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Abstract In this paper, a systematic approach is proposed to calculate the torsional rigidity of a circular bar 
containing multiple circular inclusions. To fully capture the circular geometries, the kernel function is 
expanded to the degenerate form and the boundary density is expressed into Fourier series. The approach is 
seen as a semi-analytical manner since error purely attributes to the truncation of Fourier series. By 
collocating the null-field point exactly on the real boundary and matching the boundary condition, a linear 
algebraic system is obtained. After obtaining the unknown Fourier coefficients, the solution can be 
obtained by using the integral representation. Finally, torsion problems are revisited to check the validity 
of our method. Torsional rigidities for a circular bar with an eccentric inclusion are compared well with the 
exact solution, BEM data and the Tang’s results. Convergence study shows that only a few number of 
Fourier series terms can yield acceptable results. The torsional rigidities of two limiting case of cavity and 
rigid inclusion are also obtained using the present approach. Five gains of well-posed model, singularity 
free, free of boundary-layer effect, exponential convergence and mesh-free approach are achieved. A 
general-purpose program was developed to determine the torsional rigidity for a circular bar with arbitrary 
number, radii, positions and shear moduli of circular inclusions.  
Keywords: Torsional rigidity, Null-field integral equation, inclusion 
 
INTRODUCTION 
In the past, multiply-connected problems have been solved either by conformal mapping or by other 
techniques. Ling [1] solved the torsion problem of a circular bar with several holes. Muskhelishvili [2] 
solved the problem of a circular bar reinforced by an eccentric circular inclusion. Chen and Weng [3] have 
introduced conformal mapping with a Laurent series expansion to analyze the Saint-Venant torsion 
problem. They concerned with an eccentric bar of different materials with an imperfect interface under 
torque. Since the conformal mapping is limited to the doubly-connected region, it encounters difficulty for 
multiple inclusions. Therefore, many researchers have paid more attentions on other techniques or 
numerical methods. In 1983, Caulk [4] developed a special boundary integral method to deal with the 
problem of a torsion bar with circular holes. Shams-Ahmadi and Chou [5] used the complex variable 
boundary element method (CVBEM) to solve the torsion problem of composite shafts with any number of 
inclusions of different materials. Ang and Kang [6] developed a general formulation for solving the 
second-order elliptic partial differential equation for a multiply-connected region in a different version of 
CVBEM. Petrov [7] developed an effective technique of boundary element method (BEM) to determine 
torsion, shear and other characteristics of beam cross-sections of arbitrary complex shape including 
multiply-connected cross sections. Tang [8] utilized the singular and hypersigular formulations to solve the 
torsion problem with inclusions and/or cracks. It may be easy to deal with two-dimensional problems. For 



three-dimensional problems, it may become more complex since the boundary surface needs to be 
discretized. Recently, meshless methods [9, 10] become very popular, since it is free of mesh generation 
and only nodes are needed. The present formulation can be seen as one kind of meshless methods, since it 
belongs to the boundary collocation method. Mogilevskaya and Crouch [11] have solved the problem of an 
infinite plane containing arbitrary number of circular inclusions based on the complex singular integral 
equation. Later, they [12] utilized Somigliana's formula and Fourier series for elasticity problems with 
circular boundaries. In their analysis procedure, the unknown tractions are approximated by using the 
complex Fourier series. However, for calculating an integral over a circular boundary, they didn’t expand 
the fundamental solution to degenerate kernel using the polar coordinate of local system. By moving the 
null-field point exactly on the real boundary, the boundary integral can be easily determined using series 
sums in our formulation due to the introduction of degenerate kernels. Mogilevskaya and Crouch [11] have 
used the Galerkin method instead of collocation approach. Free of worrying how to choose the collocation 
points, uniform collocation along the circular boundary yields a well-conditioned matrix. On the other 
hand, Bird and Steele [13] have also used separated solution procedure for bending of circular plates with 
circular holes in a similar way of the Trefftz method by using the addition theorem. Recently, Chen and his 
coworkers [14] have utilized the null-field integral equations in conjunction with the degenerate kernel and 
Fourier series to solve the torsion problem of a circular bar including multiple circular holes. Following the 
success of [14], we extend to solve torsion problems with multiple circular inclusions. 
In this paper, the null-field integral equation is utilized to solve the Saint-Venant torsion problem of a 
circular bar with circular inclusions. The mathematical tools, the degenerate kernel for the fundamental 
solution and Fourier series for the boundary density, are utilized in the null-field integral formulation. By 
collocating the null-field point exactly on the real boundary and matching the boundary condition, the 
linear algebraic system is obtained and the unknown Fourier coefficients can be easily determined. Then, 
series solutions for the warping function and torsional rigidity are obtained. Numerical examples are given 
to show the validity and efficiency of our formulation. 
 
FORMULATION OF THE PROBLEM 
A circular bar containing N circular inclusions bounded to the contours Bk ( Nk ,,2,1,0 L= ) is shown in 
Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Sketch of a circular bar with circular inclusions and/or holes under torsion 
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The radii of the outer circle and the inner inclusions are a0 and ai ( Ni ,,2,1 L= ), respectively. The circular 
bar twisted by couples applied at the end is taken into consideration. Following the theory of Saint-Venant 
torsion [15], we assume the displacement field to be 

zyu α−= , zxv α= , ),( yxw ϕα= , (2)
where α  is the angle of twist per unit length along the z direction and ϕ  is the warping function. 
According to the displacement field in Eq.(2), the strain components are 
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and their corresponding components of stress are 
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where μ  is the shear modulus. There is no distortion in the planes of cross sections since 
0==== xyzyx γεεε . We have the state of pure shear at each point defined by the stress components xzσ  

and yzσ . The warping function ϕ  must satisfy the equilibrium equation 
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where the body force is neglected and D is the domain. Since there are no external forces on the cylindrical 
surface, we have free traction, 0=== zyx ttt . By substituting the normal vector, the only zero traction 
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By substituting (7) into (9), the boundary condition is 
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Since the traction-free condition is specified for the outer boundary, we have 
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The continuity condition for the displacement and equilibrium condition for traction on the interface 
between the matrix and inclusion, are 
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where the superscripts “I” and “M” denote inclusion and matrix, respectively, 0μ  is the shear modulus for 
the matrix and iμ  is the shear modulus for the ith inclusion.  
 
METHOD OF SOLUTION 



1. Dual boundary integral equations and dual null-field integral equations The integral equation for 
the domain point can be derived from the third Green’s identity [16], we have 
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where s and x are the source and field points, respectively, D is the domain of interest, 
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and xn  denote the outward normal vectors at the source point s and field point x, respectively, and the 
kernel function rxsU ln),( = , ( xsr −≡ ), is the fundamental solution which satisfies 
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in which )( sx −δ  denotes the Dirac-delta function. The other kernel functions, T(s,x), L(s,x), and M(s,x), 
are defined by 
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By moving the field point to the boundary, Eqs.(14) and (15) reduce to 
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where R.P.V., C.P.V. and H.P.V. denote the Riemann principal value, Cauchy principal value and 
Hadamard principal value, respectively. Once the field point x locates outside the domain ( cDx ∈ ), we 
obtain the dual null-field integral equations as shown below 
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where cD  is the complementary domain. Eqs.(14), (15), (20) and (21) are conventional formulations 
where the point can not be located on the real boundary. Singularity occurs and concept of principal values 
is required once Eqs.(18) and (19) are considered. By introducing the degenerate kernel, we can located the 
point exactly on the real boundary for Eqs.(20) and (21) as shown below: 
2. Expansions of fundamental solution and boundary density Based on the separable property, the 
kernel function U(s,x) can be expanded into degenerate form by separating the source points and field 
points in the polar coordinate [17]: 
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where the superscripts “i” and “e” denote the interior ( ρ>R ) and exterior ( ρ<R ) cases, respectively. In 
order to ensure the log singularity and the series convergence, the leading term and the numerator in the 
above expansion is dominated by the larger argument. After taking the derivative operators in Eq.(17), the 
T(s,x) , L(s,x) and M(s,x) kernels can be easily derived and the detailed representation can be found in [14]. 
It is noted that the null-field point in Eq.(20) or the domain point in Eq.(14) can be exactly located on the 



real boundary when the appropriate degenerate kernels are employed. Our formulation for Eqs.(14), (15), 
(20) and (21) can be used for the point x on the real boundary free of singular integrals, while the 
conventional BEM needs to deal with singularities. 
For the boundary densities, we apply the Fourier series expansions to approximate the potential ϕ  and its 
normal derivative ψ  on the boundary 
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where k
na , k

nb , k
np  and k

nq  are the Fourier coefficients and θ  is the polar angle ( πθ 20 << ). 

3. Adaptive observer system After moving the point of Eq. (20) to the boundary, the boundary integrals 
through all the circular contours are required. Since the boundary integral equations are frame indifferent, 
i.e. objectivity rule is satisfied.  The observer system is adaptively to locate the origin at the center of each 
circle in the boundary integrals. Adaptive observer system is chosen to fully employ the property of 
degenerate kernels. Figures 2(a) and 2(b) show the boundary integration for the circular boundaries in the 
adaptive observer system. It is noted that the origin of the observer system is located on the center of the 
corresponding circle under integration to entirely utilize the geometry of circular boundary for the 
expansion of degenerate kernels and boundary densities. The dummy variable in the circular integration is 
angle (θ ) instead of radial coordinate (R). 

  

Figure 2(a): Sketch of the null-field integral 
equation in conjunction with the adaptive 

observer system 

Figure 2(b): Sketch of the boundary integral 
equation for the domain point in conjunction 

with the adaptive observer system 

4. Linear algebraic system By moving the null-field point xk to exactly locate on the kth circular 
boundary in the sense of limit for Eq. (20) in Figure 2(a), we have 

∑∫∑∫
==

−=
N

k
kB

N

k
kB

sdBsxsUsdBsxsT
kk 00

)()(),()()(),(0 ψϕ , cDx ∈ , (25)

where N is the number of circles including the outer boundary and the inner circular holes. In the real 
computation, we select the collocation point on the boundary. It is noted that the integration path is 
counterclockwise for the outer circle. Otherwise, it is clockwise. For the B integral of the circular 
boundary, the kernels of U(s,x) and T(s,x) are expressed in terms of degenerate kernels, and )(sϕ  and 

)(sψ  are substituted by using the Fourier series. In the Bk integral, we set the origin of the observer 
system to collocate at the center ck to fully utilize the degenerate kernels and Fourier series. By collocating 
the null-field point exactly on the boundary, a linear algebraic system is obtained 
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where [U] and [T] are the influence matrices with a dimension of )12( +× LN  by )12( +× LN , }{ϕ  
and }{ψ  denote the column vectors of Fourier coefficients with a dimension of )12( +× LN  by 1 in 
which  [U], [T], }{ϕ  and }{ψ  can be defined as follows: 
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where the vectors }{ kϕ  and }{ kψ  are in the form of { }Tk
L
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respectively; the first subscript “j” ( ,,,2,1,0 Nj L= ) in [Ujk] and [Tjk] denotes the index of the jth circle 
where the collocation point is located and the second subscript “k” ( ,,,2,1,0 Nk L= ) denotes the index of 
the kth circle where boundary data }{ kϕ  and }{ kψ  are specified and L indicates the truncated terms of 
Fourier series. The coefficient matrix of the linear algebraic system is partitioned into blocks, and each 
off-diagonal block corresponds to the influence matrices between two different circular holes. The 
diagonal blocks are the influence matrices due to itself in each individual hole. After uniformly collocating 
the null-field point along the kth circular boundary, the submatrix can be written as 
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where K can be substituted by U or T. Although the matrices in Eq.(29) is not sparse, they are diagonally 
dominant. It is found that the influence coefficient for the higher-order harmonics is smaller. It is noted 
that the superscript “0s” in Eq. (29) disappears since 0)0sin( =θ . The element of [Kjk] is defined 
respectively as 
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where Ln ,,2,1,0 L= , 12,,2,1 += Lm L , k is no sum and mφ  is the polar angle of the collocating points 
xm along the boundary. The physical meaning is that the influence coefficient of  )( m

nc
jkU φ  in Eq.(30) 

denotes the response at xm due to the cos(nθ) distribution as shown in Figure 3. By rearranging the known 
and unknown sets, the unknown Fourier coefficients are determined. Equation (20) can be calculated by 



 

 

Figure 3: Physical meaning of the influence coefficient )( m
nc
jkU φ  

employing the orthogonal relations of trigonometric functions in the real computation. Only the finite L 
terms are used in the summation of Eqs. (23) and (24). 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4(a): Torsion problem of a circular bar with 
circular holes 

Figure 4(b): Each circular inclusion problem 

By using concept of domain decomposition, the problem in Figure 1 can be decomposed into two parts as 
shown in Figure 4(a) and 4(b). One is the torsion problem of a circular bar with multiple circular holes and 
the other is a problem of each inclusion. For the torsion problem with circular holes which satisfies the 
Laplace equation, the linear algebraic system from Eq.(26) can be obtained as 
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For each inclusion, we have 
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In order to satisfy the continuity conditions of displacement and equilibrium condition of traction on the 
interface, we have 
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Combining with the above mentioned linear algebraic system of Eqs.(34)-(37), the global linear algebraic 
equation can be obtained by correctly arranging the Fourier coefficients. After obtaining the Fourier 
coefficients, the torsional rigidity can be easily determined. 
 
ILLUSTSTRATIVE EXAMPLES AND DISCUSSIONS 
In this section, we revisit the torsion problems with inclusions and/or holes which have been solved by 
Muskhelishvili [2], Petrov [7] and Tang [8] for demonstrating the validity of present method. The torsional 
rigidity of each example is calculated after determining the unknown Fourier coefficients. 
 
 
 
 
  
 
 
 
 
 
 
 

Figure 5: Sketch of an eccentric circular inclusion problem 
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1. Case 1: A circular bar with an eccentric inclusion A circular bar of radius R0 with an eccentric 
circular inclusion of radius R1 is shown in Figure 5. The ratio of R1/R0 and ex/R0 are 0.3 and 0.6, 
respectively. The torsional rigidity G of cross section is expressed as 
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where the subscripts “T”, ”M” and “I” denote total, matrix and inclusion, respectively. Figure 6 shows the 
torsional rigidity versus number of Fourier series term when 01 μμ  is equal to 0.6. It is found that the 
solution converges quickly by using only fourteen terms of Fourier series. The results of torsional rigidity 
for different values of 01 μμ  are shown in Table 1.  

Table 1 Torsional rigidity of a circular bar with an eccentric inclusion 
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Muskhelishvili [2] Tang [8] Present method (M=20) 

0 0.82370 0.82377 0.82370 

0.2 0.89180 0.89181 0.89180 

0.6 0.96246 0.96246 0.96246 

1.0 1.00000 1.00000 1.00000 

5.0 1.10800 1.10794 1.10800 

20.0 1.25224 1.25181 1.25224 

1000 9.19866 N/A 9.19866 

10000 82.09883 N/A 82.09882 

1000000 8101.10012 N/A 8101.09883 
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Figure 6: Torsional rigidity versus number of 
Fourier series terms 

Figure 7: Torsional rigidity versus shear modulus 
of inclusion 

For verifying our results, the Muskhelishvili’s solution is shown below 
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=ρ . The exact solution of Muskhelishvili and the result of 

integral formulation by Tang are shown in Table 1 for comparison. The present results matches very well 
with the exact solution derived by Muskhelishvil and is better than that of Tang. For the rigid inclusion, the 
torsional rigidity becomes infinity as shown in Table 1. Figure 7 is shown to indicate how shear modulus 
of inclusion influences the torsional rigidity. It is observed that the slope of torsional rigidity versus 1μ  is 

4
01 )( RR  when the shear modulus of the inclusion becomes large. 

2. Case 2: A circular bar with one circular hole (limiting case) The problem is different with the Case 1 
by setting zero modulus to simulate the hole. The limiting case is used to check the present formulation. 
The radius of a circular bar is 1.0 and the radius of the hole is 0.3. The eccentricity (ex=0.5) is considered. 
By using the present method, the shear moduli 0μ  and 1μ  is chosen 1.0 and 0, respectively. The exact 
solution of Muskhelishvili is also calculated by using the exact formula. The results are shown in Table 2. 
It is found the result of present method matches well with the Muskhelishvili’s data and is better than the 
Petrov’s result. However, the Lurje’s solution [18] is smaller than those of the Petrov’s, Muskhelishvili’s 
and our results. Since three different methods obtain the same result, the formulae of Lurje needs further 
check. 
 

Table 2 Torsional rigidity of a circular bar with an eccentric hole 
 4

00 RG μ  

Present method 1.389 (34) 1.389 (66) 1.389 (130) 

Petrov [7] 1.391 (32) 1.390 (64) 1.389 (130) 

Lurje [18] 1.311 

Muskhelishvili [2] 1.389 
where ( ): number of degrees of freedom 
 
CONCLUSIONS 
Torsion problems with circular inclusions have been successfully solved by using the present formulation. 
Our solutions match well with the exact solution and other solutions by using the integral formulation. 
There are only 41 collocation points uniformly distributed on each boundary for more accurate results of 
torsional rigidity with error less than 1 % after comparing with the exact solution. Although only the 
eccentric case is used to test the validity of present method, the program is general to deal with arbitrary 
number, positions, radii and shear moduli of inclusions. Five gains of our approach, (1) free of calculating 
principal value, (2) exponential convergence, (3) free of boundary-layer effect, (4) meshless method and 
(5) well-posed model, are obtained. Besides, the BIEs for the domain point or the null-field equation in our 
formulation can both be used by exactly collocating the point on the real boundary owing to the 
introduction of the degenerate kernels. 
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