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ABSTRACT. A new finite difference method for the Helmholtz equation is pre-
sented. The method involves replacing the standard “weights” in the central
difference quotients (Sects. 2.1, 2.2, and 2.3) by weights that are optimal in
a sense that will be explained in the Sects. just mentioned. The calculation
of the optimal weights involves some complicated and error prone manipu-
lations of integral formulas that is best done using computer aided symbolic
computation (SC). In addition, we discuss the important problem of interpo-
lation involving meshes that have been refined in certain subregions. Analytic
formulae are derived using SC for these interpolation schemes. Our results
are discussed in Sect. 5. Some hints about the computer methods we used
to accomplish these results are given in the Appendix. More information is
available and access to that information is referenced.

While we do not want to make SC the focus of this work, we also do not
want to underestimate its value. Armed with robust and efficient SC libraries,
a researcher can comfortably and conveniently experiment with ideas that he
or she might not examine otherwise.

1. INTRODUCTION

A standard computational tool for approximating solutions to systems of partial
differential equations with boundary conditions is the finite difference method [1]
[2] [3]. In the case of the Helmholtz equation

Viu = —I‘QQU, (1)

it was shown in Chapt. four of [4] that numerical errors that can occur in the central
difference quotients could be corrected without increasing the order by optimally
adjusting “weights” for these quotients. This material will be reviewed in Sect. 2.
The problem of accurately interpolating when a mesh is refined in some subregion
of interest for a given initial mesh for the Helmholtz equation was also addressed
in Chapt. five of [4] and this will be reviewed in Sect. 4. The calculations neces-
sary for this involved working out some rather complicated integral formulas and
manipulating complex algebraic expressions, all of which can be tedious and error
prone. In this paper, it will be shown how SC can be used to relieve the tedium
and eliminate the inevitable typographical errors involved in hand calculations.

2. OPTIMIZING WEIGHTS IN A FINITE DIFFERENCE METHOD FOR THE
HELMHOLTZ EQUATION

2.1. Dimension one. Consider a function w of one variable. Classical finite dif-
ference schemes are derived under the assumption that u can be expanded in terms
1
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of a Taylor series. One then has

wz+h) = ulz)+ u'(m)% + u”(a:)% +...,
w(x—h) = u(x) —u’(m)%—ku"(x)% - (2)

from which the approximations

, _u(z+h)—u(z—h)
wlz) ~ 2h ’
u(x + h) — 2u(x) + u(x — h)
W)~ - 3)
are easily derived. The idea in [4] is to replace the coefficient two in the approxi-
mation above by a new coefficient w which minimizes

o w(z + h) — wu(z) +u(z — h) ‘ .

(4)

2
To derive this new weight, consider u(z + h) + u(z — h) in general. We have
h? h*
u(z+h)+ulx—h)=2 (u(x) + u(z)(x)g + u® (x)z +.. > (5)
from equations (2) above. By iterating the relation u” = —x2u, it follows that
u(2n) — (_1)nﬁ2nu. (6)
Substituting these values into Eq. (5) gives
w(x + h) + u(z — h) = 2cos (kh)u. (7)

Thus, the equation

K2y — u"(z) = u(z+h) — wz;L(Qm) + u(x — h) .

has an ezxact solution in this case, viz.
w = 2cos (kh) + (kh)2. 9)
and we have an “adjusted weight” for a new finite difference scheme.

Remark 2.1. In this case, it is actually well known that the exact solution to the
one dimensional Helmholtz equation is given by ae*®I + Be=ki (2 = —1) where the
constants a and B are determined by the boundary values and the adjusted weight
above can be directly calculated from this as is done in [4].

2.2. Dimension two. Eq. (1) in dimension two is
Ugy + Uyy = _KQU(J:’ y)' (10)
The classic central difference scheme gives the approximation

w(x + h,y) +ule — h,y) — du(x,y) +u(z,y +h) +u(z,y — h
e+t o M) U o) b)) ¥y =)

and we want to replace the coefficient four above by an optimal (in a sense to
be made precise) weight w. Unfortunately, the method of the last section does
not directly generalize due to the existence of cross derivative terms. However, an
argument was given in [4] which gives a satisfactory answer that is optimal in the
sense that we recall here.
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Consider Eq. (10) in the absence of boundaries. It is known that the plane waves

f0 (LL', y) _ ejm(w cos (0)+y sin (0)) (12)
are solutions (j2 = —1). A straightforward calculation gives
fo(z +h,y) + folx = h,y) + folw,y + h) + foly,x — h) =
2(cos (k hcos () + cos (k hsin (0)))fo(z,y). (13)

Thus, in this case, we would like to find w such that
2(cos (khcos (0)) 4 cos (khsin (0))) fo —w fo
B2
is as close to —k2fg as possible. Equivalently, we want to find an optimal w such
that

(14)

2(cos (kh cos (6)) + cos (khsin (0))) — (w — K2h?) = 0. (15)

Eq. (15) does not have a solution that is independent of the angle 6, however, it is
reasonable to try to minimize the average over all angles and hope that there is a
unique solution. In other words, we seek a solution w to the equation

/0%(2(005 (kh cos (8)) + cos (khsin (0))) — (w — k2h?))dh = 0. (16)
Equivalently,
2w = 2 /027r (cos (rh cos () + cos (khsin (0)))d6 + 2nK>h?, (17)
and there is a unique solution
w= % /O%(cos (khcos (0)) + cos (khsin (0)))d0 + k*h2. (18)

In fact, there is an analytic expression for this integral in terms of the Bessel function
of the first kind. We have

27
/ (cos (khcos (0)) + cos (khsin (0)))d0 = 4nJy(kh). (19)
0
This follows from the classic formula [5] (where z = x + yj)

Jo(z) = 1 /07T cos (zsin (9))dd = 1 /07T cos (z cos (0))do (20)

™ ™

and the easily proven formulas
™ 2m
/ cos (zsin (0))dd = / cos (zsin (6))d6,
0 ™
T 2m
/ cos (zcos (0))dd = / cos (z cos (6))d6. (21)
0 ™

Thus, in dimension two, we have the adjusted weight
w = 4Jy(kh) + (kh)%. (22)

Note that, in this case, the integral involved is easy enough that there is little
trouble in getting the required expressions by hand. We will nonetheless note that
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the problem can be phrased in terms of “rewrite rule” transformations suitable for
machine calculation, viz.

2m 27
/ cos (zsin (z))dx +— / cos (z cos (z))dx,
0 0
2
/ cos (zcos (z))dx +— 2mJo(z). (23)
0
It is then a simple matter of applying the first rule to get
2m 2m
/ (cos (kh cos (x)) + cos (khsin (z))dx — 2/ cos (kh cos (x))dx (24)
0 0
and then applying the second rule,
2m
2/ cos (kh cos (z))dx — 4 Jo(x). (25)
0

Most symbolic computational systems allow the user to define such transformations
and it is easy to see how a program might be written to automate the process.

2.3. Dimension three. In dimension three, Eq. (1) becomes
Ugy + Uyy + Uy, = 752’“‘(:% Y, Z) (26)
and the standard central difference approximation for the left hand side of (26) is
’U,(J?— h,y,Z) +u($+h,y,2’) —‘ru(l',y B h,Z) +U(l‘,y—|—h,2)
h2
U(ZL‘7y, Z— h) + ’U,({L'7y, z+ h) — 6’[1/((E7y7 Z)
+
2
and we want to replace the coefficient six in u by an optimal w. The method used
in dimension two generalizes in a straightforward way using the plane waves

(27)

fG ¢(CI’,‘, n Z) — ejrc(sin (0) cos (¢)z+sin (0) sin (¢)y—+cos (a)z). (28)

Substituting v = fy 4 into (27), replacing the six by w, and letting
©(0, ¢) = cos (khsin (0) cos (¢)) + cos (khsin (6) sin (¢)) + cos (kh cos (0)), (29)

we get
290(9a (b)f@, - (Uf07
which we want to be as close as possible to —2fy 4, i.e. we want
20(0, ) + h?k* —w (31)

as close to zero as possible. Again, we cannot solve this uniformly for all § and
©, but we can try to minimize the average by integrating (31) over an arbitrary
sphere of non-zero radius (equivalently, in this case, over a sphere of radius one)
and setting that equal to zero to get

/0% (/oﬂwsin(ﬂ)d@)) d(¢) = /O% </0ﬂ(2“”<9’ #)+ (k) Sin(e)d(9)> 1
(32)
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ie.

27 T 2
! ( [ .0+ )sinw)d(e)) a(6), (33)

w=—
27 Jo 0 2

Using (29), we have w = p; + ps + p3 + ps where

no= o ( /O”cosmm<9>Cos<¢>>sm<a>d<9>> a(),

po= ( /Oﬂcoswhsm(e)sin(so))sin<0>d<o>) (o),

o= o ( /Oﬂcosmhcos<e>>sin<9>d<9>> a(9),

o= o ([ ) sin(0)d(6)) dio). (34)

In this case, hand derivation of analytical expressions for these integrals is ex-
tremely tedious and “typo prone” so we want to, at the very least, check any hand
calculations using symbolic computation on a computer.

3. SymBoLIC COMPUTATION

While most computer algebra systems such as Macsyma [6], REDUCE [7], Maple
[8], Mathematica [9], and AXIOM [10], etc., include symbolic integration routines,
they are not set up to handle the kinds of integrations above in general.

As already mentioned in the paragraph after Eq. (22), one possible way to pro-
ceed is to implement a customized set of rewrite rules [11] [12] [13] based on tables
such as those given in [5] [14] [15]. There can be some problems with such an
approach. Applying rewrite rule transformations in a meaningful and productive
way can be challenging or even impossible (see the references just cited). Often,
any attempts to try to automate such transformations can be doomed to endlessly
cycle into each other without yielding any mathematical insight. For that reason,
we need a system that gives very tight control and possible user interaction with
rewrite rule transformations. In fact, it is certainly desirable to have total control
of what one’s code is doing when executing a rewrite rule transformation and to
have complete knowledge of what that transformation actually accomplishes. The
methods we employ allow us to accomplish these goals.

3.1. Needed functionality. The kinds of symbolic computational facilities needed
for this work are:

e Symbolic differentiation,
e the ability to create user defined operators,
e the ability to define the behavior of user defined operators, e.g.
— the specification of the partial derivatives of a given operator in the sys-
tem,
— the ability to specify (bi)linearity of an operator with real or complex
coefficients, etc.,
e the ability to transform subexpressions of a given expression in a very con-
trolled, well-defined manner.
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3.2. ExprLib. While it is possible to implement your own rewrite rule systems in
any of the systems mentioned, we have chosen another system, ExprLib [16] [17],
for several reasons:

e The library gives very precise user control over the parse tree of a given
expression,

e it gives very precise user control of the way various subexpressions may be
transformed in a given expression,

e it is extremely efficient as compared to other available systems and this be-
comes very important when we calculate precise interpolation formulas in
Sect. 4.

e it is a portable ANSI C library which easily interfaces with other code as any
C library does.

The ExprLib library has many facilities often found in symbolic computation sys-
tems (often called “computer algebra” systems) such as the ones mentioned above.
There are some important differences. As an ANSI C library, it is compiled rather
than interpreted. While most symbolic computation systems stress “exact” com-
putations (arbitrary integer or rational constants) and arbitrary precision floating
point constants, ExprLib’s default is the C type double. We have found this quite
sufficient for all of the work we describe.

We wrote an ExprLib program to compute the adjusted weights for the new finite
difference method just described. Some details are in the appendix of this paper
and more details can be found at [18]. Here we will just summarize the results for
the Helmholtz equation in Sect. 2, we have

w = 2cos(kh) + (kh)?> in dimension one,
w = 4Jo(kh)+ (kh)? in dimension two,
w = 6jo(kh) + (kh)?> in dimension three. (35)

4. INTERPOLATION

In applying such a modified finite difference method as above, one establishes
an error criteria. Then a mesh is chosen with fine enough resolution to achieve the
desired accuracy. But there are several reasons why it may be desirable for the
mesh to be reduced even farther than required for a given accuracy. For example,
when dense materials are examined, the wave length inside the materials decreases,
and so a finer mesh is required in order to achieve the desired accuracy. Another
reason may be due to the physical geometry itself. The geometry in question may
include a smooth surface in which the radius of curvature may be too small to be
sufficiently resolved with the original mesh. Yet another justification occurs when
small objects must be resolved. Objects that are smaller than the size of a single
cell are poorly approximated.

The problem with using a finer mesh, is that it requires larger memory allocations
and longer computation times. It would be preferable if a coarse mesh could be
used over the majority of the computational domain, while a finer mesh is used only
around the areas required. Traditionally, this has been accomplished by determining
interpolate information between meshes as follows. If a field value was required in
a location that was not sampled, an average value of the surrounding fields would
be used. Unfortunately this technique causes large artificial reflections, and thus
severely contaminates the solution. The reason that these interpolating schemes fail
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is that there is no physical justification for the interpolating scheme used. Averages
or centroids are often used in order to interpolate the field information yielding
results that are often poor at best.

A systematic method will be presented in order to optimally choose the weights
required in an interpolation scheme. For the purpose of this explanation, the fol-
lowing meshing scheme will be adopted. First, a coarse mesh is established and
placed throughout the computational domain. Next, regions where the resolutions
are to be increased are identified. In these sensitive regions the resolutions are
doubled. Therefore, every coarse cell in this region is now divided into four finer
cells. When adjacent cells do not have the same spatial resolution, the region will
be referred to as a transition region. If still finer resolutions are required, the pro-
cess is again repeated. By adopting this meshing scheme, all transition regions will
contain adjacent cells with a 2:1 ratio of resolutions. As illustrated in Fig. 1 below:

FIGURE 1. mesh refinement

In adopting this convention, interpolation takes place for three different stencil
patterns. These stencils are referred to as the middle stencil (See Fig. 2), the cross
stencil (See Fig. 3), and the corner stencil (See Fig. 4).

4.1. Middle interpolation. In Fig. 2, the shorter distances between the nodes
shown is h and the two longer distances are 2h. The coordinates of node ng are
assumed to be (0,0). The labeling of nodes starts at (0,0) and proceeds clockwise.
So, e.g. ny = (h,2h). In deriving this interpolation scheme, it is assumed that
the region surrounding the stencil is homogeneous. First, a plane wave which
propagates at an arbitrary direction, exists in the homogeneous region and is defined
as f — erd(@cos (¢)+ysin(¢))

When the distance between the nodes are defined as in Fig. 2, the value of the
plane wave sampled at the nodal locations shown is given by

.fO — f(no) =1, fl — f(nl) — ejnhcos(@’ f2 — f(ng) — ejnh(cos((;5)7sin(ct>))7

fs f(ng) = e~ Jjrhsin (¢), fa=f(ng) = e—drh(cos (¢)+sin (¢)),
fs f(nS) — e Jrhcos ((i))’ fo = f(nt")) — ejlih(f cos (¢)+2sin (d)))’
fr = f(ng) = evh(eos (0)+25in (@) (36)
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FIGURE 2. the middle stencil

It is now desired to approximate the field in the center of the stencil fy as a
function of the neighboring nodes

wo fo + w1 f1 + wa fo + wa f3 + wafs +ws fs + we fo + wr fr
2

= Res(¢) =~ 0. (37)

This equation could be solved for a given propagation angle. However, for arbi-
trary scatters, there is no way of knowing which angle we would need to solve for.
Assuming that all angles are equally probable, we solve the approximation in an
average sense

21
h?Res(¢)d¢ = 0. (38)
0

Performing the integration and solving for wq yields

wo = = [ (wy + ws + w5)Jo(kh) + (w2 + wa)Jo(V2RR) + (ws + wr)Jo(VEwR) .
(39)
An optimal value for wy is known as a function of the other weights. Before solving
for the other weights we reduce the number of unknowns further by exploiting the
symmetry of the problem. The relations (w; = ws, wa = w4, wg = wy) must hold
true in order that the wave does not have a preferred propagation direction. At this

point we are allowed to pick one of the weights so that the others will be uniquely
determined. We choose w; = ws = 1 so that our approximating equation becomes

wo + f1 + (f2 + fa)wa + faws + f5 + (f6 + fr)wr = 0. (40)
Now substituting the value of wg and f;, i = 1,...,7 into (40), we obtain

R=MNW,+ Wy + F3W5 (41)
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where
W]_ = Wa2, W2 = ws, I/I/3 = we,
R = 2J0(Hh) _ efnhj cos (¢) 6fnhj cos (¢),
P, = erehi(cos (¢)—sin (¢)) + o—rhi(cos (¢)+sin () _ 2J0(\/§/<Lh),
Fy, = e~ rhisin(®) _ Jo(kh),
F; = enhj(— cos (¢)+2sin (¢)) + el-chj(cos (¢)+2 sin(¢)) n QJO(\/th) (42)

We have thus reduced the problem to optimally approximating Eq. (41) for the
unknown quantities Wi, W, and W3, given R, Fy, Fy, and F3. Before solving this
problem, we will show that the other two cases also lead to this sort of problem as
well.

4.2. Cross interpolation. In Fig. 3, the shorter distances between the nodes
shown is h and the two longer distances are 2h. The coordinates of node ng are
assumed to be (0,0). The labeling of nodes starts at (0,0) and proceeds clockwise.
So, e.g. ng = (0,2h).

When the distance between the nodes are defined as in Fig. 3, the values of the
plane wave sampled at the nodal locations shown are given by

fO = f(no) =1, fl — f(nl) — ejﬁhcos (¢), f2 — f(n2) — ejﬁh(COS (¢p)—sin (¢))
f3 f(ng) = e—Jrhsin (¢)7 fa= flng) = e—Jth(cos (¢)+sin (¢))7
fs = f(ns) — g Jrhcos(9) fo = f(na) _ pJ2rhsin () (43)

ng
L
s ng n;
@
L ng na
@

FIGURE 3. the cross stencil

Once again, we want to approximate the field in the center of the stencil fy as a
function of the neighboring nodes

wo fo + w1 f1 + wa fo + w3 f3 + wa fa + ws f5 + we fe + wrfr
h2

Proceeding as in the last Sect., we integrate over a 27 interval and solve for wg as

wo = — [2(1+1ws) Jo(2h) + 23 Jo(5h) + wa Jo (V2ih) | (45)

= Res(¢) =0 (44)
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where we have made use of the symmetry so that wy = wy and ws = wy. We let
wy = 1, so that our approximating equation becomes

wo + f1 + (f2 + fa)we + faws + f5 + fews = 0. (46)

By substituting for the known values, we again obtain the equation

R = FyWh + FoWs + FolWs (47)
where
Wi = wy, Wy =ws, W3 =wg
R = 3Jo(kh) — erhicos(¢) _ ,—rhjcos ()
= 2J0(\/§/€h) 4 ehi(cos (¢)—sin(¢)) 4 o—rhij(cos (¢)+sin (¢))
Fy, = e ®sn@) _ i (kh)
Fy = Mm@ — Jy(25h). (48)

4.3. Corner interpolation. In Fig. 4, the shorter distances between the nodes
shown is h and the two longer distances are 2h. The coordinates of node ng are
assumed to be (0,0). The labeling of nodes starts at (0,0) and proceeds clockwise
(as indicated). So, e.g. ny = (0,2h).

When the distance between the nodes are defined as in Fig. 4, the values of the
plane wave sampled at the nodal locations shown are given by

fo = 1, fi= eJ2kh cos (qb), fo = e~ Jrhsin (¢)7
fs = e i2nhsin (¢), fi= e —Jrh(cos (¢)+sin (¢))’ fs = gmirhcos (¢),
fo = e—j2nhcos(¢)’ fr= eI2rhsin (¢) (49)

Once again, it is now desired to approximate the field in the center of the stencil
fo as a function of the neighboring nodes

wo fo + w1 f1 +wafo+wsf3+wafs +wsfs +wefe +wrfr
h? -

Again we integrate over a 27 interval and solve for wg to obtain

Res(¢) = 0. (50)

wo = — [2(1 +w3) Jo (26R) + 2wa o (KR) + w4JO(\/§m)} (51)

where we have made use of the symmetry and let wy, = w; = 1, wy = ws, and
w3 = wg. Again, the simplified equation becomes

WiF, + WoFy + WaFs = R (52)
where
Wi = we, Wo=w3, W3 =mwy
R = 2Jy(2kh) — e*rhicos () _ p2rhjsin(e)
F, = —2Jy(kh)+ e rhisin (4) + ¢ rchicos (¢)
Fy = —2Jy(2kh) 4 e~ 2rhisin(9) 4 o2hjcos ()

F; = —Jo(\/iffm 4 ¢~ rhi(cos (¢)+sin (¢) (53)



A NEW FINITE DIFFERENCE METHOD FOR THE HELMHOLTZ EQUATION USING SC 11

nrz
@
g ns o nj
@ @ @
ng no
®
ns
@

FIGURE 4. the corner stencil

4.4. Summary. In each case above, we have reduced the problem of finding an
optimal interpolation scheme to the following mathematical problem.

Problem 4.1. Given functions Fy, Fy, F3, and R, find the coefficients W1, Ws, and
W3 which gives the best approzimation

W1F1+W1FQ+W1F3 ~ R. (54)

In our case, the given functions are complex valued and integrable (in fact,
analytic) over the interval [0,27]. Furthermore, they are linearly independent in
the complex vector space of such functions taking [0, 27] to €. The complex bilinear
form given by

27

< fg>= ; f(0)g(0)do (55)

allows us to apply Gram-Schmidt orthogonalization [19] to solve this problem. The
idea is to apply the process to the linearly independent set {Fi, F5, F3} to obtain
an orthonormal set { Py, Py, P3} for which we know that

3

<R,P; >
T ntr 7 56
;<Pi,Pi> (56)

is a best approximation (Theorem 4, p. 284 of [19]) to R. Since the Gram-Schmidt
process is defined by the recursive sequence

Pl = F17

k
P = B -y Sinfizp (57)
k+1 — k+1 < F“Fl N 79

i=1
it is clear that the P; are linear combinations of the F; and thus there are unique
W; such that

3
RmZiR’i =Y WiF. (58)
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In general, this solution is complicated in two ways. The algebra needed to express
the P; as linear combinations of the F} is complex and error prone if attempted
“by hand”. Secondly, in general, there may not be a “closed form” for the inte-
grals involved in calculating the inner products. In our case, the integrals involved
actually have analytic expressions and one case is calculated in the next Sect.

4.5. Calculating inner products. Consider the norm of f = Fj in the corner
stencil case (53). We have that

f(@) = e whsm y gmrheos (9] — 2.1, (kh) (59)
and so
T(@) = erhsin (@ | rheos ()i _ o 1o (k). (60)
Substituting f(¢) and W into the inner product formula yields

2 27
<ff> = —2Jo(sh) / erhsin (@) s 4 / ¢rh(sin (6)=cos (6))d gy _
0 0

2m 2T
2Jo(/<&h)/ pfih cos (¢')jd¢—|—/ efih(cos (¢)—sin (¢))jd¢ _
0 0
2m

2m
QJQ(KJh)/ eiﬁhcos(‘z’)jdqﬁ—QJo(nh)/ e "hsin(9)i gy 4

(4J§(I€h>+2)/0 Wd(b (61)

Now applying the formula

Acos (@) + Bsin(¢) = A2+ B2cos(¢p— )
a = arctan (B/A) (62)

to each integrand on the right hand side of the inner product yields

27 27
<f,f> — —2]0(/€h)/ enhcos (d)foq)jdd)_i_\/ eﬁnhcosﬁﬁfo@)jdqs_
0 0

2 o
2.Jo(kh) / efih cos (¢)jd¢ + / eV2rh cos (¢_aa)jd¢ B
0 0

2m 2
2]0(/<;h) / enhcos (¢*a4)jd¢ _ 2J0(I<Lh) / enh cos (¢>7o¢5)jd¢ +
0 0

2m
(45 (kh) + 2) d¢ (63)
0
where a; = 5, ap = %T",ag = —71,q4 = —m, a5 = —5. Substituting
2w )
/ e ($+)i gy — o Jy (z) (64)
0
into the right hand side of the inner product yields
<f, f> = —2Jo(kh)(2nJo(kh)) + (21Jo(V2kh)) — 2Jo(kh)(2mJo(kh)) +

(21Jo(V26h)) — 2Jo(kh) (2 Jo(kh)) — 2Jo(kh)(2m o (rkR)) +
(45 (kh) + 2)(27)
= dn(Jo(V2kh) — 2J2(kh) + 1) (65)
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Obviously, the solution of this specific example involves quite complex transfor-
mations due to operations with exponential functions and complexity of the inner
product. Although the inner product was derived for relatively simple functions in
this case, the hand derived calculations are error prone and quite tedious.

5. RESULTS

5.1. Dimension one. The selection of the new weights in place of the classical
weights has a tremendous effect on the corresponding scheme as we will now show
in dimension one.

Consider the boundary value problem where «(0) = 1 and u(1) = cos (k) over
the unit interval [0,1]. The exact solution is u(x) = cos (kx). Using the partition
0==x0,...,7 = +,...,2, =1 for some 0 < h < 1, the discretization is u; ~ u(x;)
where

|

Ui4+1 — WU + Ui—1
h2

Thus one obtains a tridiagonal system where the first equation is cu; +us = —1, the
j equation for 2 < j <n—2is u;_1 + cuj +ujr1 = 0, and the (n — 1) equation
i Up—2 + cup—1 = —cos (k) where ¢ = —2cos (kh). Here is a comparison for the
case Kk = 10 and h = %. A precision of 50 digits was used. The approximation
using the classic weight 2 is given by w;, the approximation using the adjusted
weight 2 cos (kh) + k2h? is given by ; and the exact value is given by u; below for
i=1,...,5.

+ Kw%u; = 0. (66)

U = 1.75007673785979935689970676673101998374372598308515
u; = —0.09572354801437558411561383686531123100759275006710
up = —0.09572354801437558411561383686531123100759275006709
Uy = —2.36117079611317727758866081856857109846734243128845
uy = —0.98167400471107906433511069051210666565441099639859
uy = —0.98167400471107906433511069051210666565441099639859
uz = 0.08638943689489408122480720326675753728642924125030
uz = 0.28366218546322626446663917151355730833442259225221

uz = 0.28366218546322626446663917151355730833442259225221

Uy = 2.29397901186159299219158854936109301391123079920488
ug = 0.92736770305097536199695370882429122059978799610273
Uy = 0.92736770305097536199695370882429122059978799610273
us = —1.87059533500946640848493163054760765921738652952077
us = —0.46120403916318874233113050178042037607853697372898
us = —0.46120403916318874233113050178042037607853697372897

5.2. Dimension two. A simple two dimensional experiment is performed in order
to demonstrate how the modified central difference approximation reduces the nu-
merical dispersion errors and thus contributes to reducing the total errors for a wave
propagation problem. In this experiment, a plane wave is modeled as it propagates
over a region of free space. As the plane wave solution is known in closed form, the
exact boundary conditions can be placed on the outside edges of our selected do-
main. The Helmholtz’s equation is then used to model the transverse electric fields
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at each grid location interior to the domain. Thus all grid points have a unknown
associated with them. The same stencil as described earlier in this paper is used.

For each interior grid point a linear equation is formed and thus the system can
be solved as a set of linear equations with boundary conditions. Finally, the error
can be calculated at each grid location as the exact analytical solution is know for
all space. This experiment looks at the error as a function of grid spacing, and
wave propagation angle for both the traditional central difference approximation
(referred to as the old method) and the modified approximation (refereed to as the
new method). Note that the only difference between these two methods is the value
of the weight given to the center grid in the stencil. Therefore, computation times
are exactly the same.

The errors are calculated in this paper as follows: for all grid points the complex
difference between the calculated value and the analytical value is computed. Each
difference is multiplied by its complex conjugate and then all resultant values are
summed. The sum is then divided by the total number of grid points used in the
sum and thus the average root mean squared values is descriptive of the global error.
The maximum errors were also calculated for each experiment, however since the
trends were the same, we chose to present only the above errors.

ﬁx‘IU_S 40 callE par wavalanglh — Araa=(1 wawlargﬂ‘sf
T T T T T T T T

— ol
©onew

Awverage [rm= rE|rro-rj2
A i

kA

a IR TR LTS Lo
a 10 =0 3 40 &0 &0 TO 0 a0
Plane wave propagalion angle Thala (dagrees)

FIGURE 5

In Fig. 5, the classical variation in error due to propagation angle with respect to
the grid is illustrated. Here a grid spacing of 40 cells per wavelength is chosen, and
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the size of the computational domain is one square wavelength. The solid lines are
used for the old or classical central difference approximation while dotted lines are
used for the new method. This is consistent for Fig. 5, Fig. 6, and Fig. 7. Notice
that for the old method, the errors are maximum at zero degrees (aligned with the
grid axis) minimum at 45 degrees and then symmetrically increase to a maximum
error at 90 degrees. This pattern periodically repeats every 90 degrees. In contrast,
the new method is maximum at zero, minimum at 22.5 degrees and increase to a
maximum at 45 degrees. This pattern repeats every 45 degrees. For all angles, the
error calculated by the new weights is smaller than the old. This will be true for
other grid resolutions.

10,20,840 calls par wavalangih — Thaiz=45 dagreas

Average [rn'serror)z

10 I I I 1 I I I I 1
a5 1K) aF 0.8 09 1 1.1 12 13 1.4 148
Widih o square compuialional spaca in wavelengihs

FIGURE 6
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In the next experiment, the propagation angle and grid resolution is fixed while
the computational size is varied from a size of (0.5 wavelength)? to (1.5 wavelength)?.
Three grid resolution are chosen as 10, 20, and 40 cells per wavelength. The two
extreme cases of 45 and 22.5 degrees are chosen for the propagation angles. From
Fig. 5, it is expected that the 45 degree case will produce the best results for the
old weights and worst case for the the new weights. In contrast, the 22.5 case is
expected to produce the smallest errors for the new weights.

Fig. 6 illustrates the experiment with a propagation of 45 degrees. Circles are
used for the 10 cells per wavelength case, asterisks for the 20 cells per wavelength
case, and stars for the 40 cells per wave length case. Notice that for this angle, the
trends for both methods appear to follow the same pattern. Again for all cases, the
new method produces lower errors.

10,20,£40 calls per wave lengih — Theta=22 5 dagraes
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In Fig. 7, the same legends are used, but the propagation angle is changed to 22.5
degrees. At this angle the differences are extreme. For real scattering problems, a
composite spectrum of propagation angles will be present. Because the new method
produces smaller errors at all angles and all resolutions and all computational sizes,
it will also produce smaller errors for scattering problems.

5.3. Further calculations: interpolation formulas. Using the method of Sects.
4.4 and 4.5, an ANSI C program was written, compiled and linked to ExprLib. The
results for all three coefficients W7, W5, and W3 were obtained in 0.38 sec. on an
Intel 400 MHz 1686 with 196M of real memory running Linux using gcc.

For example, we found that
W3 = ((- 2 Js2 + 2 Js10) Jsb"2 + ((2 JO J4 + (2 J2 - 2)

J3 +6 J0 J2 -4 J0) Js2 + (- 8 J0 J2 + 4 JO) Js10 - 2

JO J4 + 2 J0) Jsb + ((-2J2+2) J4 + 2 J2s2 - 4 J2°2 +

2 J2) Js272 + ((- 2 J2s2 + 4 J27°2 - 2) Js10 + (- 2 J2 -

2 J0"2 +2) J4 + (-2 J0 J2s2 + 6 JO J2 - 4 JO) J3 +

(- 273072 +2) J282 - 4 J272 + (2 J072 + 2) J2) Js2 + ((4
J0"2 - 2) J2s2 + 4 J2°2 - 8 J0°2 J2 + 6 J0O"2 - 2) Js10 +

(4 J0"2 J2 - 2 J072) J4 + (2 JO J2s2 - 4 JO J2°2 +

2 J0) J3 - 2 J0°2 J2s2 + 4 JO0°2 J2°2 - 4 J0"2 J2) /

((Js272 - 1) Jsb"2 + (- 2 JO Js272 + (- 4 JO J2 + 4 JO)

Js2 + 4 J0 J2 - 2 J0) Jsb + (- J2s2 + 4 J2 - 3) Js273 +

(- J2s82 + 4 J2 + J0"2 - 3) Js27°2 + ((4 JO"2 + 1) J2s2 - 2
J2°2 - 12 J0°2 J2 + 8 JO°2 + 1) Js2 + (- 4 JO°2 + 1) J2s2 +
(4 J0"2 - 2) J272 + 4 J0°2 J2 - 5 J0°2 + 1)

where

Jo =J.0(kh), J2=J0(2%kh), J3=J.0B%kh), J4=2JI004%kh)),
Js2 = J_0 (sqrt (2) k h), Jsb = J_0 (sqrt (5) k h),

Js10 = J_0 (sqrt (10) k h), J2s2 = J_0 (2 sqrt (2) k h).

The other two coefficients, W1 and W2 are much longer. This fact prevents us
from presenting them here. All the coefficients and the complete ANSI C source
code used to derive them is available from the second author. Further details are
available at [18] as well.

5.4. Final summary. We have presented a method to derive new numerical schemes
with optimized weights for Helmholtz equation in one, two, and three dimensions
and have also derived an optimal interpolation scheme for refined meshes. While
it is possible to carry out hand calculations for these schemes as seen in [4], the
complexity of the algebra involved is great and it is almost certain that such hand
calculations will suffer from numerous typographical errors. By using symbolic
computation, errors and tedium in deriving the necessary formulas were eliminated.
We found that with relatively few functions out of the 130+ functions available in
ExprLib, we were able to achieve all of our goals.

Certain extensions of this work to other equations are possible and symbolic
computation is playing a role both in the theory and practical applications. The
results of this new work will be reported in future papers.

l.lambe@bangor.ac.uk
Richard.Luczak@wpafb.af.mil
nehrbass@ee.eng.ohio-state.edu



18

LARRY A. LAMBE, RICHARD LUCZAK, AND JOHN W. NEHRBASS

ACKNOWLEDGEMENTS

This publication made possible through support provided by DoD High
Performance Computing Modernization Program (HPCMP) Programming
Environment and Training (PET) activities through Mississippi State University
under the terms of Contract No. N62306-01-D-7110.

The authors would also like to thank the referees for their useful suggestions
about organizing the presentation of this material.

(1

[2

(3]

(4]

(5]

6

(7]

JENES

[10]
[11]

(12]

(13]
[14]
(15]
[16]
(17]

(18]

(19]

REFERENCES

Andrew Ronald Mitchell and D. F. Griffiths. The finite difference method in partial
differential equations. John Wiley & Sons Ltd., Chichester, 1980. A Wiley-Interscience
Publication.

Stanley J. Farlow. Partial differential equations for scientists and engineers. Dover
Publications Inc., New York, 1993. Revised reprint of the 1982 original.

J. W. Thomas. Numerical partial differential equations: finite difference methods.
Springer-Verlag, New York, 1995.

John Nehrbass. Advances in Finite Difference Methods for Electromagnetic Modeling. PhD
thesis, Ohio State Univ., Dec 1996.

Milton Abramowitz and Irene A. Stegun, editors. Handbook of mathematical functions with
formulas, graphs, and mathematical tables. John Wiley & Sons Inc., New York, 1984.
Reprint of the 1972 edition, Selected Government Publications.

Richard Pavelle. Macsyma: capabilities and applications to problems in engineering and the
sciences. In Applications of computer algebra (Philadelphia, Pa., 1984), pages 1-61.
Kluwer-Nijhoff, Boston, MA, 1985.

A. C. Hearn, J. D. Marti, et al. REDUCE user’s manual, version 3.0 (standard LISP
report). i Rand publication c¢p78 (4/83) (uucs-78-101) (University of Utah, Technical
Report TR-6, 1978), Rand Corporation, Santa Monica, CA, USA, 1983.

André Heck. Introduction to Maple. Springer-Verlag, New York, 1993.

Stephen Wolfram. The Mathematica book. Wolfram Media, Inc., Champaign, IL, fourth
edition, 1999.

Richard D. Jenks and Robert S. Sutor. Aziom. The scientific computation system.
Springer-Verlag, Berlin, Heidelberg, New York, 1992.

J. W. Klop. Term rewriting systems. In Handbook of logic in computer science, Vol. 2,
pages 1-116. Oxford Univ. Press, New York, 1992.

Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras. In
Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), pages 263—297.
Pergamon, Oxford, 1970.

M. R. Sleep, M. J. Plasmeijer, and M. C. J. D. van Eekelen, editors. Term graph rewriting.
John Wiley & Sons Ltd., Chichester, 1993. Theory and practice.

Constantine A. Balanis. Advanced Engineering Electromagnetics. John Wiley & Sons, New
York, 1989.

I. S. Gradshteyn, I. M. Ryzhik, and A. Jeffrey. Table of Integrals, Series, and Products.
Academic Press, New York, 1996.

info@mssrc.com, MSSRC P.O. Box 6667, Bloomingdale, IL, 60108, USA.

Larry A. Lambe, Richard Luczak, and John W. Nehrbass. Symbolic computation in
electromagnetic modeling. The 2001 Electromagnetic Code Consortium (EMCC) Annual
Meeting (May), and the DOD UGC 2001 Meeting (June).

Larry A. Lambe. Notes on Symbolic Computation.
http://www.bangor.ac.uk/~“mas019/symb/nsc.html (Sect. on “Symbolic Computation and
the Finite Difference Method”).

Kenneth Hoffman and Ray Kunze. Linear Algebra. Prentice-Hall, Inc., New Jersey, 1971.
Second Edition.



A NEW FINITE DIFFERENCE METHOD FOR THE HELMHOLTZ EQUATION USING SC 19

APPENDIX A. THE USE OF SYMBOLIC COMPUTATION

A.1. The optimal weights. We wrote a short ExprLib program to calculate the
integrals (34) above. Here are the results for p;:

tor:”/tex/lambe/lln -> time pl
pt = 2 j0

0.010u 0.000s 0:00.00 0.0% 0+0k 0+0io 141pf+O0w

All four integrals were calculated in a similar way. Here is the result of running
that program on the same machine as used above.

tor:”/tex/lambe/lln -> time omega3d
omega3D = kh™2 + 6 jO

0.000u 0.010s 0:00.00 0.0% 0+0k 0+0io 140pf+O0w

Note that, to save time and space, the product k*h was processed as one variable,
so the reported result is actually k"2 h~2 + 6 jO. Only one set of rewrite rules
was needed to compute all four integrals. The details are available at [18].

A.2. Deriving interpolation formulas using symbolic computation. We
want to show how to solve Problem 4.1. The first thing needed is a method for
calculating the Gram-Schmidt formula. For this, a complex bilinear form is
required. Next, the proper collection of rewrite rules will have to be set up to deal
with the actual brackets (integrals)

27

<f,9>= f()g(¢)do (67)

0
for the particular set of functions involved. In order to do this, we need to be able
to define the bilinear operator to represent the bracket.
While the usual operators are built into ExprLib, users may also define their own
operators. An operator represents a function of zero or more variables. The
number of arguments of an operator is called its arity. An operator with zero
arguments is a symbolic constant. It is easy to create new operators. One needs
to specify a string (the print name) and an unsigned integer (the arity). The user
can seamlessly use the operator by registering the operator in the parser table as
the following code segment indicates.
myOp = opCreate ("myOp", 3);
registerOp (myOp);
So given Problem 4.1, the strategy is to

e define a binary operator “brack” and register it with the parser
e “teach” the library that brack is complex bilinear:

brack(ax,y) = abrack(x,y),
brack(y,x) = brack(x,y),
brack(x +y,z) = brack(x,z)+ brack(y,z),

etc., and finally,
e teach the library how to integrate the relevant class of functions.
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In slightly more detail, we will use symbolic names f; for the F; and r for R and
calculate the Gram-Schmidt formula for the f; symbolically. By bilinearity of the
bracket, the result will automatically be expanded in terms of a linear expression
in the f; with coefficients involving the brackets < f;, f; >. Similarly, the
approximating expression for r will be linear in the f; with coefficients involving
the brackets <r, f; >. The next step is to use routines for the symbolic
integrations to calculate the exact values of <F;, F;> and <R, F;> and
substitute these actual values for the symbolic brackets above. This will yield the
desired coefficients W;. We need one more ExprLib function, viz.

Expr exprDiff (Expr f, String x);

As might be clear from the name, this function returns the derivative of the
expression f with respect to the variable x.
The main program can be summarized by the following.

e Program the G—S formula and the formula ans given by
ans <7’,p1>p <r7p2>p i <7",p3>p
= 1 2 3

<p1,p1> <p2,p2> <ps3,p3>

symbolically in terms of symbolic expressions f; representing the F; (by
bilinearity, the formula will automatically be expressed as a function of
< fi, fj> and <r, f; > and will be linear in the f;)

e pick out the coefficients, e.g. the coefficient of f; is just exprDiff(ans, ;)

e calculate the brackets for the actual Fy, Fs, F5, R

e use substitutions to replace the symbolic brackets in the coefficients by their
actual values computed in the last step.

For a detailed explaination of the ExprLib notation used in this Sect., see [18].
Here is the code for the bilinear bracket. It is assumed an the operator brack of
arity two has been defined and was registered with the parser. The name obrack
(“outer bracket”) is used to distinguish the routine from the operator (the
“internal bracket”). It is assumed that the arguments f and g are linear in the
variables that are specified in the String (String is the type char *) array s of
length n. To get the coefficient of s[i] in f, for example, one simply uses
exprDiff (£, s[i]). Use is also made of the built in operation
opApp2 (op, £, g) which applies an operator op of arity two to two expressions
f and g and returns the result which is of type Expr. The obrack routine calls an
external routine called obar which acts as follows. If arg is not a bracket,
obar(arg) = arg, otherwise, obar(brack (a, b)) = brack (b, a).
Expr
obrack (Expr f, Expr g, String *s, Ulnt n)
{

Expr ans = exprZero ();

Expr coi, coj, base;

int i, j;

if (exprIsZero (f) || exprIsZero (g))
return exprZero ();

else
{

for (i = 1; i < n; i++)
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for (j = 1; j < m; j++)
{ coi = exprDiff (f, s[il);

coj = exprDiff (g, s[jl);
coi = exprTimes (coi, obar (coj));
base =

opApp2 (brack, parseStrToExpr (s[i]),
parseStrToExpr (s[j]1));
ans = exprPlus (ans, exprTimes (coi, base));

}

return ans;
}
Again, full details are available at [18].
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