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ABSTRACT 
In this paper, the degenerate kernels and Fourier 

series expansions are adopted in the null-field integral 
equation to solve the exterior Helmholtz problems with 
alluvial valleys. The main gain of using degenerate 
kernels in integral equations is free of calculating the 
principal values for singular integrals when the null-field 
point exactly locates on the real boundary. An adaptive 
observer system is addressed to fully employ the 
property of degenerate kernels for circular boundaries in 
the polar coordinate. Image concept and technique of 
decomposition are utilized for half-plane problems. After 
moving the null-field point to the boundary and matching 
the boundary conditions, a linear algebraic system is 
obtained without boundary discretization. The unknown 
coefficients in the algebraic system can be easily 
determined. The present method is treated as a 
“semi-analytical” solution since error only attributes to 
the truncation of Fourier series. Earthquake analysis for 
the site response of alluvial valley or canyon subject to 
the incident SH-wave is the main concern. Numerical 
examples including single and successive alluvial valleys 
are given to test our program. Limiting cases of a single 
canyon and two successive canyons are also addressed. 
The validity of the semi-analytical method is verified. 
Our advantages, well-posed model, principal value free, 
elimination of boundary layer effect and exponential 
convergence and mesh-free, by using the present method 
are achieved. 
Keywords: degenerate kernel, Fourier series, null-field 
integral equation, Helmholtz problem, SH-wave, alluvial 
valley. 

1. INTRODUCTION 
One of the major concerns of engineering seismology 

is to understand and explain vibrational response of the 
soil excited by earthquakes. The problem of the 
scattering and diffraction of SH-waves by a 
two-dimensional arbitrary number and location of 
cavities and inclusions in full and half-planes is revisited 
in this paper by using our unified formulation. In 1971, 
Trifunac [1] has solved the problem of a single 
semi-circular alluvial valley subject to SH-wave. Later, 
Pao and Mao [2] have published a book on the stress 

concentration in 1972. In 1973, Trifunac [3] has also 
derived the closed-form solution of a single semi-circular 
canyon subject to the SH-wave. The earliest reference to 
a closed-form solution of the scattering and diffraction of 
the incident SH-wave by an underground inclusion exists 
in an article concerning an underground circular tunnel 
by Lee and Trifunac [4]. In order to extend to arbitrary 
shape inclusion problems, Lee and Manoogian [5] have 
used the weighted residual method to revisit the problem 
of scattering and diffraction of SH-wave with respect to 
an underground cavity of arbitrary shape in a 
two-dimensional elastic half-plane. In the following 
years, they extended to the half-plane problem with a 
inclusion of arbitrary shape [6,7]. According to the 
literature review, it is observed that exact solutions for 
boundary value problems are only limited for simple 
cases, e.g. half-plane with a semi-circular canyon, a 
cavity under half-plane, an inclusion under half-plane. 
Numerical approach using boundary integral formulation 
was employed to study diffraction of seismic waves in 
half-plane [8]. Therefore, proposing a systematic 
approach for solving exterior Helmholtz problems with 
circular boundaries of various numbers, positions and 
radii is our goal in this paper. Our approach can deal with 
a cavity problem as a limiting case of an inclusion 
problem with zero shear modulus. 

In this paper, the boundary integral equation method 
(BIEM) is utilized to solve the half-plane radiation and 
scattering problems with circular boundaries. To fully 
utilize the geometry of circular boundary after 
introducing image concept, not only Fourier series for 
boundary densities as previously used by many 
researchers but also the degenerate kernel for 
fundamental solutions in the present formulation is 
incorporated into the null-field integral equation. The key 
idea is that we can push the null-field point exactly on 
the real boundary by using appropriate degenerates 
kernel in real computation. All the improper boundary 
integrals are free of calculating the principal values 
(Cauchy and Hadamard) in place of series sum. In 
integrating each circular boundary for the null-field 
equation, the adaptive observer system of polar 
coordinate is considered to fully employ the property of 
degenerate kernel. For the hypersingular equation, vector 
decomposition for the radial and tangential gradients is 
carefully considered, especially in the nonfocal case. A 



中華民國力學學會第三十屆全國力學會議   彰化縣大葉大學機械與自動化工程學系   95 年12 月15-16 日 
The 30thNational Conference on Theoretical and Applied Mechanics, December 15-16, 2006, DYU, Changhwa, Taiwan, R.O.C. 
 
scattering problem subject to the incident wave is 
decomposed into two parts, incident plane wave field and 
radiation field. The radiation boundary condition is the 
minus quantity of incident wave function for matching 
the boundary condition of total wave for a cavity. 
Therefore, proposing a systematic approach for solving 
BVP with various numbers of circular boundaries and 
arbitrary positions and radii is our goal in this paper. 
Following the success of torsion, bending and anti-plane 
problems with circular holes [9,10,11,12], the 
amplification of site response for alluvial valleys is 
studied. 
 
2. PROBLEM STATEMENT 

Half-plane problems with alluvial to be analyzed is 
shown in Figure 1. The matrix and alluvial are assumed 
to be elastic, isotropic and homogenous, and the interface 
between the alluvial and matrix is assumed to be perfect. 
The governing equation of the anti-plane SH-wave 
harmonic motion is 

2 2(x) (x) 0w wµ ρω∇ + = , x ∈Ω  (1)
where µ , ρ  and ω  are the material properties of 
shear modulus, the density and the frequency, 2∇  and 
Ω  are the Laplacian operator and the domain of interest, 
respectively. The anti-plane displacement field is defined 
as 

0u v= = , ( , )w w x y= , (2)
where w  is the only nonvanishing component of 
displacement with respect to the Cartesian coordinate 
which is a function of x  and y . The traction free 
boundary condition at the ground surface of the 
half-plane is defined as follows 

0yz
w
y

τ µ ∂= =
∂

, 0y = , (3)

or can be represented in the polar coordinate as 

0w
rθ
µτ

θ
∂= =
∂

, 0 and θ π= . (4)

The incident excitation of the half-plane, inw , is defined 
as a steady-state plane SH-wave, and motion in the z  
direction. It is expressed as shown below: 

( sin cos )
0

in ik x yw W e γ γ+= , (5)
where 0W  is the constant amplitude, and γ  is the 
angle of incidence. 

 
Figure 1 A half-plane problem with a semi-circular 

alluvial valley subject to the SH-wave. 

 
3. DUAL BOUNDARY INTEGRAL 
FORMULATION 

Regarding to the SH-wave problem, the integral 
equation for the domain point can be derived from the 
third Green’s identity [13], yields 

2 (x) (s, x) (s) (s)

(s, x) (s) (s),

e

B

e

B

u T u dB

U t dB

π =

−

∫
∫

 x B∈Ω∪ , (6) 

2 (x) (s, x) (s) (s)

(s, x) (s) (s),

e

B

e

B

t M u dB

L t dB

π =

−

∫
∫

 x B∈Ω∪ , (7) 

where the four kernels should be selected in a degenerate 
form of exterior region with the superscript “ e ”, s  and 
x  are the source and field points, respectively, B  is 
the boundary, and the kernel function, (s, x)U , is the 
fundamental solution which satisfies 

2 2( ) (x,s) 2 (x s)k U πδ∇ + = − , (8) 
where (x s)δ −  denotes the Dirac-delta function. Then, 
we can obtain the fundamental solution as follows 

(1)
0 ( )

( , )
2

i H kr
U s x

π−
= , (9) 

s

( , )( , )
n

U s xT s x ∂
=

∂
, 

x

( , )( , )
n

U s xL s x ∂
=

∂
, 

2

x s

( , )( , )
n n
U s xM s x ∂

=
∂ ∂

, 
(10)

where (1) ( )nH kr  is the nth  order Hankel function of 
the first kind, s-xr ≡ , xn  denotes the outward normal 
vector at the field point x . By collocating x  outside 
the domain ( x c∈Ω ) or on the boundary ( B ), we obtain 
the dual null-field integral equations as shown below 

0 (s, x) (s) (s)

(s, x) (s) (s),

i

B

i

B

T u dB

U t dB

=

−

∫
∫

 x c B∈Ω ∪ , (11)

0 (s, x) (s) (s)

(s, x) (s) (s)

i

B

i

B

M u dB

L t dB

=

−

∫
∫

, x c B∈Ω ∪ , (12)

where cΩ  is the complementary domain and the four 
kernels are chosen appropriately using degenerate 
expression of interior region with the superscript “ i ” in 
the following section. 
 
4. EXPANSIONS OF FUNDAMENTAL 
SOLUTIONS AND BOUNDARY 
DENSITIES 

In the present method, we adopt the mathematical 
tools, degenerate kernels, for the purpose of analytical 
study. The combination of degenerate kernels and 
Fourier series plays the major role in handling problems 
with circular boundaries. Based on the separable property, 
the kernel function (s, x)U , (s, x)T , (s, x)L  and 
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(s, x)M  can be expanded into separable form by 
dividing the source point ( s ( , )R θ= ) and field point 

( x ( , )ρ φ= ) in the polar coordinate [14].

(1)
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where 2 1,i =− the superscripts “ i ” and “ e ” denote the 
interior and exterior cases for the expressions of kernel, 
respectively, and mε  is the Neumann factor 

1, 0         
2,  1, 2,...,m

m
m

ε
=⎧

= ⎨ = ∞⎩
. (17)

It is noted that the larger argument is imbedded in the 
complex Hankel function ( H ) instead of real Bessel 
function ( J ) to ensure the ( )0H kr  singularity and 
series convergence. Since the potential resulted from 

(s, x)T  and (s, x)L  kernels are discontinuous cross the 
boundary, the potentials of (s, x)T  for R ρ+→  and 
R ρ−→  are different. This is the reason why R ρ=  is 
not included in expressional degenerate kernels of 

(s, x)T  and (s, x)L  in Eqs. (14) and (15). The 
analytical evaluation of the integrals for each element in 
the influence matrix can be found [9] and they are all 
non-singular. Besides, the limiting case to the boundary is 
also addressed. The continuous and jump behavior across 
the boundary is well described by using the Wronskian 
property of mJ  and mY  

( ) ( )( )
( ) ( ) ( ) ( )

,

2

m m

m m m m

W J kR Y kR

Y kR J kR Y kR J kR

kRπ

′ ′= −

=

, 
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to display the jump behavior as shown below: 
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The two functions, J  and Y , are similar to the two 
bases, 1 and x , for 1-D rod case where their Wronskian 
can describe the jump behavior.  

Since only circular boundary is considered in this 
study, we employ the Fourier series expansions to 
approximate the potential u  and its normal derivative t  
on the circular boundary, we have 

0
1

(s ) ( cos sin )k k k
k n k n k

n

u a a n b nθ θ
∞

=

= + +∑ , 

sk kB∈ , 1, 2, ,k N= , 
(21) 

0
1

(s ) ( cos sin )k k k
k n k n k

n

t p p n q nθ θ
∞

=

= + +∑ , 

sk kB∈ , 1, 2, ,k N= , 
(22) 

where s(s ) (s ) / nk kt u= ∂ ∂  in which sn  denotes the 
outward normal vector at the source point s , k

na , k
nb , 

k
np  and k

nq  ( 0, 1, 2,n = ) are the Fourier coefficients 
and kθ  is the polar angle for the kth  circular boundary. 
 
5. ADAPTIVE OBSERVER SYSTEM 
Consider a boundary value problem with circular 
boundaries of arbitrary locations as shown in Figure 2. 
The rule of objectivity is obeyed since the boundary 
integral equations are frame indifferent. An adaptive 
observer system is addressed to fully employ the property 
of degenerate kernels for circular boundaries in the polar 
coordinate as shown in Figures 3 (a) and (b). For the 
integration, the origin of the observer system can be 
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adaptively located on the center of the corresponding 
boundary contour. The dummy variable in the circular 
boundary integration is the angle ( )θ  instead of radial 
coordinate ( )R . By using the adaptive system, all the 
integrations can be easily calculated. 

 
Figure 2 Problem statement 

 

 
Figure 3 (a) Sketch of the null-field integral equation 

in conjunction with the adaptive observer system 

 
Figure 3 (b) Sketch of the boundary integral 

equation for the domain point in conjunction with 
the adaptive observer system. 

 
6. IMAGE TECHNIQUE FOR SOLVING 
HALF-PLANE SCATTERING PROBLEM 
Image concept for half-plane problems 

For the half-plane problem with an alluvial valley as 
shown in Figure 4, we extend the problem into a full 
plane with the scatter by using image concept such that 
our formulation can be applied. By applying the concept 
of even function, the symmetry condition is utilized to 
satisfy the traction free ( 0t = ) condition on the ground 
surface. We merge the half-plane domain into the 
full-plane problem by adding with the reflective wave. To 
solve the problem, the decomposition technique is 
employed by introducing two plane waves, one is incident 
and the other is reflective, instead of only one incident 
wave. After taking the free body of full-plane problem 
through the ground surface, we obtain the desired solution 
which satisfies the Helmholtz equation and all the 
boundary conditions in the half-plane domain. 

Figure 4 Image concept and the decomposition of superposition of an alluvial valley 
 

Decomposition of scattering problem into incident wave 
field and radiation problems 

For the scattering problem subject to the incident 

wave, this problem can be decomposed into two parts. 
One is the incident wave field and another is the radiation 
field as shown in Figure 4. The relations between two 
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parts are shown below: 

M in re M
tu u u u= + + , (34)

M in re M
tt t t t= + + , (35)

where the “ M
tt ” denotes the total field of matrix including 

radiation and scattering. The subscripts “ in ” and “ re ” 
are the incident and reflected waves and the “ Mt ” denotes 
the radiation part of matrix and needs to be solved. To 
match the boundary condition for the cavity case, the total 
traction is defined as 0M

tt = . For the inclusion case, we 
have the two constraints of the continuity of displacement 
and equilibrium of traction along the kth  interface 
( , 1, ,kB k N= ) as shown below: 

M I
tu u=  on kB , (36)

  M M I I
tt tµ µ=−  on kB . (37)

The radiation parts of matrix ( Mu  and Mt ) and inclusion 
( Iu  and It ) can be solved by employing our method. 
 
7. LINEAR ALGEBRAIC SYSTEM AND 
MATCHING OF INTERFACE 
CONDITIONS FOR PROBLEMS OF 
INCLUSION 

According to the linear algebraic system, the two 
systems of matrix and inclusion yield 

{ } { }M M M MU t = T u⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ , (38)

{ } { }I I I IU t = T u⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ . (39)
By employing the image concept, the decomposition and 
superposition, the Eq. (38) can be rewritten as 

{ } { }M M in re M M in re
t tU t t = T u u+ +⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ . (40)

According to Figure 4, an alluvial valley problem can be 
extended to a full-plane problem with a circular inclusion. 
In order to satisfy the traction free condition on the 
surface, the reflective wave is chosen to satisfy the 
symmetry condition as 

( sin cos )
0

re ik x yw W e γ γ−= , (41)
and we have the two constraints of the continuity of 
displacement and equilibrium of traction along the jth  
interface ( jB ). We will employ the two constrains into 
the formulation as shown below: 

{ } { }M I
tu = u  on kB , (42)

  { } { }M M I I
tµ t = - µ t⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  on kB , (43)

where Mµ⎡ ⎤⎢ ⎥⎣ ⎦  and Iµ⎡ ⎤⎢ ⎥⎣ ⎦  can be defined as follows: 

0 0 0 0

0 0 0 0
,

0 0 0 0

M I

M I
M I

M I

µ µ

µ µ
µ µ

µ µ

= =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, (44)

where Mµ  and Iµ  denote the shear modulus of the 
matrix and the kth  inclusion, respectively. By 

assembling the matrices in Eqs. (39), (40), (42) and (43), 
we have 

M M M in re
t

I I M
t
I

M I I

T -U 0 0 u u(x)
0 0 T -U t 0

=
I 0 -I 0 u 0
0 µ 0 µ t 0

+⎡ ⎤ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎩ ⎭ ⎩ ⎭

, (45)

where [ ]I  is the identity matrix, and { }in re+u(x)  is 
shown below 

{ }
in re

in re M M
in re

u u
u(x) T -U

t t
+

⎧ ⎫⎪ ⎪+⎪ ⎪= ⎨ ⎬⎪ ⎪+⎪ ⎪⎩ ⎭
. (46)

The analytical integrals for each element in the 
influence matrix are all non-singular. Besides, the limiting 
behavior to the boundary also exist. The direction of 
contour integration should be taken care, i.e., 
counterclockwise and clockwise directions are for the 
interior and exterior problems, respectively. By 
rearranging the known and unknown sets, the Fourier 
coefficients can be obtained. After obtaining the unknown 
Fourier coefficients, the origin of observer system is set to 

jc  in the jB  integration as shown in Figure 3 (b) to 
obtain the potential by employing Eq. (6). 
 
8. CALCULATION OF SURFACE 
DISPLACEMENT 

In order to check the validity of the formulation, the 
Manoogian [6] and Trifunac’s [1] problem with an 
alluvial valley is revisited. We follow the same parameter, 
η , for comparison purpose. The dimensionless frequency 
η  is defined as shown below: 

2 M

M

a k a a
c
ωη

λ π π
= = = , (47)

where a  is the half-width of the alluvial valley, ω  is 
the angular frequency, Mk  and Mc  are the shear wave 
number and the velocity of shear wave for the matrix 
medium, respectively, and the shear wave number k  is 
defined as 

k
c
ω

= . (48)

Substituting Eq. (47) into Eq. (48), the wave number of 
matrix field is rewritten as 

Mk
a
πη

= , (49)

and the shear wave number for the inclusion field is 
obtained by 

1/ 2I M M I

M I I M

k c
k c

µ ρ
µ ρ

⎛ ⎞
= = ⋅⎜ ⎟

⎝ ⎠
. (50)

Equation (50) indicates that various mediums yield 
different wave numbers. The surface amplitude is an 
important index for the earthquake engineering. If the 
amplitude of incident plane SH-wave is one, the 
responses at different locations represent amplifications 
of the incident wave. The resultant motion is defined by 
the modulus 
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( ) ( )2 2Re ImAmplitude w w= + , (51) 

where ( )Re w  and ( )Im w  are the real and imaginary 
parts of total displacement, respectively. 
 
9. ILLUSTRATIVE EXAMPLES AND 
DISCUSSIONS 

In the section, we revisit the same problems of 
Manoogian and Lee [7], Trifunac [1] and Tsaur et al. [15] 
for the alluvial problem. In order to check the accuracy of 
the present method, the limiting case is conducted. All the 
numerical results are given below by using ten terms of 
Fourier series. 
Case 1: Half-plane problem with an alluvial valley 

subject to the SH-wave 
In the following examples, we choose the same 
parameters / 1.5h a = , / 1/ 6I Mµ µ =  and 

/ 2 / 3I Mρ ρ =  which were previously adopted in the Ph. 
D dissertation of Manoogian [6] , and four various 
incident angles ( 0γ = , 30 , 60  and 90 ) are 

considered. The figures show the displacement amplitude 
on the ground surface only. Displacements are plotted 
with respect to the dimensionless distance /x a  for a 
specified parameter 2η = . In order to verify the limiting 
case of the general program, we set 8/ 10I Mµ µ −=  to 
reduce to the canyon cases. In Figures 5 and 6, good 
agreements are obtained after comparing with Lee and 
Manoogian’s results [16] using various frequency 
parameters of η  for the alluvial valley and semi-circular 
canyon case. 

Another limiting case of the rigid alluvial is also of 
interest in the foundation engineering. For example, rigid 
footing is a popular model in geotechnical engineering. 
By setting /I Mµ µ  to be infinity, the limiting case of 
rigid inclusion can be obtained. Figure 7 plots the surface 
displacement by setting 4/ 10I Mµ µ =  and 2η =  in 
the real computation. In the range of / 1x a = −  to 1, the 
amplification is a constant as expected, because it is 
undeformed due to the rigid alluvial. 
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Figure 5 Surface amplitudes of the alluvial valley problem for 2.0η = ( / 1/ 6, / 2 / 3I M I Mµ µ ρ ρ= = ). 
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Figure 6 Limiting case of a canyon ( / 2 / 3I Mρ ρ = , 8/ 10I Mµ µ −=  and 2η = ). 
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Figure 7 Limiting case of a rigid alluvial valley ( 4/ 10I Mµ µ= = , / 2 / 3I Mρ ρ =  and 2η = ). 
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Figure 8 A half-plane problem with two alluvial 

valleys subject to the incident SH-wave. 
Case 2: Half-plane problem with two alluvial valleys 

subject to the SH-wave 
Two semi-circular alluvial valleys subject to the 

incident SH-wave of γ  angle are shown in Figure 8. 
Figure 9 shows the surface displacements versus /x a  
for various incident angles with / 1/ 6I Mµ µ =  and 

/ 2 / 3I Mρ ρ =  subject to the cases of 2η = . By setting 

8/ 10I Mµ µ −= , the limiting case of successive canyons is 
obtained as shown in Figure 10. Tsaur et al. [15] and 
Fang [17] have both solved the problem of two 
semi-cylindrical alluvial valleys for the incident SH-wave. 
Tsaur et al. [15] pointed out that the deviation by Fang 
[17] is that Fang improperly used the orthogonal property. 
Good agreement is made after comparing with the results 
of Tsaur et al. [15]. For the incident angle of zero-degree, 
the surface displacement amplitude is symmetric. By 
increasing the incident angle, the displacement amplitude 
is gradually smaller in the back side of the alluvial valley 
or canyon due to the shield effect of two alluvial valleys 
or canyons. As the incident angle approaches 
ninety-degrees, the surface displacement amplitudes are 
all smaller than the “free field” in the back of the second 
alluvial. It indicates that two alluvial valleys can be the 
wave trap for the incident wave. 
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Figure 9 Surface displacements of two alluvial valleys ( / 1/ 6I Mµ µ = , / 2 / 3I Mρ ρ =  and 2η = ). 
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Figure 10 Limiting case of two canyons ( 8/ 10I Mµ µ −=  and 2η = ). 

 
10. CONCLUSION 

The first attempt to employ degenerate kernel in 
BIEM for problems with circular boundaries subject to 
the SH-wave was achieved. Not only canyon but also 
alluvial valley problems were treated. We have proposed 
a BIEM formulation by using degenerate kernels, 
null-field integral equation and Fourier series in 
companion with adaptive observer systems and vector 
decomposition. This method is a semi-analytical approach 
for problems with circular boundaries since only 
truncation error in the Fourier series is involved. Two 
limiting cases of inclusions, canyon and rigid footing, 
was also addressed. Good agreements are obtained after 
comparing with previous results. The surface motion of 
half-plane problem with alluvial valleys was determined. 
The analysis of amplification and interference effects for 
valley and inclusions subject to SH-waves may explain 
the ground motion either observed or recorded during 
earthquake. The method shows great generality and 

versatility for the problems with multiple circular cavities 
and inclusions of arbitrary radii and positions. Five 
advantages of singularity-free, no boundary-layer effect, 
well-posed model, exponential convergence and 
mesh-free approach are the main features of the proposed 
approach. 
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摘要 
本文係使用零場積分方程搭配分離核函數與傅立葉級

數求解含沉積山谷的外域赫姆茲問題。文中，利用退

化核函數之特性，可解析求得當零場點直接佈在真實

邊界上時的所有的奇異積分並免除主值計算的困擾。

採用自適性觀察座標系統來充分掌握分離核函數的特

性。本文中，半平面的問題使用映射法以及疊加的技

巧來求解。透過零場積分方程推向邊界且均勻佈點，

滿足邊界條件後可以得到一線性代數方程式，其中的

未知傅立葉係數均可輕易地求得。由於誤差僅來自於

擷取有限項的傅立葉級數，故本方法可視為“半解析

法＂。SH 坡入射沉積土或山谷的地震反應分析是本文

探討的重點。在數值算例中，利用單個或連續沉積土

以及特例的山谷與剛性夾雜問題來驗證此半解析法的

正確性。本方法同時兼具五種優點:有良態模式、免於

計算主值、無邊界曾效應以及不需佈網格的優點。 
 
關鍵詞：分離核函數、傅立葉級數、零場積分方程、

赫姆茲問題、SH 波、沉積山谷。 
 


