Relationship between the Green's matrix of SVD and the Green's function matrix of SVE for exterior acoustics

外域聲場中格林函數矩陣的SVD與SVE的關聯

報告人:陳義麟

國立高雄海洋技術學院造船系副教授

於立德管理學院

台南 2002/11/15

Outlines

Motivation Green's function SVD (Singular value decomposition) **SVE** (Singular value expansion) Relationship between the SVD and the SVE Conclusions

Motivation

- Modal representation for the exterior acoustic field becomes important.
- What are the physical meanings of the SVD in exterior acoustic problem.
- What are the mathematical mechanism of the unitary matrices and singular value.

What is the Green's function

The Green's function relating to the acoustic pressure of field to the strengths of source on the boundary

$$G(s,x) = \frac{-i\pi}{2} \sum_{n=-\infty}^{\infty} \frac{H_n^{(1)}(ka) J_n(kR) - H_n^{(1)}(kR) J_n'(ka)}{H_n^{(1)}(ka)} H_n^{(1)}(k\rho) \Theta_n(\overline{\phi}) \Theta_n^+(\theta)$$

Degenerate kernel
 Image method

$$(\nabla^2 + k^2)G(x, s) = 2\pi\delta(x - s)$$

Degenerate kernels

$$(\nabla^{2} + k^{2})U(x, s) = 2\pi\delta(x - s)$$

$$U(s, x) = \frac{-i\pi H_{0}^{(1)}(kr)}{2} \quad (closed-form), \quad r = |s - x|$$

$$U(x, s) = \begin{cases} U^{i}(\rho, \overline{\phi}; R, \theta) = \sum_{n=-\infty}^{\infty} \frac{-i\pi}{2} H_{n}^{(1)}(k\rho)J_{n}(kR)\Theta_{n}(\theta)\Theta_{n}^{+}(\overline{\phi}), \rho > R, \\ U^{e}(\rho, \overline{\phi}; R, \theta) = \sum_{n=-\infty}^{\infty} \frac{-i\pi}{2} H_{n}^{(1)}(kR)J_{n}(k\rho)\Theta_{n}(\theta)\Theta_{n}^{+}(\overline{\phi}), \rho < R, \end{cases}$$

$$H_{0}^{(1)}(kr) \quad :The first kind Hankel function with order 0.$$

$$s = (R, \theta) \quad : \text{ source point}$$

$$x = (\rho, \overline{\phi}) \quad : \text{ field point}$$

$$\Theta_{n}(\overline{\phi}) = e^{in\theta}$$

$$\Theta_{n}(\overline{\phi}) = e^{in\overline{\phi}}$$

$$(0, 0)$$

The image method of acoustic field

G.E.
$$(\nabla^2 + k^2)G(x, s) = 2\pi\delta(x-s)$$

The Green's function satisfies the B.C.

$$\frac{\partial G}{\partial n_x} = 0, \quad (x \text{ on } B)$$

$$G(x,s) = U^{e}(\rho,\overline{\phi};R,\theta) - U^{i}(\rho,\overline{\phi};R',\theta)$$

$$J_{n}(kR') = \frac{H_{n}^{(1)}(kR)}{H_{n}^{(1)'}(ka)} J_{n}'(ka)$$

The Green's matrix

Boundary integral equation (singular integral equation)

$$\pi u(x) = CPV \int_{B} T(s, x)u(s)dB(s) - RPV \int_{B} U(s, x)t(s)dB(s), \quad x \in B$$
$$2\pi u(x) = \int_{B} T(s, x)u(s)dB(s) - \int_{B} U(s, x)t(s)dB(s), \quad x \in D.$$

CPV : Cauchy principal value *RPV* : Reimann principal value

Discrete the boundary integral equation

$$[T_B] \{ u_B \} = [U_B] \{ t_B \}$$
$$\{ u(x) \} = [T_D] \{ u_B \} - [U_D] \{ t_B \}$$

$\{u(x)\} = ([T_D][T_B]^{-1}[U_B] - [U_D])\{t_B\} = [G]\{t_B\}$

- **Source points**
- Observation points

G: Green's matrix

Singular value decomposition (SVD)

$$[G]_{P \times V} = \Phi_{P \times P} \Sigma_{P \times V} \Psi_{V \times V}^+$$

P: number of the field points

- V: number of the source points
- +: transpose conjugate

$$\Phi^+\Phi=\Phi\Phi^+=2$$

$$\Psi^+\Psi=\Psi\Psi^+=I$$

$$\Sigma = \begin{bmatrix} \sigma_{V} & 0 & \cdots & 0 \\ 0 & \sigma_{V-1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{1} \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \end{bmatrix}_{(V+2) \times V}$$

Singular value expansion

$$G(s,x) = \frac{-i\pi}{2} \sum_{n=-\infty}^{\infty} \frac{H_n^{(1)}(ka)J_n(k\rho) - H_n^{(1)}(ka)J_n'(k\rho)}{H_n^{(1)}(ka)} H_n^{(1)}(k\rho)\Theta_n(\overline{\phi})\Theta_n(\overline{\phi})\Theta_n(\overline{\phi})$$

$$[G(s,x)] = \lim_{M \to \infty} \begin{bmatrix} \sum_{n=-M}^{M} g_n \Theta_n(\overline{\phi}_1) \Theta_n^+(\theta_1) & \cdots & \sum_{n=-M}^{M} g_n \Theta_n(\overline{\phi}_1) \Theta_n^+(\theta_V) \\ \sum_{n=-M}^{M} g_n \Theta_n(\overline{\phi}_2) \Theta_n^+(\theta_1) & \cdots & \sum_{n=-M}^{M} g_n \Theta_n(\overline{\phi}_2) \Theta_n^+(\theta_V) \\ \vdots & \ddots & \vdots \\ \sum_{n=-M}^{M} g_n \Theta_n(\overline{\phi}_P) \Theta_n^+(\theta_1) & \cdots & \sum_{n=-M}^{M} g_n \Theta_n(\overline{\phi}_P) \Theta_n^+(\theta_V) \end{bmatrix}_{P \times V}$$

$$g_n = i\rho_0 c \frac{H_n^{(1)}(k\rho)}{H_n^{(1)'}(ka)},$$

9

Singular value expansion

$$\begin{split} [G(s,x)] &= \Theta(\overline{\phi}_{P}) \Lambda \Theta^{+}(\theta_{V}) \\ &= \Gamma(\overline{\phi}_{P}) \Sigma \Gamma^{+}(\theta_{V}) \Theta^{+}(\theta_{V}) \\ &= \Theta(\overline{\phi}_{P}) \begin{bmatrix} e^{i\phi_{1}} & 0 & \cdots & 0 \\ 0 & e^{i\phi_{2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{i\phi_{P}} \end{bmatrix}_{P \times P} \begin{bmatrix} \sigma_{1} & 0 & \cdots & 0 \\ 0 & \sigma_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & \sigma_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & \sigma_{V} \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & e^{i\theta_{V}} \end{bmatrix}_{V \times V} \Theta^{+}(\theta_{V}) \end{split}$$

 $[G] = \Phi \Sigma \Psi^+$

$$\varphi_{N} = Arg[H_{n}^{(1)}(k\rho)]$$
$$\vartheta_{N} = Arg[H_{n}^{(1)'}(ka)]$$
$$\sigma_{N} = \left|i\rho_{0}c\frac{H_{n}^{(1)}(k\rho)}{H_{n}^{(1)'}(ka)}\right|$$

Relationship between SVD and **SVE**

$$\Sigma = \Gamma^+(\overline{\phi}_P)\Lambda\Gamma(\theta_V)$$

Grouping characteristics

The left and right singular vectors of SVD

Conclusions

- 1. The degenerate kernel and image method are employed to derive the Green's function.
- 2. The physical meaning of the SVD has been examined.
- **3.** The left singular vectors of the SVD of the Green's matrix describing field mode shapes.
- 4. The right singular vectors of the SVD of the Green's matrix describing source mode shapes.
- 5. The singular value of the Green's matrix has been obtained and compared with analytical solutions.