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Abstract 

In this paper, the eigenproblems with 
circular boundaries are studied by using 
null-field integral equations in conjunction 
with degenerate kernels and Fourier series. 
Direct-searching scheme is employed to 
detect the eigenvalues by using singular 
value decomposition (SVD) technique. It is 
analytically verified that an inner circle 
results in the spurious eigenvalue and it 
appears in the numerical experiment. Also, 
the spurious eigenequation due to the inner 
circle is examined. Several examples are 
demonstrated to see the validity of the 
present formulation.        

Keywords: null-field integral equation, 
singular value decomposition, degenerate 
kernel, Fourier series, eigenproblem. 

Introduction 
Boundary element method (BEM) and 

finite element method (FEM) have been 
recognized as alternatives for solving 
eigenproblems. Although FEM is a popular 
method for solving eigenproblems, it needs 
a lot of time to generate the mesh. In this 
aspect, BEM is an efficient alternative from 
the viewpoint of mesh reduction. No mesh 
is our final goal. For multiply-connected 
domain problems, spurious eigensolution in 
the BEM [1-3] and MFS [4-6] has been 
noticed until the recent years. To solve 
multiply-connected eigenproblems, Lin [7] 
employed the transformation technique of 
cylindrical wave functions to satisfy the 
boundary condition with seven holes. 

Nagaya and Poltorak [8] used both the 
Fourier expansion collocation method and 
point-matching approach to find the 
eigenvalues of elliptical or polygonal outer 
boundary with eccentric inner boundaries. 
Chen et al. [1-3] used the BEM to 
determine the eigenvalue and eigenmode 
for the multiply-connected eigenproblems. 
The spurious eigensolution was found and 
filtered out by using the SVD updating 
technique and the Burton & Miller method. 
In this paper, the boundary integral 
equation method (BIEM) is utilized to 
solve the eigenproblems with circular 
boundaries. To fully utilize the geometry of 
circular boundary, Fourier series for 
boundary densities and degenerate kernel 
for fundamental solutions are incorporated 
into the null-field integral equation. 
Direct-searching scheme is adopted to 
detect the eigenvalue by using the SVD 
technique. Mode shape can be 
simultaneously determined from the right 
unitary vectors of zero singular value. The 
results will be compared with those of FEM 
and BEM.   

Problem Statement and Integral 
Formulation 

Consider the eigenproblem with a 
circular domain containing N  randomly 
distributed circular holes centered at 
position vector jc ( j =1, 2, ..., N ) as 
shown in Fig. 1. Let ja  and jB  denote 
the radius and boundary of the jth  
circular hole. 
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FIGURE 1. Problem statement 
By employing the Fourier series 

expansions to approximate the potential u  
and its normal flux t  on the boundary, we 
have 
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where 0 ja , nja , njb , 0 jp , njp  and njq  
are the Fourier coefficients and jθ  is the 
polar angle centered at jc . Based on the 
boundary integral formulation of the 
domain point for the eigenproblem, we 
have 
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where s  and x  are the source and field 
points, respectively, D  is the domain of 
interest, B  is the boundary and ( , )U x s  
is the fundamental solution which satisfies 

2 2( ) ( , ) 2 ( )k U x s x sπδ∇ + = −  (4)
in which, ( )x sδ −  denotes the Dirac-delta 
function. The ( , )T s x  kernel, is defined by 
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where sn  denotes the outward normal 
vector at the source point s. By collocating 
x  outside the domain ( ex D∈ ), we obtain 
the null-field integral equation as shown 
below 

0 ( , ) ( ) ( )

( , ) ( ) ( ), .
B

e

B

T s x u s dB s

U s x t s dB s x D

=

− ∈

∫
∫

 (6)

Based on the separable property, the 
fundamental function can be expanded into 
degenerate kernel form as shown below 
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where 2 1,i α=−  is the angle between 
js c−  and jx c− , the superscripts I  and 

E  denote the interior and exterior cases, 
respectively, and 

1, 0,
.

2, 0,m

m
m
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=⎧ ⎫

= ⎨ ⎬≠⎩ ⎭
 (8)

After taking the normal derivative with 
respect to U kernel, the ( , )T s x  kernel can 
be derived as 
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Eigenproblems with 
circular holes 

Null-field integral equation 

SVD 
BIE for the 

domain 
point [Eq.3]

Expansion 

Fundamental solution
(Degenerate kernel)

[Eqs. (7) and (9)] 

Boundary density 
(Fourier series) 

[Eqs. (1) and (2)] 

Collocating to the null-field point  

and matching of B.C. 

Algebraic system 

Solve eigenvalues and 
unknown Fourier 

In the real computation, only finite M  
terms are used in the summation of Eqs. (1) 
and (2). 

Linear Algebraic Equation 
By collocating the null-field point on the 

kth  circular boundary for Eq. (6), we have 
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where cN  is the number of circles. It is 
noted that the path is anticlockwise for the 
outer circle. Otherwise, it is clockwise. For 
the jB  integral of the circular boundary, 
the kernels of ( , )U s x  and ( , )T s x  are 
respectively expressed in terms of 
degenerate kernels of Eqs. (7) and (8), and 

( )u s  and ( )t s  are substituted by using 
the Fourier series of Eqs. (1) and (2), 
respectively. In the jB  integration, we set 
the origin of the observer system to 
collocate at the center jc  to fully utilize 
the degenerate kernel and Fourier series. 
By collocating the null-field point near kB , 
Fig. 2 (a) shows the collocation point and 
boundary contour. A linear algebraic 
system is obtained 

[ ]{ } [ ]{ }U x T y=  (11)

where [ ]U  and [ ]T  are the influence 
matrices, { }x and { }y  denote the vectors 
( )t s and ( )u s of Fourier coefficient, 

respectively. For simplicity, the Dirichlet 
case of ( ) 0u s =  is considered. We can 
obtain nonlinear eigenequation. 

[ ]{ } 0U x =  (12)

By employing the direct-searching 
scheme, SVD technique can obtain the 
eigenvalues and boundary modes at the 
same time. After obtaining the eigenvalues 
and unknown Fourier coefficients, the 
origin of observer system is set to jc  in 
the jB  integration as shown in Fig. 2 (b) 

to obtain the interior potential by 
employing Eq. (3). The boundary integrals 
on the circle are listed in the Appendix. The 
flow chart of the present method is shown 
in Fig. 2 (c). 
 

FIGURE 2 (a) Null-field integral equation 
 

FIGURE 2 (b) Boundary integral equation
for the domain point 
 

FIGURE 2 (c) The flowchart to determine 
the eigenvalues and mode shape. 
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Discussion on Spurious Eigenvalues 
For the multiply-connected problem with 

a circular domain with radius a, Eq. (12) 
yields 
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for the Dirichlet problem. The determinant 
of the influence matrix is zero for 

( ) 0, 0,1,2,3MJ ka M= = . This is to say, 
the eigenvalue for the Dirichlet problem of 
circular domain with the radius a , is the 
possible eigenvalue for the considered 
problem. The possible eigenvalues of 

( ) 0MJ ka = , are found to be the true 
eigenvalues of a circular domain with 
radius a  subject to the Dirichlet boundary 
condition. This finding extends the proof of 
existence of spurious eigenvalues for 
annular case [4, 5]. We can claim that any 
inner circle introduces the spurious 
eigenvalue for the multiply-connected 
problems. The spurious eigenvalues are 
found to be the true eigenvalues of the 
eigenproblem of inner circle.  

Numerical Results and Discussion 

In order to demonstrate the validity of 
the present method, several examples are 
given. 
Example 1. An eccentric case with radii 1r  
and 2r  ( 1 0.5r = , 2 2.0r = ) is shown in Fig. 
3(a). The Dirichlet boundary condition is 
considered. Table 1 shows the former five 
eigenvalues by using different methods. 
Good agreement is made. Fig. 3(b) shows 
the minimum singular value versus k where 

the drop indicates the possible eigenvalues. 
The present method obtains almost the 
same result of BEM [2] where a spurious 
eigenvalue appears at 4.81k =   
( 0 1(4.81 ) 0J r = ). The spurious eigenvalue 
was filtered out by using Burton and Miller 
approach [4]. By adopting the truncated 
Fourier series (M=10), the mode shapes are 
shown in Fig.3(c) and compared with those 
by FEM and BEM are also shown in Fig. 
3(d).  

 

FIGURE 3(a) Eigenproblem with an
eccentric domain. 
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FIGURE 3 (b) The minimim singular 1σ  
versus k  using different approaches for 
the Dirichlet problem with an eccentric 
domain. 
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TABLE1 The former five eigenvalues of 
with an eccentric domain. 

 1 2 3 4 5 
FEM[2] 1.73 2.13 2.45 2.76 2.95

Chen and 
Zhou[11] 1.75 2.14 2.47 2.78 2.97

BEM[2] 1.74 2.14 2.47 2.78 2.98
Present method 1.74 2.14 2.46 2.78 2.96
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FIGURE 3(c) The former five 
eigenmodes for an eccentric case using 
the present method.  
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mode 5 

 

FIGURE 3(d) The former five eigen-
modes for eccentric case using FEM and 
BEM. 
 
Example 2. A circular region of radius R  
with two unequal circular holes which are 
placed on a concentric circle of radius e 
( 0.5e= ) as shown in Fig. 4 (a). The radii 
of the circular holes and the external 
boundary are 1 0.3c = , 2 0.4c =  and 

1.0R= . The Dirichlet boundary condition 
is considered. Table 2 shows the former 
five eigenvalues by using different methods. 
Good agreement is made. By adopting 
truncated Fourier series (M=10), the mode 
shapes are shown in Fig. 4(b) and are 
compared with those by BEM and FEM as 
shown in Fig.4(c).  

 

FIGURE 4 (a) Two unequal circular holes 
in a circular domain 

TABLE 2 The former five eigenvalues for 
a circle domain with two unequal 
holes 
 1 2 3 4 5 

FEM[1] 4.79 4.80 6.61 6.63 7.8
BEM[1] 4.82 4.82 6.72 6.72 7.82

Present method 4.85 4.85 6.77 6.77 7.91 
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FIGURE 4 (b) The former five modes for a 
circular domain with two unequal holes by 
using the present method. 
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FIGURE 4 (c) The former five modes for a 
circle domain with two 
unequal holes using FEM 
and BEM. 

 

Conclusions 
For the eigenproblems with circular 

boundaries, we have proposed a special 
BIEM by using degenerate kernels, 
null-field integral equation and Fourier 
series in an adaptive observer system. The 
method shows great generality and 
versatility for the problems with multiple 
circular holes of arbitrary radii and 
positions. Also, the occurrence of spurious 
eigenvalue was examined. Numerical 
results agree very well with those of the 
BEM and FEM. 
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摘要 

 
本文以勢能理論為基礎，提出以退化核
與傅立葉級數展開搭配零場積分方程求
解含多孔洞二維特徵值問題，此方法可視
為半解析法。邊界未知勢能與流通量使用
有限項傅立葉級數來近似求得。利用退化
核與傅立葉展開可導得一線性代數方法
而無須對邊界離散。再靠奇異值分解法來
求得特徵值及傅立葉係數。文中以幾個不
同邊界條件的特徵值問題進行測試。所得
結果無論與邊界元素法的數值結果或有
限元素法的數值結果比較，均可驗證本方
法的正確性。 
 
關鍵字：零場積分方程式，奇異值分解，
退化核，傅立葉級數，特徵值問題。 
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Appendix 
 
(1) For the null-field integral equation of 

Eq. (6) in Fig. 2 (a), we have 
( j js c x c− > − ). 
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where js c R− = , jx c ρ− = , θ  and 
φ  are shown in Fig. 5. 
 

FIGURE 5 Sketch of the source and field 
points 
 

 
 
(2) For the interior point of Eq. (3) in Fig. 

2 (b), we have ( j jx c s c− > − ). 
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