrix is less than 2N, where 2N is the
number of boundary eements. The SVD (Singular Vaue Decompostion) technique can be
employed to detect the fictitious frequency by checking whether or not the minimum sngular value,
S, iszero.

For interior problems, eigensolutions are often encountered not anly in vibration problems but
adso in acoudtics. Based on the complex-vaued boundary dement method (BEM) [3], the
eigenvaues and egenmodes can be determined. Nevertheless, complex-vaued computation is
required. To avoid complex-vaued computation the MRM approach has been proposed. In the
other hand, Ta and Shaw [4] employed only red-pat kernds to solve the eigenproblem. A
smplified method using only the red-part or imaginary-part kernel was aso presented by De Mey
[5]. Although De Mey found that the zeros for a real-part determinant may be different from those
for imaginary-part determinant, the spurious solutions were not discovered. Kang et al. [6]
employed the nondimensiond dynamic influence function method to solve the eigenproblem. Chen et
al. [7] commented that NDIF method is a specid case of imaginary-part BEM. The reason why
spurious eigenvaues occur in the red-part BEM is the loss of the congtraints, which was investigated
by Yieh et al. [8]. The fewer number of congtraint equations makes the solution space larger. The
Sourious eigensolutions can be filtered out usng many dterndives e.g., the complex vaued
formulation, the domain partition technique, the dua formulation in conjunction with SVD [9] and the
CHEEF (Combined Helmholtz Exterior integral Equation Formulation) method [10].



Based on the circulant properties and degenerate kernedls, the reason why the fictitious wave
number and spurious elgensolution occur can be easly understood. We explore the mechanism of
them and found the relaionship between the spurious eigenvdue (interior problem) and fictitious

frequency (exterior problem).

2 AN UNIFIED FORMULATION FOR HELMHOLTZ INTERIOR AND

EXTERIOR PROBLEMS
The governing eguation is the Helmholtz equation as follows.
(N? +k*)u(x,%,) =0, (x,%,)T D, D
where {2 is the Laplacian operator, D can be p' for interior problem and D can be pefor
exterior problem and k is the wave number, which is angular frequency over the speed of sound. The

unified integral formulation for the Hmholtz equation can be written as
0= QT(S, X)u(s)dB(s) - QU (s, X)t(s)dB(s) , 2
0= @M (s, X)u(s)dB(s) - Q L(s,Xt(s)dB(s), (3)

where o - ﬂ;ﬁs) and | (- ﬂUﬂ(ns,x), M(S,X):ﬂ;l:%x), B denotes the boundary enclosing D and

U=U(s,x), T=T'(s,x), for exterior problem,and u =u®(s,x), T =T¢(s,x), for interior problem.
Thekerndsof u', ue, T',and T°can be derived from multipole expanson and the explicit forms

of the four kerndswill be daborated on latey.

3 ANALYTICAL STUDY FOR THE SPURIOUS AND FICTITIOUS

SOLUTIONS USING DEGENERATE KERNELS AND CIRCULANTS
By using the two bases of first and second-kind Bessdl functions, J,.(kx) and Y, (kx), we can

decompose the kernd functions into
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where x isspecified by (r,0) in polar coordinate. The definitionsof r , Rand q for interior and

exterior problems are shown in Fig.1 and Fig.2, respectively. Based on the circulants for the finite
d.o.f. system by discretizing 2N congtant elements, we have
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where m=0,1---,2N-1 and G(g) carbe U',U°T' T5L,L°,M'and M*. By usng the

smilar properties for al the eight matrices with respect to circulant, we have

detfU '] =1l (11 (1) (10)
detfU°T=1 ol (1,1 )y o) (11)
det[T ] = mymy (I m--m_ )(my--myy_p) (12)
det[L'] = mym\ (I me--my_ ) (M- m ) (13)
det[T'] =Ugly (U Uy 1) (U - U, ) (14)
det] L°] = Uy (Uy -+ -Uy_ (UL 3+ UL . ) (15)
det] M '] = Kokyy (kg Ky 1) (K g K o)) (16)
detfM ©] = Kok (Ky Ky 1) (K g K. (n.y) 17)
where
I =p%r (-13,(kr) +Y/(kr))J,(kr), (18)
m =p2kr (-iJ,(kr) +Y, (k ))J, (kr), (19)
u, =p2kr (-iJ; (kr) +Y, (kr )) J&kr), (20)
(21)
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and | =0,#1,#2,---+ (N - 1),N.
For the exterior radiation problem, consdering the Dirichlet rediation problem, i.e., u(x)=0
is consdered. Therefore, we obtain the following equation,
[UI{t} =[TH{T}. (22)

Based on Egs. (18) and (22), the possible fictitious frequencies occur at the position k which satisfies

-1y (k) +Y (kr))J, (kr) =0 (23)
Since (-iJ (kr)+Y, (k) isnever zero, the k value satisfing Ec.(23), implies

J(kr)=0. (24)

Schenck used the CHIEF method, which employs the boundary integral equetions by collocating the
interior point as an auxiliary condition to make up deficient congtraint condition. Combination of the
integral equations for the boundary points and those in the interior points yields the over-determined
equation system,

T ®
where the superscript B denotes the boundary, the subscript | denotes the interior domain and a is
the number of additiond points. Chen et al. [11] suggested the optimum numbers and proper
positions for the collocation points in the interior domain by usng andytical sudy and numerica
experiments.

Burton and Miller proposed an integral equation by combining the singular integra equation and
itsnorma derivative,

U+ LI = [T+ M), (26)
Eq.(26) was vdid for dl wave numbers.
For the interior Dirichlet problem, the complex-vaued UT and LM formulation can obtain the
elgenequations
(3, (kr) +iY;(kr ))J, (kr ) =0 (27)

(-3, (kr) +Y, (kr))J, (kr) =0. (28)
Since (J (kr)+iY(kr)) ad (J(kr)+iY (k) ae never zero, the true eigenvaues are the roots of
J,(kr) =0 for both UT and LM equetions.

By employing the red-part UT equation (18), we obtain the elgenequation,



Y(kr)J (kr)=0, 1=0%L--+(N- D,N. (29)
The k vaues sdtisfying Eq.(29) may be spurious eigenvaue (Y (kr)=0) or true eigenvaue
(3,(kr) =0). If we employ the red-part LM equation (19), we obtain the eigenequation

Y'(kr )3, (kr) =0, | =02L-+(N-1),N. (30)
The k vaues satisfying Eq.(30) may be spurious eigenvaue (Y'(kr)=0) or true eigenvaue
(J3,(kr) =0). After comparing Egs.(29) and (30) with Egs.(18) and (19), it can be redlized that the
reeson why spurious egenvaues occur is due to the loss of condraints in the imaginary-part
information. Chen et al. [10] proposed the CHEEF method by combining the integral equations for
the boundary points and those in the exterior points. It yidds the over-determined equation system,

& 2vanity =0, (31)

é Ua u
where the subscript e denotes the exterior domain. It can filter out the spurious eigensolutions
effidently.

4 NUMERICAL EXAMPLES

Case 1. Fictitious frequency for exterior problem

For the exterior acoustic problem, we consider the Neumann problem (nonuniform radiation of an

infinite drcular cylinder a=1.0m). This problem was chosen because the exact solutionis known [12].
In this example we computed the nonuniform radiation of an infinite circular cylinder. The Neumann

boundary condition is gpplied to the cylinder surface. The portion (-a <q <a ) is assigned a unit

vaue, while the remaining portion is assigned a homogeneous vaue. The exact solution is given by

_ 2 ¥sinpa) HY (kr)
U = T P (kg

cosng,r >a,0<q<2p’

where H® and H® denotes the fird kind Hankel function with order n and its derivative,

respectively.  Thirty-two elements are adopted in the BEM mesh and a =5p /32 for this case.
Using the sngular (UT) equation, the positions where the irregular vaues occur can be found in Fig.3

for the solution u(a,0;k) versus k. It is found that irregular values occur a the podtions of J,
which isthe mth zero of ; (kq). It agrees well as predicted in Eq.(24). Fig.4 show the solution

u(a,0;k) versus k udng the LM equation, the positions where the irregular values occur a the

postionsof J, , whichisthem-thzeroof j (ka). Fig.5 showsthe solution u(a,0;k) versus k using

nm?

the Burton and Miller gpproach. Fig.6 show the solution u(a,0;k) versus k using the CHIEF method.



Both of these methods can avoid the nonunique problem.

Case 2. Spurious eigensolution for interior problem

For the numerica experiment, we considered a circular cavity with a radius 1.0 m subjected to the
Dirichlet boundary condition. Fig.7 shows the minimum singular value, s, versus k, where the true
and spurious eigenva ues are obtained if only red-part UT equation is used. In the range of O<k<5,
we have two true eigenvalues (y,,(2405 and j,,(3.832))and five spurious eigenvalues (v, (0.894) ,
Y,(2197) Y,,(3.384), Y,,(3958) ad v, (a527)). It agreeswell as predicted in Eq.(29). Fig.8 shows
the ill-posed behavior [13], since only imaginary-part UT equetion is used. Theoreticaly spesking,
we can obtain the true and spurious eigenvaues [14], but the coefficient matrix is ill-posed in
numerica computation. Fig.9 shows the absolute vaue of determinant using the complex UT
equation, only true eigenvaues are obtained. Fig.10 shows the fird minimum sngular velue, s |,

versus k, where only the true eigenvalues are obtained usng the CHEEF method.

5 CONCLUSIONS

In this report, the mechanism of fictitious frequency and spurious eigenvaue were investigated
using the degenerate kernels and circulants for a discrete system of acircle. The reason why spurious
eigenvaues occur in the red-pat BEM and why fictitious frequencies results from the rank
deficiency of influence matrix were explained. The numerica results agree well with the anaytical
prediction using circulants in the circular case. The reaionship between interior eigensolution
problem and exterior fictitious frequency problem are summarized in Table 1.
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Fig.4 u(a,0;k) versusk using
the LM method
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CHIEF BEM

- CHEEF BEM Burton &
Real-pat BEM | Imag.-pat BEM | Comp. BEM BEM | BEM €GB
Method &2, U Method Miller e ANy
[16] [7,14] [4] & N g[10] [15] | [15] e Ga @
e G, 0 [2]
[1,11]
Equation uT LM uT LM uT LM uT LM Equation uT LM UT+IELM UT or LM
Dirichlet B.C. andytica
andyticd spurious | Y, Y4 J, J¢ fictitious | J, J¢
solution solution
Neumann B.C. andyticd
andytica sourious | Y, Y ¢ J, J¢ fictiious | J, J¢
solution solution

Table 1. The relationship between spurious solution (interior problem) and fictitious solution (exterior problem).




