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Abstract 

The degenerate kernels and Fourier series expansions are adopted in the null-field integral 
equation to solve torsion problems of a circular bar with circular holes. The main gain of 
using degenerate kernels is free of calculating the principal values. An adaptive observer 
system is addressed to fully employ the property of degenerate kernels in the polar coordinate. 
After moving the null-field point to the boundary and matching the boundary conditions, a 
linear algebraic system is obtained without boundary discretization. The unknown coefficients 
in the algebraic system can be easily determined. The present method is treated as a 
“semi-analytical” solution since error only attributes to the truncation of Fourier series. 
Finally, several examples are given to demonstrate the validity of the proposed method. 
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摘要 

本文使用零場積分方程搭配分離核函數與傅立葉級數求解含圓形邊界之扭轉問題。藉由

分離核函數的表示式，可解析計算所有的邊界積分而免於計算主值的困擾。文中採用自

適性觀察座標系統的想法，來充分掌握分離核函數的特性。透過零場積分方程將零場點

推向邊界且均勻佈點，滿足邊界條件後可以得到一線性代數方程式，其中的未知傅立葉

係數均可輕易地求得。由於誤差僅來自於擷取有限項的傅立葉級數，故本方法可視為“半
解析法”。最後，為了驗證此方法的可行性與正確性，提出含圓孔洞的受扭桿問題予以

測試。 
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1 Introduction 

Boundary value problem always involve 
several holes or more than one important 
point. It is convenient to be able to expand 
the solutions in alternative ways, each way 
referring to different specific coordinate set 
describing the same solution. According to 
the idea, we develop the adaptive observer 
system and expanded form of fundamental 
solution which is called “degenerate kernel” 
in the polar coordinate and employ Fourier 
series to approximate the boundary data. 
In the past, multiply connected problems 
have been carried out either by conformal 
mapping or by special technique approach. 
Muskhelishvili [1] has formulated the 
solution of composite torsion bar in the form 
of integral equations. He solved the problem 
of a circular bar reinforced by an eccentric 
inclusion by using conformal mapping. 
Chen and Weng [2] have also introduced 
conformal mapping with a Laurent series 
expansion to analyze the Saint-Venant 
torsion problem. They concerned with a 
nonconcentric circular bar of different 
materials with an imperfect interface under 
torque. Because the conformal mapping is 
limited to the doubly connected region, an 
increasing number of researchers have paid 
more attentions on special solutions. 
However, the extension of above special 
solution to multiple circular holes may 
encounter difficulty. It is not trivial to 
develop a systematic method for solving the 
torsion problems with several holes. 
In this paper, the null-field integral equation 
is utilized to solve the Saint-Venant torsion 
problem of a circular shaft weakened by 

circular holes. The mathematical formula- 
tion is derived by using degenerate kernel 
for fundamental solution and Fourier series 
for boundary density in the null-field 
integral equation. Then, it reduces to a linear 
algebraic equation. After determining the 
unknown coefficients, series solutions for 
the warping function and torsional rigidity 
are obtained. Numerical examples are given 
to show the validity and efficiency of our 
formulation. 

 
2 Solution procedures 

2.1 Dual boundary integral equations  
and dual null-field integral equations 

What is given shown in Figure 1 is a circular 
bar weakened by  circular holes placed 
on a concentric ring of radius . The radii 
of the outer circle and the inner holes are 

N
b

R  
and , respectively. The circular bar 
twisted by couples applied at the ends is 
taken into consideration. 

a

 
Figure 1 Cross section of bar weakened by  

( ) equal circular holes 

N

3N =

The classical Saint-Venant torsion problem 
is formulated as Laplace equation  
subject to the Neumann boundary condition 

2 0ϕ∇ =

sin cosk k kx y
n

ϕ
θ θ

∂
= −

∂ k , (1)

where  is the warping function, (ϕ ,k kx y ) 
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denotes the center of the  inner circular 
hole defined as 

kth

2
cosk

k
x b

N

π
= , 

2
sink

k
y b

N

π
= , 

. 1, 2, ,k N=
(2)

We apply the Fourier series expansions to 
approximate the potential  and its normal 
derivative  on the boundary 

u
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∞

=
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=

= + +∑ , 
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(4)

where  in which  
and denotes the outward normal vector at 
the source point , , ,  and  
( ) are the Fourier coefficients 
and  is the polar angle. The integral 
equation for the domain point can be derived 
from the third Green’s identity [3], we have 

s(s ) (s ) /k kt u=∂ ∂n sn

s k
na k

nb k
np k

nq
0,1, 2,n =

kθ

2 (x) (s, x) (s) (s)

(s, x) (s) (s), x ,

B

B

u T u dB

U t dB D

π =

− ∈

∫
∫

 (5)

where  and  are the source and field 
points, respectively, 

s x
B  is the boundary,  

is the domain of interest, and the kernel 
function , (

D

(s, x) lnU r= x sr ≡ − ), is the 
fundamental solution which satisfies 

2 (s, x) 2 (x s)U πδ∇ = − , (6)
in which  denotes the Dirac-delta 
function. The kernel is defined by 

(x s)δ −
(s, x)T

s

(s, x)
(s, x)

U
T

∂
≡

∂n
, (7)

By collocating  outside the domain 
( ), we obtain the dual null-field 
integral equations as shown below 
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x cD∈
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∫

 (8)

where  is the complementary domain. 
Based on the separable property, the kernel 
function  can be expanded into 
degenerate form by separating the source 
points and field points in the polar 
coordinate [4]: 
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where the superscripts “ i ” and “ e ” denote 
the interior ( ) and exterior (R ρ> Rρ> ) 
cases, respectively. After taking the normal 
derivative with respect to Eq. (9), the 

 kernel function can be derived as (s, x)T
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Since the potential resulted from  is 
discontinuous cross the boundary, the 
potentials of  for  and 

 are different. This is the reason 
why  is not included in expressional 
degenerate kernels of in Eq. (10). 

(s, x)T

(s, x)T R ρ+→
R ρ−→

R ρ=
(s, x)T

 
2.2 Adaptive observer system 

After moving the point of Eq. (8) to the 
boundary, the boundary integrals through all 
the circular contours are required. Since the 
boundary integral equations are frame 
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indifferent, i.e. objectivity rule, the observer 
system is adaptively to locate the origin at 
the center of circle in the boundary integrals. 
Adaptive observer system is chosen to fully 
employ the property of degenerate kernels. 
Figures 2 (a) and 2 (b) show the boundary 
integration for the circular boundaries in the 
adaptive observer system. It is worthy noted 
that the origin of the observer system is 
located on the center of the corresponding 
circle under integration to entirely utilize the 
geometry of circular boundary for the 
expansion of degenerate kernels and 
boundary densities. 
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Figure 2 (a) Null-field 

integral equation 

Figure 2 (b) Boundary 

integral equation for 

domain points 

 
2.3 Linear algebraic system 

By moving the null-field point  on the 
 circular boundary in the sense of limit 

for Eq. (8) in Figure 2 (a), we have 
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where  is the number of circles 
including the outer boundary and the inner 
circular holes. If the domain is unbounded, 
the outer boundary 

CN

0B  is a null set and 
. By collocating the null-field point 

on the boundary, a linear algebraic system is 
obtained 

CN N=

[ ]{ } [ ]{ }=U t T u , (12)
where  and [ ]U [ ]T  are the influence 
matrices with a dimension of  
by ,  and 

(2 1)CN M +
(2 1)CN M + { }u { }t  denote the 

column vectors of Fourier coefficients with 
a dimension of  by 1 in which  
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follows: 
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where the vectors {  and  are in 
the form of {

}ku { }kt

0 1 1
k k k

Ma a b a  
and , 

respectively; the first subscript “
}Tk

Mb { }0 1 1

Tk k k k k
M Mp p q p q

j ” 
( 0,1, 2, ,j N= ) in jk

⎡⎢⎣U
⎤⎥⎦  and jk

⎡ ⎤⎢ ⎥⎣ ⎦T  
denotes the index of the  circle where 
the collocation point is located and the 
second subscript “ ” ( ) 
denotes the index of the  circle where 
boundary data  or {  are specified, 

jth

k 0,1, 2, ,k N=
kth

{ }ku }kt
M  indicates the truncated terms of Fourier 
series. By rearranging the known and 
unknown sets, the unknown Fourier coeffi- 
cients are determined. Equation (8) can be 
calculated by employing the relations of 
trigonometric function and the orthogonal 
property in the real computation. Only the 
finite M  terms are used in the summation 
of Eqs. (3) and (4). 
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3 Illustrative examples 

Case 1: A circular bar with single eccentric 
hole 

A circular bar of radius R  with two equal 
circular holes removed is under torque T  
at the end. The torsional rigidity  of 
cross section can be expressed by 

G

2

1 k

N

k
D B

k

G
r dA dB

n

ϕ
ϕ

μ =

∂
= −

∂
∑∫ ∫ , (15)

where  is the elastic shear modulus. The 
results of torsional rigidity for each case are 
shown in Table 1. The exact solution derived 
by Muskhelishvili [1] is shown in Table 1 
for comparison. For the eccentric hole near 
the outer boundary, our solution is better 
than that of Caulk obtained by BIE [5]. 

μ

 5

 
Table 1 Torsional rigidity of a circular cylinder 

with a single eccentric hole ( ) / 1 /a R = 3
42 /G Rμπ  

b

R a−
 Present 

method 

Exact 

solution [1] 
BIE [5] 

0.20 0.97872 0.97872 0.97872 
0.40 0.95137 0.95137 0.95137 

0.60 0.90312 0.90312 0.90316 

0.80 0.82473 0.82473 0.82497 

0.90 0.76168 0.76168 0.76252 

0.92 0.74455 0.74454 0.74569 

0.94 0.72451 0.72446 0.72605 

0.96 0.69991 0.69968 0.70178 

0.98 0.66705 0.66555 0.66732 

 
Case 2: A circular bar with two circular 

holes 
What is brought out is the problem subject 
to zero traction on the outer boundary and 
Neumann boundary condition defined in 
Eq.(1) on all the inner circles. Figures 3 (a) 

and 3 (b) show the results using the present 
method and those from the first-order 
approximation solution (solid lines) and the 
boundary integral equation solution (dashed 
lines) derived by Caulk [5]. Twenty-one 
collocating points are selected on all the 
circular boundaries in the numerical imple- 
mentation. After being compared with the 
results of Figure 3 (b), the numerical results 
match well with other solutions. 
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Figure 3 (a) Contour plot 

of present method 
Figure 3 (b) Caulk’s data

 
Case 3: A circular bar with three circular 

holes 
Unlike Case 2, a circular bar weakened by 
three circular holes of equal radii is regarded 
as the third example. In a similar way, the 
contour plot of the axial displacement is 
shown in Figure 4 (a). Good agreement is 
made after comparing with the Caulk’s data 
in Figure 4 (b). 
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Figure 4 (a) Contour plot 

of the present method 
Figure 4 (b) Caulk’s data
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Case 4: A circular bar with four circular 
holes 

The fourth problem is a circular bar 
weakened by four equal circular holes under 
torque. In Figure 5 (a), our results of axial 
displacement agree well with the values in 
the dashed line of Figure 5 (b) which are 
solved by using the boundary integral 
equation. 
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Figure 5 (a) Contour plot 

of the present method 
Figure 5 (b) Caulk’s data

The torsional rigidities obtained by using the 
present method for  are listed in 
Table 2. Our results are consistent with 
Caulk’s data obtained by BIE formulation 
after comparison. 

2, 3, 4N =

 
Table 2 Torsional rigidity of a circular cylinder 

with a ring of  holes ( ) N / 1 / 4, / 1/a R b R= = 2
42 /G Rμπ  

Numbers of 

holes 

Present 

method 
BIE [5] 

First-order 

solution [5]

2 0.8657 0.8657 0.8661 
3 0.8214 0.8214 0.8224 

4 0.7893 0.7893 0.7934 

 
4 Concluding remarks 

The torsion problems of circular shaft 
weakened by several holes have been 
successfully solved by using the present 
formulation. Our solutions are consistent 

with the results by using the boundary 
integral equation for the three cases of 
Caulk’s. After being compared with the 
exact solution in the case of an eccentric 
hole and Caulk’s data, our results show the 
better efficiency and accuracy. 
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