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A new method for plates with circular holes
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Abstract

In this paper, a new method is proposed
for plates with circular holes. Null-field
integral equation NFIE is employed to
solve the problem. The kernel in the NFIE
is expanded to degenerate kernel and the
boundary density is expressed in terms of
Fourier series. By matching the boundary
condition, a linear algebraic system is
obtained. After obtaining the unknown
Fourier coefficients, the solution can be

obtained by using the integral representation.

Finally, an example is presented to
demonstrate the validity of present method.

Keywords: plate, null-field integral
equation, degenerate kernel, Fourier series

1. INTRODUCTION

Biharmonic  problems are  always
in engineering, e.g. plate
problem in solid mechanics and Stokes’
flow in  fluid mechanics. Although
analytical methods involve special mapping
technique or restricted solution
representations, only a few cases were
solved.  Numerical  methods, finite
difference method (FDM), finite element
method (FEM) and boundary element
method (BEM) [1] have been utilized to

solve the problem. For problem with

encountered

boundaries, Fourier series are
always incorporated to formulate the
solution [2]. The degree of freedom for the
nodal value is transformed to the Fourier
coefficient.

Based on the null-field integral
formulation, we can separate the source and
field variables in the fundamental solution
for problems with circular boundary.
Fourier series for boundary densities are
also implemented in the semi-analytical
approach [3, 4].

Recently, Shen et al. [3, 4] have
successfully applied this method to solve
Laplace problems with circular holes. We
will extend to biharmonic problems in this
paper. An annular case is demonstrated to
see the validity of the present formulation.

circular

2. PROBLEM STATMENT AND
INTEGRAL FORMULATION

Consider the plate problem with circular

domain containing N randomly
distributed circular holes centered at
position vector ¢; (j =1, 2, -, N) as

shown in Fig. 1. Let a; denote the radius
of the jth circular hole and B, be the
boundary of the circular domain.
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Figure 1 Problem statement

The displacement (u(s)), slope (€(s)),
normal moment (m(s) ), and effective shear
force ( v(s) ) on the boundary are
approximated by using the Fourier series
expansion. Therefore, we have

M
u(s) =ay; + Y (a, cosng, +hy, sinng,)
n=1

(1)
S € By,
M
6(s) =C,; + Y (c, cosng, +d,; sinng,)
n-t )
,s€B;,
M
m(s) = gy; + 2 (9, €0sng, +h, sinng,)
n-1 ©)
,s€B;,
M
V(s) = Po; + 2 (P, COSNG, + 0, Sinnd,) @
n=1

,8€B;,

where a,, a;, b;, ¢;, d;, g;, h;,

nj !
p; and q,; are the Fourier coefficients,

6, is the polar angle centered at c;. Based

on the boundary integral formulation of the
domain point for the plate problem, the
integral equations of plate problem can be
derived from the Rayleigh-Green identity as
follows

87u(x) = [{-U (s, ¥)V(s) + O(s, )m(s)

~M(5,%)0(5) +V (s, ()} dB(s), xe D ©)

870(x) = [{-U, (3, )V(s) + 0, (3, )m(s)

M, (5, X)6(5) +V, (5. )u(9)} dB(s), xe D (©)

87m(x) = [{-U, (s, X)v(s) +©,, (s, X)m(s)

M, (8, X)0(8) +V, (s, 9)u(s)}dB(g), xe D (1)

87v(x) = [{-U, (3, )v(s) +©, (3, )m(s)

-M, (8,065 +V, (5. )u(9)}dB(s), xe D ©)

The degenerate kernels for the sixteen
kernel functions are defined as shown in Fig.
2

K&,s () Km,s () Kv,s ()

— — —>

Uisx) O(sx) M(sX) V(§,>~<)lK 0

Uy(s,X)  0,(5%X) My(s,x) V,(s,%)
Km,x(')

U,(s.X)  0,6X M%) V,(5X%)
| kL0

U,s%) 06,6X M (X V(X

Figure 2 The relationship between the
sixteen degenerate kernels

where the operators K, (), K, (), and

K, () are defined by

Ka:()= 22 ©)

S
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+([1-v) 82() (10)
on,
Kv,s () = 8:” ()
S (1)

Jr(l—v)i 0190
ot | on, \ ot,

where s and x are the source and field
points, respectively. n, and t, denote the

outward normal vector and tangential vector
at the source point s, respectively, D is
the domain of interest, B is the boundary,
v is the Poisson ratio and U (s,x)=r?Inr
is the fundamental solution which satisfies
VAU (s, x) =875(s - X) (12)

where, &(s—x) denotes the Dirac-delta
function and r is the distance between
source point and field point. By collocating
x outside the domain (xeD®), the

null-field integral equation can be obtained
as shown below

0= I{—U (s, X)V(s) + O(s, x)m(s)
—M (5,X)0(s) +V (s,))u(s)}dB(s) ~ (13)
, X e D¢,
0= j{—Ug(s, X)V(s) + O, (s, x)m(s)
—M, (5, X)0(s) +V, (s, ))u(s)}dB(s) (14
,xeD°®,
0= I{—Um(s, X)V(s) + O, (s, x)m(s)
—M,,(5,X)6(s) +V,, (s, x)u(s)} dB(s) (1)

. xeD°,

—M, (8, %)6(8) +V, (8, % )u(8) } dB(S)

0= I{—Uv(s, X)V(s) + O, (s, x)m(s)

—M, (5,X)6(s)+V, (s, \)u(s)}dB(s) ~ (16)
. xe D¢,
Based on the separable property, sixteen

kernel functions can be expanded into
degenerate form as shown in the appendix,

where p indicates ‘g—gj‘, R denotes
‘§—gj‘,and a is the angle between x-—c;

and s—c;, and the superscripts “i” and

“e” denote the interior and exterior cases,
respectively. In the real computation, only
finite M terms are used in the summation
of Egs. (1) and (2).

3. LINEAR
SYSTEM

ALGEBRAIC

By collocating the null-field point

‘gk—gj‘:ak’ on the kth circular

boundary for Egs. (13) and (14), we have

N

0= [{-U (5. %)V(8) + (5, %, )m(s)

i=lB

M (5 %00(9) +V (s, 5 )u(®)] dBs) )
, X e D*,
0= _NZCI{—UH(; XIV(S) + O, (3, % )m(3)
e (18)

,xeDf,

where N_ is the number of circles. It is

noted that the path is counterclockwise for
the outer circle. Otherwise, it is clockwise.
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For the B.

J of the circular

integral

boundary, the degenerate kernels of
U(s.x), 0©(s,%), M(s,x), and V(s,x)in
the appendix are utilized. u(s), €(s),
m(s), and v(s) are substituted by using
the Fourier series of Egs. (1) (4),
respectively.

In the B; integration, we set the origin of

the observer system to collocate at the
center c; to fully utilize the degenerate

kernel and Fourier series. By collocating the
null-field point near B, , Fig. 3(a) shows the

collocation point and boundary contour. A
linear algebraic system is obtained

[Alix}=[B]ty)

e 2, {2 1]

[A]and [B] are the influence matrices,

(19)

{x} and {y} denote the vectors of
Fourier coefficients for u(s), 4(s), m(s),
and v(s), respectively. By rearranging the

known and unknown sets, the unknown
Fourier coefficients are determined. After
obtaining the unknown Fourier coefficients,
the origin of observer system is set to c;

inthe B; integration as shown in Fig. 3(b)

to obtain the interior potential by employing
Eg. (5). The flow chart of the present
method is shown in Fig. 4.

Figure 3(a) Null-field integral equation

Vu(x)=0,xs

Figure 3(b) Boundary integral equation for
the domain point

Plate problem with circular holes

Null-field integral equation [Eq. (13), (14)]
|

Expansion

Fundamental solution Boundary density

(Degenerate kernel) (Fourier series)

[Appendix)] [Eas. (1) (4]
| ]

Collocating to the null-field point
and matching of B. C.
Linear algebraic system I

|_I

Obtain unknown Fourier coefficient

BIE for the domain point [Eq. (5)]

Figure 4 The flow chart of the present
method

4. ANUMERICAL EXAMPLE

In order to demonstrate the validity of the
present method. One example is given. An
annular case with radii a, and a, (a =1,

a,=2) is shown in Fig. 5 (a). The
boundary conditions on the inner boundary
are u,(s)=-3sinf, 6,(s)=-5sinf and
the boundary conditions on the outer
boundary are u,(s)=0, #6,(s)=2sin6 .

The unknown boundary densities are
expanded by the Fourier series and the
numerical results are shown in Fig. 5(b),
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5(d). The contour of potential is shown in
Fig. 6(a). Good agreement is made after
comparing with the exact solution [5],

(o) = psinG —sino (20)

as shown in Fig. 6(b).

Figure 5(b) The numerical solution of
boundary densities of v(s)

Figure 5(c) The exact solution of boundary
densities of v(s)
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Figure 5(d) The numerical solution of

boundary densities of m(s)

Figure 5(e) The exact solution of boundary

densities of m(s)

Figure 6(b) Exact solution [5]
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In the example, only ten terms of Fourier
series (M=10) were needed to converge
well with the exact solution [5].

5. CONCLUSIONS

For the plate problems with circular
boundaries, we have proposed a special
BIEM by using degenerate Kkernels,
null-field integral equation and Fourier
series in an adaptive observer system.
Numerical results agree very well with the
exact solution. It can be easily extended to
problems with multiple holes.
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Appendix Degenerate kernels for the sixteen kernel functions

2
u! (s,x)=p (l+|n R)+R InR-Rp(1+2In R) cos(8— ¢)— ! '0m+ cos[m(6—¢)]+ Z p" cos[m(6—¢)], R>p
U (s, X) = m=1M(m+1) R (m -1) gM-2
U (s X)= R? (l+|np)+p In p—pR(1+21n p) cos(6—¢)— Z m(;+l) cos[m(& d)]+ Z (m l) o 2cos[m(H #)], p>R
m=:
© 1 © -1
Ug(s x)=2p(1+InR)-R(1+2In R) cos(6—¢)—- X mTr:—fl) p™ cos[m(6-¢)]+ Z ipm cos[m(0—¢)], R>p
U 0 (S, X) = 2 m=t © m
Ug (s, X)—7+p(l+2|np) R(3+21In p)cos(0—-¢) + Z lpm+1 cos[m(@ $)]- m; m(m 1) o 1cos[m(49—¢)],p>R
-2
U (s,x)=2(1+v)(1+In R)+ ZW” cos[m(0—¢)1+ z (l—v) — cos[m(6-¢)], R>p
U,(s,x)= m=1 m=2

Unp (s x)_—(v—l)+(3+2Inp)+v(l+2|np)——(1+v)cos(9 d)+ Z (v—l) cos[m(0—¢)]+ § MR cos[m(a #)], p>R
p

m=1 m= "

U (s,X)= Z (m—4— mv)p cos[m(¢9 &)+ Z m(l—v)p cos[m(6’ #)].R>p
UV (S, X) — m=1 2 m=2
Uy (s x)_fJr Z m(v—l) cos[m(& &)+ Z (- mv+m+4)

cos[m(& #)], p>R

P m=1 m=2
m+2 0 m-2
o' (s, x)——+R(1+2In R)-p(3+2InR) cos(6—¢)+ Z Lr I cos[m(6-4)]- = p" lcos[m(é’ #)].R>p
(s, ) = R ez R
oF (s,x)=2R(1+In p)—p(1+2In p) cos(6—¢)— E m+2 R™ cos[m(€—¢)]+ Z —Lcos[m(ﬁ—qﬁ)],;»R
m=1m(m+1) , m=2 M-1 p,M-2
@g(s x)———(3+2|n R) cos(6—¢)+ % —2 lcos[m(é’ #)]- Z —ZP cos[m(a #)]. R>p
O4y(s,X) = m+L R m=2 M-1R
®,9 (s, x)_——(3+2lnp)cos(¢9 d)+ E m—meH cos[m(6-¢)]- —i cos[m(a #)], p>R
P "
ol (s, x)f(1+v) 3 [m(v—1)— 2(v+1)] p — cos[m(0-)]- 3 (-v)(m- 2)” cos[m(6’ M, R>p
O (s X)= e 1m‘ -
®m(s x)_—(v—l)—f(lw)cos(e 9)+ Z (m+2)(v—l) cos[m(& &)+ Z (mQ@-v)- 2(l+v)) cos[m(6-¢)], p>R
m=1 m=2 P

m=2

m+1 _
cos[m(& &)+ Z m(— mv+m+4)
m=2

@V (s,x)= Z m(m+2)(v—1)

-1
@V(s X)=— Z m(m-4- mv) m cos[m(¢9 &) Z m(m-— 2)(l—v)p cos[m(6’ #)].R>p
(s,x)=
cos[m(€—¢)] , p>R

MA)=20+0) P m(o-)]. R>p
RM

M E (5,)=2(1+v)(L+In p)+ 3

m(v-1)-2(v+1) R™ m-2
m=1 m p"

cos[m(@ @)+ Z (l—v)

M (s X)= (v—l)—+(v+3)+2(v+l)InR (v+l)—cos(¢9 é)+ Z (v—l)'o cos[m(@ $)]+ 020;
M (s, Xx) = =2
cos[m(6—¢)] , >R

Zp(v—l) 2(V+l)

20 os0-g)+ 3 (v—l)(m+2)p cos[m(H M+ 3 [m-v)— 2(1+v)]p cos[m(¢9 M, R>p
m_l m=2
w m-2
2(1”) - % o) 2(v+1)) " costm(@-¢)1+ z (@)= m+2))

Mé(s,x)

My (s, x) =
M,gE(s,x)

cos[m(€—¢)] , p>R

( 3 1)+ Z (m(v-1)— 2(v+l))(m+1)(1—v) p" cos[m(¢9 &)+ Z @-v)(m-1)(m(@-v)— 2(V+1))p
=1 m=2
72
( )+ > (m(v-1)- 2(v+1))(m+l)(l—v) cos[m(& &)+ Z (1-v)(m-1)(m(1-v)— 2(v+l))
p m=1 m=2 p

M (5,%)= cos[m(a M. R>p

M (s, X)=

M (s X)= cos[m(6-¢)], p>R

m—l

M (s X)= Z m(m+1)(1-v)[m(L-v)— 4] cos[m(e é)]+ Z 1-v)m(m-)[m(Q1-v)- 2(l+v)]p cos[m(H #)]. R>p
m=1 m=2

M, (s,X)=

My (s X)= Z m(m+1)(1-v)(m(v-1)— 2(v+1)) cos[m(& )+ Z (1—v)m(m—1)(m(1—v)+4)
m=1 m=2

cos[m(€—¢)] , p>R
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v! (s, x)—R+ Z m(v—l) cos[m(H P)]+ Z (m+4- mv) '0 cos[m(¢9 #)]. R>p
V (s, X) = m=1 m=2

\Y (s X)= Z (mQ1-v)- 4) _ cos[m(6-¢)]+ Z m(l—v)

m=1 p m=2

cos[m(6—¢)] , >R

Vg (s,x)= Z m(m+2)(v—l)p cos[m(e )]+ Z m(m+4— mv)p cos[m(¢9 #)]. R>p
Vg (S, X) — m=1 B m=2 ~
Ve (s,x)=— Z m(m(l—v)—4) cos[m(& )+ Z m(— m+2)(1—v) cos[m(6—¢)],p>R
m= m=2
Vm(s X)= Z m(m+1)(1-v)[m(v-1)— 2(v+1)] il cos[m(¢9 )+ Z m(m—l)(l—v)[m(l—v)+4]p cos[m(e #)].R>p
Vi (s, X) = m-1 m=2 .
Vm (s,X)= Z m(m+1)(1-v)(m(d-v)— 4) cos[m(6 @)+ Z m(m-1)(1-v)(m(d-v)— 2(v+1)) cos[m(6-¢)], p>R
m=1 m=2 P
Vv (s,x)= Z m (m+l)(l—v)[m(1—v) 4]’0 cos[m(e &)+ Z m (m—l)(l—v)(m(l—v)+4)p cos[m(¢9 #)].R>p
V, (s, X) = m-1 m=2 .
VV (s,x)= Z m (m+1)(1—v)(m(l—v) 4) cos[m(a P+ Z m (m—l)(l—v)(m(l—v)+4) cos[m(€—¢)],p>R
m=1 m=2
Interior: Exterior:
R>p R<p
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