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Abstract 

The Helmholtz (interior and exterior acoustics) problems with circular boundaries are 
studied by using the null-field integral equations in conjunction with degenerate kernels and 
Fourier series to avoid calculating the Cauchy and Hadamard principal values. Adaptive 
observer system of polar coordinate is considered to fully employ the property of 
degenerate kernels. For the hypersingular equation, vector decomposition for the radial and 
tangential gradient of potential is carefully considered. In interior acoustic problems, 
direct-searching scheme is employed to detect the eigenvalues by using the singular value 
decomposition (SVD) technique. Two approaches to overcome spurious eigenvalus, SVD 
updating technique and Burton & Miller methods are employed to suppress the appearance 
of spurious eigenvalue. Several examples are demonstrated to see the validity of the present 
formulation and numerical results indicate the better accuracy than BEM in predicting the 
spurious eigenvalues. In exterior acoustic problems, the radiation and scattering problems 
with multiple circular cylinders are also examined successfully.  
 
 

零場積分方程法求解赫姆茲(內外域聲場)含圓形邊界問題 
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摘要 

本文使用零場積分方程，搭配退化核(分離核)及傅立葉級數來解決含圓形邊界的赫姆

茲(內外域聲)問題以避免柯西及哈達馬主值的計算。自適性觀察的極座標系統可充分
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展現退化核(分離核)的特性。而在使用超奇異式時，對勢能場的法線及切線方向的向

量分解均必須小心處理。在內域聲場問題，直接使用奇異值分解技巧，可求得特徵值

與特徵模態。為了克服假根問題，我們使用 SVD 補充行與補充列法 及 Burton & 

Miller 法可克服假根產生的問題。幾個例子驗證了本方法的正確性。數值結果顯示，

本方法對於假根所預測座落的位置比邊界元素法更為精確。在外域聲場問題，含多圓

柱的輻射及散射問題都已測試成功。 
1. Introduction 

For acoustic problem, it is well known that 
the boundary integral equation method 
(BIEM) in solving the exterior and interior 
problems results in fictitious frequency and 
spurious eigenvalue, respectively. The 
nonuniqueness problem is numerically 
manifested in a rank deficiency of the 
coefficient matrix in BEM. Spurious 
eigenvalues appear when the influence 
matrix is rank deficient in the case where 
physical response does not occur. Fictitious 
frequency results in numerical resonance but 
physical resonance never occurs for exterior 
problems. In order to obtain the unique 
solution, various integral equation 
formulations that provide additional 
constraints to the original system of 
equations have been proposed. Burton & 
Miller proposed an integral equation that 
was valid for all wavenumbers; however, the 
calculation for the hypersingular integration 
is required. To avoid the computation of 
hypersingularity, an alternative method, 
CHIEF, was proposed by Schenck [5]. 
Recently, the SVD technique was developed 
as an important tool in linear algebra. In the 
interior eigenproblem with a 
simply-connected domain, the dual 
reciprocity method (DRM) by Partridge et al. 
[4] and the multiple reciprocity method 
(MRM) by Kamiya & Andoh [3] have been 

widely used recently. In exterior acoustics, 
many researchers applied the CHIEF 
method to deal with the problem of fictitious 
frequencies. Schenck used the CHIEF 
method which employed the boundary 
integral equations by collocating the interior 
point as an auxiliary condition to make up 
deficient constraint condition. The constraint 
is one of the null-field integral equations. In 
this paper, we employ the null-field integral 
equation (NFIE) as well as the boundary 
integral equation method (BIEM) in 
conjunction with degenerate kernels and 
Fourier series to solve the vibration of 
multiply-domain membrane and the 
radiation and scattering problems with 
circular boundaries. To fully utilize the 
geometry of circular boundary, Fourier 
series for boundary densities and degenerate 
kernel for fundamental solutions are 
incorporated into the null-field integral 
equation in the polar coordinate system. 
 

2. Problem Statement and Integral 
Formulation 

2.1 Problem statement 
The governing equation of the acoustic 

problem is the Helmholtz equation 

2 2( ) ( ) 0, ,k u x x D∇ + = ∈  (1)

where 2∇ , k  and D  are the Laplacian 
operator, the wave number, and the domain 
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of interest, respectively. Consider the 
problems containing N  randomly 
distributed circular holes centered at the 

position vector jc ( j =1, 2, ..., N ) as 

shown in Figure 1. 

 
Figure 1 Problem statement 

2.2 Dual boundary integral formulation 
Based on the dual boundary integral 
formulation of the domain point [1], we 
have 

2 ( ) ( , ) ( ) ( ) ( , ) ( ) ( ), ,I

B B
u x T s x u s dB s U s x t s dB s x Dπ = − ∈∫ ∫ (2) 

2 ( ) ( , ) ( ) ( ) ( , ) ( ) ( ), ,I

B B
t x M s x u s dB s L s x t s dB s x Dπ = − ∈∫ ∫ (3) 

where s  and x  are the source and field 
points, respectively, ID  is the domain of 
the interests, t(s) is the directional derivative 
of u(s) along the outer normal direction at s. 
The ( , )U s x , ( , )T s x , ( , )L s x  and 

( , )M s x  represent the four kernel functions 
[1]. 
2.3 Null-field integral formulation in 

conjunction the degenerate kernel and 
Fourier series 

By collocating x  outside the domain 
( Ex D∈ ), we obtain the null-field integral 
equations as shown below [1]: 

0 ( , ) ( ) ( ) ( , ) ( ) ( ), ,E

B B

T s x u s dB s U s x t s dB s x D= − ∈∫ ∫ (4)

0 ( , ) ( ) ( ) ( , ) ( ) ( ), .E

B B

M s x u s dB s L s x t s dB s x D= − ∈∫ ∫ (5)

In the real computation, we select the 
null-field point x on the boundary. By using 
the polar coordinate, we can express 

( , )x ρ φ=  and ( , )s R θ= . The four kernels, U, 
T, L and M can be expressed in terms of 
degenerate kernels as shown below [1]: 
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(9)

where 2 1,i =− I  and E  denote the 
interior and exterior cases for the 
expressions of kernel, respectively. It is 
noted that the degenerate kernels for T and L 
expression for Rρ =  are not given since 
they are not continuous across the boundary.  
In order to fully utilize the geometry of 
circular boundary, the potential u  and its 
normal flux t  can be approximated by 
employing the Fourier series. Therefore, we 
obtain 
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0
1
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(11)

where 0a , na , nb , 0p , np  and nq  are 
the Fourier coefficients and θ  is the polar 
angle which is equally discretized. Eqs. (4) 
and (5) can be easily calculated by 
employing the orthogonal property of 
Fourier series. In the real computation, only 
the finite M  terms are used in the 
summation of Eqs. (10) and (11). 
2.4 Adaptive observer system 
Since the boundary integral equations are 
frame indifferent, i.e. rule of objectivity is 
obeyed. Adaptive observer system is chosen 
to fully employ the property of degenerate 
kernels. Figure 2 shows the boundary 
integration for the circular boundaries. It is 
worthy noted that the origin of the observer 
system can be adaptively located on the 
center of the corresponding circle under 
integration to fully utilize the geometry of 
circular boundary. The dummy variable in 
the integration on the circular boundary is 
just the angle ( θ ) instead of the radial 
coordinate (R). By using the adaptive system, 
all the boundary integrals can be determined 
analytically free of principal value. 

 
Figure 2 Adaptive observer system 

 

2.5 Vector decomposition technique for 
the potential gradient in the 
hypersingular formulaion 

Since the hypersingular equation is a key 
ingredient to deal with fictitious frequency, 
potential gradient on the boundary is 
required to calculate. For the encentric case, 

special treatment for the potential gradient 

should be taken care as the source point and 

field point locate on different circular 

boundaries. Special treatment for the normal 
derivative should be taken care. As shown in 
Figure 3 where the origins of observer 
system are different, the true normal 
direction 1̂e  with respect to the collocation 
point x on the jB  boundary should be 
superimposed by using the radial direction 

3ê  and angular direction 4ê . We call this 
treatment “vector decomposition technique”. 
According to the concept, Eqs. (8) and (9) 
can be modified as 
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Figure 3 Vector composition 

2.6 Linear Algebraic Equation 
In order to calculate the 2M+1 unknown 
Fourier coefficients and 2M+1 boundary 
points on each circular boundary are needed 
to be collocated. By moving the null-field 
point to the kth  circular boundary for Eqs. 
(4) and (5) as shown in Figure 4, we have 
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(15)

where cN  is the number of circles. It is 
noted that the path is anticlockwise for the 
outer circle. Otherwise, it is clockwise. For 

the jB  integral of the circular boundary, 

the kernels of ( , )U s x , ( , )T s x  ( , )L s x  
and ( , )M s x are respectively expressed in 
terms of degenerate kernels of Eqs. (6), (7), 
(12) and (13) with respect to the observer 
origin at the center of jB . The boundary 
densities of ( )u s  and ( )t s  are substituted 
by using the Fourier series of Eqs. (10) and 

(11), respectively. In the jB  integration, we 

set the origin of the observer system to 

collocate at the center jc  of jB  to fully 

utilize the degenerate kernel and Fourier 
series. By moving the null-field point which 
can be much close to the boundary kB  
from outside of the domain, a linear 
algebraic system is obtained 

[ ]{ } [ ]{ },=U t T u  
 
(16)

[ ]{ } [ ]{ },=L t M u  
 
(17)

where [ ]U , [ ]T , [ ]L  and [ ]M  are the 

influence matrices with a dimension of 
(2 1)c MN +  by (2 1)c MN +  and { }t  and 

{ }u  denote the vectors for ( )t s  and 
( )u s of the Fourier coefficients with a 

dimension of (2 1)c MN +  by 1. where, [ ]U , 

[ ]T , [ ]L , [ ]M , { }u  and { }t  can be 

defined as follows: 
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where the vectors { }ku  and { }kt  are in the 

form of { }0 1 1

Tk k k k k
M Ma a b a b and 

{ }0 1 1

Tk k k k k
M Mp p q p q ; the first 

subscript “α ” ( 0,1,2..., Nα = ) in the αβ⎡ ⎤⎣ ⎦U  

denotes the index of the thα  circle  where 
the collocation point is located and the 
second subscript “ β ” ( 0,1,2..., Nβ = ) denotes 
the index of the thβ  circle where the 

boundary data { }ku  or { }kt  are specified. 

N is the number of circular holes in the 
domain and M indicates the highest 
harmonic of truncated terms in Fourier 
series. The coefficient matrix of the linear 
algebraic system is partitioned into blocks, 
and each diagonal block ( ,   ppU p is no sum) 
corresponds to the influence matrices due to 
the same circle of collocation and Fourier 
expansion. 

 
Figure 4 Null-field integral equation (x 
move to B from DE) 
3. Illustrative Example 

Example1 Membrane vibration for a circular 
domain with an eccentric circular hole 

  An eccentric case with radii 1r  and 2r  
( 1 0.5r = , 2 2.0r = ) is considered as shown in 
Figure 5. The boundary condition is subject 
to the Dirichlet type. Special treatment for 
vector decompositions in potential gradient 
should be taken care here. Figure 6(a) shows 
the minimum singular value versus k where 
the drop indicates the possible eigenvalues 
by using the singular formulation. Figure 6 
(b) shows the minimum singular value 
versus k where the drop indicates the 
possible eigenvalues by using the 
hypersingular formulation. Figure 6(c) 
shows the minimum singular value versus k 
where the drop indicates all the true 
eigenvalues by using the Burton & Miller 
approach. The present method by using the 
singular formulation agree with the 
analytical results better than BEM [1] does 
where a spurious eigenvalue appears at 

4.81k =   ( 0 1(4.81 ) 0J r = ) instead of 4.83 
in BEM. The present method by using the 
hypersingular formulation agree with the 
analytical solution better than BEM [1] does 
where a spurious eigenvalue appears at 
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0.0 and 3.68k = ( 1
0 1(0 ) 0J r′ =  and 

2
0 1(3.68 ) 0J r′ = ) instead of 0.35 and 3.77 in 

BEM. The present method is superior to 
BEM especially in the low frequency range 
and it is more accurate than BEM under the 
same number of degree of freedoms. The 
spurious eigenvalue was filtered out by 
using the Burton and Miller approach [1]. 
By adopting the truncated Fourier series 
(M=10), the first five mode shapes are 
compared well with those by FEM and BEM 
also shown in Table 1.  

 
Figure 5 Eigenproblem with an eccentric 

domain 

(a) 

(b) 

(c) 

Figure 6 The minimim singular value 1σ

versus k  f by using the present method 
and BEM 

 
Table 1 The first five eigenmodes by using 
the present method, FEM and BEM. 
Example 2 Scattering problem for five 
scatters (Dirichlet boundary condition) 
  Plane wave scattering by five soft circular 
cylinders (Dirichlet boundary condition) is 
considered in Figure 7. This problem was 
solved by using the multiple DtN approach 
[2]. Figure 8 shows the contour plots of the 
real part of potential for k π= . In Figure 9, 
there are no irregular frequencies by using 
present method but irregular frequencies 
occur by using BEM. 

Figure 7 The palne wave scattering by five 
circular cylinders  
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Figure 8 The contour plot of the real-part 
solutions of total field for k π= . 

 
Figure 9 The positions of irregular values 
using different methods of center circle. 

4. Concluding remark 

This paper emphasized on interior 
eigenproblems of multiply-connected 
problems and multiple radiators and scatters 
by using the null-field integral equation 
approach in which degenerate kernels and 
Fourier series are employed. A systematic 
way to solve the Helmholtz problems with 
circular boundaries was proposed 
successfully in this paper by using the 

null-field integral equation in conjunction 
with degenerate kernels and Fourier series. 
Problems were examined to check the 
accuracy of the present formulation for 
engineering applications including free 
vibration of membrane and scattering of 
circular obstacles. All the numerical results 
were compared with BEM and FEM 
solutions. Good agreements were made. 
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