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ABSTRACT 
 
In this paper, we employ the addition theorem and superposition 
technique to examine the trapped mode of water wave problems. The 
scattering of water waves by arrays of vertical circular cylinders is 
solved by using the null-field integral equations in conjunction with 
degenerate kernels and Fourier series to avoid calculating the Cauchy 
and Hadamard principal values. In the implementation, the null-field 
point can be exactly located on the real boundary free of principal-
value calculation using bump contour owing to the introduction of 
degenerate kernels for fundamental solutions. This method can be seen 
as a semi-analytical approach since errors attribute from the truncation 
of Fourier series. The physical-resonance phenomena of near-trapped 
modes are our concern. Several examples are given to demonstrate the 
validity of the proposed approach. 
 
KEY WORDS:  Addition theorem; superposition technique; null-
field integral equation; Fourier series; trapped mode 
 
INTRODUCTION 
 
A general problem in offshore engineering is to determine the wave 
loading exerted upon a circular cylinder. For a single cylinder, an 
analytical solution was available by MacCamy and Fuchs (1954). For 
the general case, we always resort to semi-analytical or numerical 
solutions. A semi-analytical solution using the wave function expansion 
was obtained by Spring and Monkmeyer (1974) for the diffraction of 
linear waves by arrays of cylinders. Later, the interaction of water 
waves with arrays of circular cylinders was studied by Linton and 
Evans (1990) in a similar way of Twersky approach. Linton and Evans 
(1990) extended this approach to calculate the force in a more neat 
form. However, the convergence behavior of the null-field integral 
equation approach is superior to that of Linton and Evans method. For 
the boundary integral solution, it converges to L2 energy sense in an 
exponential order. It is noted that we can deal with other shape of cross 
section in our approach, if the degenerate kernels corresponding to the 
special geometry are available. For example, degenerate kernel for the 
ellipse can be found in the book of Morse and Feshbach (1978). Also, 
the work of the elliptic case using the method of Linton and Evans is 
given in the Martin’s book (2006), and the numerical results are 
implemented by Chatjigeorgiou and Mavrakos (2009). On the other 

hand, some formulae are not found in the mathematical handbook or 
were not derived by mathematicians for the special geometry. That is to 
say, we have a challenging work in deriving the degenerate kernel for a 
special geometry case. Besides, our approach can be applied to 
problems containing both circular and elliptical cylinders since we 
introduce adaptive coordinate system and vector decomposition. For 
the Linton and Evans approach, it may have difficulty in their 
formulation since the addition theorem for translating the polar 
coordinates to the elliptical coordinates and vice versa is not available 
to the authors’ best knowledge. Simply speaking, the addition theorem 
is not available to transform Bessel to Mathieu functions when a 
problem contains circle and ellipse together. 
Regarding the numerical methods, Au and Brebbia (1982, 1983) 
employed the boundary element method (BEM) to calculate the 
elevation of free surface as well as the resultant force by using constant, 
linear and quadratic elements. By discretizing the boundary in a more 
genius way, Zhu and Moule (1996) obtained a more accurate result. 
Chen (2004) used the composite BEM to determine the free-surface 
elevation for the porous cylinders. Besides, Chen et al. (2009) 
employed the null-field integral equation approach to study the near-
trapped mode. To determine singular integrals is a critical issue in the 
boundary integral equation method (BIEM). The present paper is based 
on the null-field BIEM while the singular integrals are transformed to 
series sum free of principal-value calculation using bump contour. 
Localized oscillations in unbounded media are always referred to 
trapped modes in different contexts. For example, acoustic resonance, 
array-guided surface waves, edge waves, Rayleigh-Bloch waves and 
bound states are similar physical phenomena. Energy in the guided area 
is stored and can not radiate to infinity in the case of trap wave number. 
Water wave diffraction and near trapping by a multi-column structure 
was studied by Evans and Poretr (1997). Near-trapped modes were 
found for four, five and six cylinders.  The wave number to excite the 
trapped modes was determined numerically by detecting the value of ka 
which results in the maximum force. Dirichelet and Neumann trapped 
modes of large number of cylinders (100) in an infinite domain were 
found to approach those of infinite number of cylinders by Maniar and 
Newman (1997). Real and absolute values for the free-surface elevation 
were investigated by Evans and Porter (1999). Trapped modes for a 
semi-infinite domain was studied by Thompson et al. (2008). For 
multiple cylinders in a channel, trapped modes were also found by 
Evans and Porter (1999). Mathematically speaking, the array-guided 
cylinders may result in non-trivial solutions of the homogeneous 
problem at particular values of wave number. It can be understood as 
eigenvectors corresponding to eigenvalues of certain differential 
operators on unbounded domains even though there is no characteristic 
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length as mentioned by Linton and McIver (2007). 
Duclos and Clèment (2004) extended to consider arrays of unevenly 
spaced cylinders, displaced randomly from a regular array according to 
a disorder parameter. They focused on two effects of this spacing 
irregularity, reduction of peak forces associated to trapped mode 
phenomena, and regularization of the transmission coefficient for 
waves propagating through the arrays. Also, the reduction of force in 
the case of near-trapped mode due to disorder is also our interest.  
In this paper, the hydrodynamics of circular cylinders is studied by 
using the null-field integral equation in conjunction with the addition 
theorem and the Fourier series. The main difference between the 
present approach and Linton-Evan method is that we use the BIE 
instead of the wave function expansion. The unknown coefficient here 
is the Fourier coefficient on the boundary instead of weighting of wave 
expansion for the domain. The problem can be decomposed into two 
parts. One is an infinite domain subject to the incident water wave. The 
other is an exterior Helmholtz problem in an infinite domain with 
circular boundaries. Force as well as free-surface elevation were 
calculated and compared with others to check the validity of our 
formulation. The parameter study for the disorder on the effect of near-
trapped modes will be investigated. 
 
PROBLEM STATEMENT AND INTEGRAL 
FORMULATION 
 
Problem statement 
 
Irrotational motion of the inviscid and incompressible fluid is small-
amplitude which is defined as velocity potential based on the linear 
water wave theory. We assume that there are N vertical circular 
cylinders mounted at seabed upward to the free surface as shown in Fig. 
1. The governing equation of the water wave problem is the Laplace 
equation 

Fig. 1 Problem statement of water waves with an array of vertical 
cylinders. 

 
2 ( , , , ) 0, ( , , )x y z t x y z D∇ Φ = ∈ . (1)

where 2∇  and D are the Laplacian operator and the domain of interest, 
respectively, and ( , , , )x y z tΦ  is the velocity potential which satisfies 
the boundary conditions of seabed, kinematic boundary conditions and 
dynamic boundary condition at free surface as shown below: 

0
n

∂Φ
− =
∂

, ( , )z h x y= − ,
 

(2)

z t x x y yϕ ϕ ϕ−Φ = −Φ −Φ , ( , , )z x y tϕ= , (3)
2 2 21 ( )

2t x y zgz−Φ + + Φ +Φ +Φ , ( , , )z x y tϕ= , (4)

where ( , , )x y tϕ  is the free-surface elevation. Based on the linear 
water wave theory and using the technique of separation of separation 
variable for space and time, we have 

( , , , ) Re{ ( , ) ( ) }i tx y z t u x y f z e ω−Φ = , (5)
where 

A cosh ( )( ) ,
cosh

ig k z hf z
kh

− +
=

ω  
(6)

in which A  is the amplitude of incident wave, g is the acceleration of 
gravity, ω  denotes the angular frequency, k represents the wave 
number, and 2 1= −i . 
where ( , , )x y tϕ  is the free-surface elevation, we assume 

( , , ) Re{ ( , ) }i tx y t x y e ωϕ η −= , (7)
where 

( , ) ( , )x y Au x yη = . (8)
 The potential of incident wave ( , )incu x y  is shown below: 

( cos sin ) cos( )( , ) inc inc incik x y ik
incu x y e eθ θ ρ φ θ+ −= ≡ , (9)

where incθ  is the angle of incident wave, and 2 2x yρ = + , 
arctan( )y xφ = . Substituting Eq. (5) into Eq. (1), we have 

2 2( ) ( , ) 0, ( , )k u x y x y D∇ + = ∈ . (10)
Rigid cylinders yield the Neumann boundary conditions as shown 
below: 

( , ) 0u x y
n

∂
=

∂
, ( , )x y B∈ .

 
(11)

The dispersion relationship is 
2

tanhk kh
g
ω

= .
 

(12)

The dynamic pressure can be obtained by 
cosh ( ) ( , ) ,

cosh
i tk z hp gA u x y e

t kh
ωρ ρ −∂Φ +

= − = −
∂  

(13)

where ρ  is the density of the fluid. The two components of the first-

order force jX  on the jth cylinder are given by integrating the pressure 
over the circular boundary as shown below: 

2
0

cos
tanh ( , )

sin
jjj

j
j

gAa
X kh u x y d

k
π θρ

θ
θ

⎧ ⎫⎪ ⎪= − ∫ ⎨ ⎬
⎪ ⎪⎩ ⎭  

(14)

where aj denotes the radius of the jth cylinder. 
 
Dual integral equations — the conventional version 
 
The dual boundary integral equation for the domain point can be 
derived from the Green’s third identity (Chen et al., 2003) as given 
below: 
2 ( ) ( , ) ( ) ( ) ( , ) ( ) ( )x s x s s s x s sB Bu T u dB U t dBπ = −∫ ∫ , x D∈ , (15)
2 ( ) ( , ) ( ) ( ) ( , ) ( ) ( )x s x s s s x s sB Bt M u dB L t dBπ = −∫ ∫ , x D∈ , (16)
where s and x are the source and field points, respectively, 

( )( )
s

u st s
n

∂
=

∂
, B is the boundary, sn  and xn  denote the outward 

normal vectors at the source point s and field point x, respectively. The 
kernel function ( )s,xU  is the fundamental solution which satisfies 

2 ( ) 2 ( )s,x x sU πδ∇ = − (17)
in which ( )x sδ −  denotes the Dirac-delta function. Then, we can 
obtain the fundamental solution as follows

 ( )(1)
0( )
2

s,x
i H kr

U
π−

= (18)

where (1)
0 ( )H kr  is the zeroth Hankel function of the first kind and 

r s x≡ − . The other kernels functions, T(s,x), L(s,x), and M(s,x), are 
defined by 
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( )( ) s,xs,x
s

UT
n

∂
=

∂
,
 (19)

( )( ) s,xs,x
x

UL
n

∂
=

∂
, (20)

2 ( )( ) s,xs,x
s x

UM
n n

∂
=

∂ ∂
. (21)

By moving the field point x to the boundary, the dual boundary integral 
equations for the boundary point can be obtained as follows: 

( ) . . . ( , ) ( ) ( ) . . . ( , ) ( ) ( ), ,x s x s s s x s sB Bu C PV T u dB R PV U t dB x Bπ = − ∈∫ ∫ (22)
( ) . . . ( , ) ( ) ( ) . . . ( , ) ( ) ( ), ,x s x s s s x sB Bt H PV M u dB C PV L t s dB x Bπ = − ∈∫ ∫ (23)

where R.P.V., C.P.V. and H.P.V. denote the Riemann, Cauchy and 
Hadamard (or called Mangler) principal values, respectively. By 
moving the field point to the complementary domain, the dual null-field 
integral equations are given below 
0 ( , ) ( ) ( ) ( , ) ( ) ( )s x s s s x s sB BT u dB U t dB= −∫ ∫ , cx D∈ , (24)

0 ( , ) ( ) ( ) ( , ) ( ) ( )s x s s s x s sB BM u dB L t dB= −∫ ∫ , cx D∈ , (25)

where cD  is the complementary domain. Eqs. (15), (16), (24) and (25) 
are conventional formulations where the point can not be located on the 
real boundary. Singularity occurs and concept of principal values is 
required once Eqs. (22) and (23) are considered.

  
Dual boundary integral formulation — the present version

  
By introducing the degenerate kernel, the collocation point can be 
exactly located on the real boundary free of calculating singular 
integrals in the sense of principal value. Therefore, the integral 
equations for the domain point and null-field integral equations in the 
interior problem are represented as

 2 ( ) ( , ) ( ) ( ) ( , ) ( ) ( ), ,s x s s s x s sI I
B Bu x T u dB U t dB x D Bπ = − ∈ ∪∫ ∫ (26)

2 ( ) ( , ) ( ) ( ) ( , ) ( ) ( ), ,x s x s s x s sI I
B Bt M u s dB L t dB x D Bπ = − ∈ ∪∫ ∫  (27)

and 
0 ( , ) ( ) ( ) ( , ) ( ) ( ), ,s x s s s x s sE E c

B BT u dB U t dB x D B= − ∈ ∪∫ ∫ (28)

0 ( , ) ( ) ( ) ( , ) ( ) ( ), .s x s s s x s sE E c
B BM u dB L t dB x D B= − ∈ ∪∫ ∫  (29)

For the exterior problem, the domain of interest is in the external region 
of the circular boundary and the complementary domain is in the 
internal region of the circle. Therefore, the null-field integral equations 
are represented as

 2 ( ) ( , ) ( ) ( ) ( , ) ( ) ( ), ,s x s s s x s sE E
B Bu x T u dB U t dB x D Bπ = − ∈ ∪∫ ∫ (23)

2 ( ) ( , ) ( ) ( ) ( , ) ( ) ( ), ,x s x s s s x s sE E
B Bt M u dB L t dB x D Bπ = − ∈ ∪∫ ∫  (31)

and 
0 ( , ) ( ) ( ) ( , ) ( ) ( ), ,s x s s s x s sI I c

B BT u dB U t dB x D B= − ∈ ∪∫ ∫ (32)

0 ( , ) ( ) ( ) ( , ) ( ) ( ), ,s x s s s x s sI I c
B BM u dB L t dB x D B= − ∈ ∪∫ ∫  (33)

where the superscripts of “I” and “E” denote interior and exterior 
degenerate kernels for fundamental solutions. The explicit forms of 
degenerate kernels will be elaborated on later.

  
Expansions of fundamental solution and boundary density

  
Based on the separable property, the kernel function U(s,x) can be 

expanded into degenerate form by separating the source point and field 
point in the polar coordinates. Since degenerate kernels can describe 
the fundamental solutions in two regions (interior and exterior 
domains), the BIE for the domain point in Eqs. (26)-(27) and Eqs. (30)-
(31) and the null-field BIE in Eqs. (28)-(29) and Eqs. (32)-(33), can be 
directly employed for the real boundary point. By using the polar 

coordinates, we can express ( , )x ρ φ=  and ( , )s R θ= . The four kernels 
U, T, L and M can be expressed in terms of degenerate kernels (Chen et 
al., 2007) as shown below:  

(1)

0

(1)

0

( , ; , ) ( ) ( )
2

cos( ( )), ,
( , )

( , ; , ) ( ) ( )
2

cos( ( )), ,

s x

I
m m m

m

E
m m m

m

iU R J k H kR

m R
U

iU R H k J kR

m R

πθ ρ φ ε ρ

θ φ ρ
πθ ρ φ ε ρ

θ φ ρ

∞

=

∞

=

−⎧ = ∑⎪
⎪

− ≥⎪= ⎨ −⎪ = ∑⎪
⎪ − <⎩

 (34)

(1)

0

(1)

0

( , ; , ) ( ) ( )
2

cos( ( )), ,
( , )

( , ; , ) ( ) ( )
2

cos( ( )), ,

s x

I
m m m

m

E
m m m

m

kiT R J k H kR

m R
T

kiT R H k J kR

m R

πθ ρ φ ε ρ

θ φ ρ
πθ ρ φ ε ρ

θ φ ρ

∞

=

∞

=

−⎧ ′= ∑⎪
⎪

− >⎪= ⎨ −⎪ ′= ∑⎪
⎪ − <⎩

 (35)

(1)

0

(1)

0

( , ; , ) ( ) ( )
2

cos( ( )), ,
( , )

( , ; , ) ( ) ( )
2

cos( ( )), ,

s x

I
m m m

m

E
m m m

m

kiL R J k H kR

m R
L

kiL R H k J kR

m R

πθ ρ φ ε ρ

θ φ ρ
πθ ρ φ ε ρ

θ φ ρ

∞

=

∞

=

−⎧ ′= ∑⎪
⎪

− >⎪= ⎨ −⎪ ′= ∑⎪
⎪ − <⎩

 (36)
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(1)

0

2
(1)

0

( , ; , ) ( ) ( )
2

cos( ( )), ,
( , )

( , ; , ) ( ) ( )
2

cos( ( )), ,

s x

I
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m

E
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m

k iM R J k H kR

m R
M

k iM R H k J kR

m R

πθ ρ φ ε ρ

θ φ ρ

πθ ρ φ ε ρ

θ φ ρ

∞

=

∞

=

⎧ − ′ ′= ∑⎪
⎪

− ≥⎪⎪= ⎨
−⎪ ′ ′= ∑⎪

⎪ − <⎪⎩

 (37)

where mε  is the Neumann factor 

1, 0,
2, 1, 2, , .m

m
m

ε
=⎧

= ⎨ = ∞⎩  
(38)

Mathematically speaking, the expressions of fundamental solutions in 
Eqs. (34)-(37) are termed degenerate kernels (or separable kernels) 
which can expand the kernel to sums of products of function of the 
field point x alone and functions of the source point s alone. If the finite 
sum of series is considered, the kernel is finite rank. As we shall see in 
the later sections, the theory of boundary integral equations with 
degenerate kernel is nothing more than the linear algebra. Since the 
potentials resulted from T(s,x) and L(s,x) are discontinuous across the 
boundary, the potentials of T(s,x) and L(s,x) for R ρ+→  and R ρ−→  
are different. This is the reason why the equal sign between ρ  and R is 
not included in the expression for the degenerate kernels of T(s,x) and 
L(s,x) in Eqs. (35) and (36). The degenerate kernels simply serve as the 
means to evaluate regular integrals analytically and take the limit to 
boundary analytically. The reason is that integral equation for the 
domain point of Eq. (27) and the null-field integral equation of Eq. (29) 
yield the same linear algebraic equation when the limit is taken from 
the inside or from the outside of the region. Both limits represent the 
same algebraic equation that is an approximate counterpart of the 
boundary integral equation, that for the case of a smooth boundary has 
in the left-hand side term πu(x) or πt(x) rather than 2πu(x) or 2πt(x) for 
the domain point or 0 for the point outside the domain. Besides, the 
limiting case to the boundary is also addressed. The continuous and 
jump behavior across the boundary is well captured by the Wronskian 
property of Bessel function mJ  and mY  bases 

2( ( ), ( )) ( ) ( ) ( ) ( )m m m m m mW J kR Y kR Y kR J kR Y kR J kR
kRπ

′ ′= − =
 

(39)

as shown below 
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( )2
0 ( , ) ( , ) cos( ) 2 cos( ), ,s x s xI ET T m Rd m x Bπ θ θ π φ− = ∈∫  

(40)

( )2
0 ( , ) ( , ) sin( ) 2 sin( ), .s x s xI ET T m Rd m x Bπ θ θ π φ− = ∈∫  (41)

After employing Eqs. (40)-(41), Eq.(30) and Eq. (32) yield the same 
linear algebraic equation when x is exactly located the boundary from 
the domain or the complementary domain. A proof for the Laplace case 
can be found by Chen et al. (2006). 
 In order to fully utilize the geometry of circular boundary, the 
boundary potential u(s) and its normal flux t(s) can be approximated by 
employing the Fourier series. Therefore, we obtain

 
0

1
( ) ( cos sin )s n n

n
u a a n b nθ θ

∞

=
= + +∑ ,

 
(42)

0
1

( ) ( cos sin )s n n
n

t p p n q nθ θ
∞

=
= + +∑ , (43)

where 0a , na , nb , 0p , np  and nq  are the Fourier coefficients. Eqs. 
(32) and (33) can be easily calculated by employing the orthogonal 
property of Fourier series. In the real computation, only the finite M 
terms are used in the summation of Eqs. (42) and (43). 
 
Adaptive observer system 
 
Since the boundary integral equations are frame indifferent, i.e. rule of 
objectivity is obeyed. Adaptive observer system is chosen to fully 
employ the property of degenerate kernels. Fig. 2 shows the boundary 
integration for the circular boundaries. It is worthy of noting that the 
origin of the observer system can be adaptively located on the center of 
the corresponding circle under integration to fully utilize the geometry 
of circular boundary. The dummy variable in the integration on the 
circular boundary is just the angle (θ ) instead of the radial coordinate 
(R). By using the adaptive observer system, all the boundary integrals 
can be determined analytically free of principal-value calculation using 
bump contour. 
 
Linear Algebraic Equation 
 
After locating the null-field point xk exactly on the kth circular 
boundary in Eq. (28) as shown in Fig. 2, we have

 

0 0
0 ( , ) ( ) ( ) ( , ) ( ) ( ), ,s x s s s x s s

k k

N NE E c

k kB B
T u dB U t dB x D B

= =
= − ∈ ∪∑ ∑∫ ∫  (44)

where N is the number of circular cylinders and B0 denotes the outer 
boundary for the bounded domain. In case of the infinite problem, B0 
becomes B∞ . The origin of observer system is adaptively chosen at the 
center of circular boundary under integration. The dummy variable in 
the circular integration is angle (θ ) instead of radial coordinate (R). In 
the real computation, we select the collocation point on the boundary 
and the integration path is counterclockwise for the outer circle. 
Otherwise, it is clockwise. For the integration path Bk, the kernels of 
U(s,x) and T(s,x) are respectively expressed in terms of degenerate 
kernels of Eqs. (33) and (34) with respect to the observer origin at the 
center of the corresponding path. The boundary densities of u(s) and t(s) 
are substituted by using the Fourier series of Eqs. (42) and (43), 
respectively. In the Bk integration, we set the origin of the observer 
system to collocate at the center ck of Bk to fully utilize the degenerate 
kernel and Fourier series. By moving the null-field point exactly on the 
real boundary Bk from outside of the domain Dc in the numerical 
implementation, a linear algebraic system is obtained.

 =[U]{t} [T]{u} , (45)
where [U] and [T] are the influence matrices with a dimension of 

2 1N M× +( )  by 2 1N M× +( ) , {t} and {u} denote the vectors for t(s) 
and u(s) of the Fourier coefficients with a dimension of 2 1N M× +( )  
by 1, in which, [U], [T], {u} and {t} are defined as follows: 

11 12 1

21 22 2

1 2

N

N

N N NN

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

U U U
U U U

[U]

U U U
 

(46)

11 12 1

21 22 2

1 2

N

N

N N NN

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

T T T
T T T

[T]

T T T

’ (47)

1

2

N

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

u
u

{u}

u

, 

1

2

N

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

t
t

{t}

t

 (48)

where the vectors {uk} and {tk} are in the form of 

0 1 1
k k k k k T

M Ma a b a b{ } and 0 1 1
k k k k k T

M Mp p q p q{ } ; the first 

subscript “ j ”( j =1, 2, …, N) in the jk[U ] denotes the index of the 

jth  circle  where the collocation point is located and the second 
subscript “ k ” ( k =1, 2, …, N) denotes the index of the kth  circle 
where the boundary data {uk} or {tk} are routed. The number of 
circular holes is N and the highest harmonic of truncated terms is M. 
The coefficient matrix of the linear algebraic system is partitioned into 
blocks, and each diagonal block (Umm) corresponds to the influence 
matrices due to the same circle of collocation and Fourier expansion. 
After uniformly collocating the point along the jth  circular boundary, 
the sub-matrix can be written as 

0 1 2
1 1 1

0 1 2
2 2 2

0 1 2
3 3 3

0 1 2
2 2 2

0 1 2
2 1 2 1 2 1

1 1

2

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

[ ]

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( )

c c s
jk jk jk
c c s

jk jk jk
c c s

jk jk jk
jk

c c s
jk M jk M jk M
c c s

jk M jk M jk M

Mc Ms
jk jk

Mc Ms
jk jk

φ φ φ
φ φ φ
φ φ φ

φ φ φ
φ φ φ

φ φ
φ

+ + +

⎡
⎢
⎢
⎢
⎢=
⎢
⎢
⎢
⎢⎣

U U U
U U U
U U U

U

U U U
U U U

U U
U U 2

3 3

2 2

2 1 2 1

( )
( ) ( )

( ) ( )
( ) ( )

Mc Ms
jk jk

Mc Ms
jk M jk M

Mc Ms
jk M jk M

φ
φ φ

φ φ
φ φ+ +

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

U U

U U
U U

 
(49)

 
Fig. 2 An adaptive observer system. 
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 (50)

It is noted that the superscript “0s” in Eq. (49) disappears since 
sin(0 ) 0θ = , and the element of [ ]jkU  and [ ]jkT  are defined as 

( , )cos( )
k

nc
jk k m k k kBU U s x n R dθ θ= ∫ (51)

( , )sin( )
k

ns
jk k m k k kBU U s x n R dθ θ= ∫  (52)

( , )cos( )
k

nc
jk k m k k kBT T s x n R dθ θ= ∫  (53)

( , )sin( )
k

ns
jk k m k k kBT T s x n R dθ θ= ∫  (54)

where 1, 2, , .n M= After obtaining the unknown Fourier 
coefficients, the origin of observer system is set to cj in the Bj 
integration as shown in Fig. 3 to obtain the interior potential by 
employing Eq.(26) and (30). 

 
Fig. 3 Sketch of the BIE for the domain point. 

 
Perturbation of ordered cylinder arrangements

  
An array of cylinders according to a regular three-rows disposition is 
shown in Fig. 4. For the purpose of disturbing the regular arrangement, 
a perturbation of disposition is given. The displacement of each 
cylinder center apart from its original periodical position is defined as 
follows 

( )
( )

cos 2 ,

sin 2 ,

j j j

j j j

x p

y p

γ τ πγ

γ τ πγ

Δ =

Δ =  
(55)

where jγ  is a random variable in the range of [0,1], the maximum 
permissible displacement p  is equal to d-a and τ  is a global disorder 
parameter. The distance between the two centers of identical cylinders 
is 2d where the radii of cylinders are a.  
 

Illustrative examples 
 
In this paper, we concern with the effect of disorder (τ ) on the near-
trapped modes. Several examples including four, six, ten and sixteen 
cylinders as shown in Fig. 4 are given to verify the validity of our 
approach. 
 
Case 1: four cylinders 
 
Figs. 5 (a) and (b) give the original state for the trapped mode without 
disturbance due to disorder ( 0=τ ) in the case of wave number 
k=4.08482 by using Evans and Porter’s approach and our approach, 
respectively. Both figures show the contour of absolute value of free-
surface elevation for a/d=0.8. As predicted by Evans and Porter (1999), 
we reconfirm that over 150 times of the amplitude of incident wave and 
54 times of the force over one isolated cylinder using our approach. 
 
Case 2: six cylinders  
 
For one set of six cylinders as shown in Fig. 4(b), Figs. 6 (a) and (b) 
also show the contour plots of trapped modes by using Evan and 
Porter’s approach and our method, respectively. 
 
Case 3: ten cylinders 
 
For the array of three sets, ten cylinders is considered. The absolute 
value of potential is plotted and the near-trapped mode is also observed 
by using our approach in Fig. 7.

  
Case 4: sixteen cylinders 
 
For the five sets of sixteen cylinders, contour plots of the maximum 
free-surface elevation are shown in Figs. 8 (a) and (b) by using the 
Duclos and Clèment’s method (2004) and our approach, respectively. 
The maximum wave amplitude is predicted to be about 150 times by 
using both approaches. We also show the 3-D plot of our result in Fig. 
8 (c). Figs. 9 (a) and (b) show the force experienced by cylinder No.3 
of the linear array in Fig. 4(d) and cylinder 1 (see Fig. 4(a)) of the 
circular cylinders by using the Duclos and Clèment’s method (2004) 
and our approach, respectively. Agreement is observed for the 
maximum resultant force. For this critical wave number, we find a very 
large and sharp peak up to 46 times the force on a single identical 
cylinder in the same field.  
Following the definition of disorder parameter τ , two random cases of 

0 1= .τ  were reported by Duclos and Clèment (2004) as shown in Figs. 
10 (a) and (b). The appearance of the trapped mode is dramatically 
suppressed. To test the accuracy of our approach for the disorder effect, 
Fig. 11 shows that the contour plot of the trapped mode is effectively 
suppressed for 0 1= .τ . 
 
CONCLUSIONS 
 
In this paper, not only a systematic approach was employed to 
investigate the water-wave interaction with arrays of cylinders, but also 
the effect of  disorder on the force in case of trapped modes was also 
examined. Addition theorem or so-called the degenerate kernel is 
adopted in the null-field integral formulation. Therefore, the singular 
integrals using bump integrals for principal values can be avoided. 
Numerical results including the free-surface elevation and resultant 
forces on each cylinder have been presented to illustrate the effect of 
disorder parameter on the force in case of trapped modes. Good 
agreements are observed after comparing with the results obtained in 
the literature. 



6 

 

 
(a) Four cylinders 

 

 
(b) Six cylinders 

 

 
(c) Ten cylinders 

  

 
(d) Sixteen cylinders 

Fig. 4 Configuration of (a) four cylinders, (b) six cylinders, (c) ten 
cylinders and (d) sixteen cylinders. 

 

 
(a) Evans and Porter (1999) 

 
(b) Present method (M=20) 

Fig. 5 Near-trapped mode for the four cylinders at ka=4.08482 
(a/d=0.8, 0 0τ = . ) 
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(a) Evans and Porter (1997) 

 
(b) Present method (M=20) 

Fig. 6 Near-trapped mode for the six cylinders at ka=2.92921 (a/d=0.8, 
0.0τ = ) 

 
Fig. 7 Near-trapped mode for the ordered pile array at ka=4.08482 

(a/d=0.8, M=20, 0.0τ = ) 

 
(a) Contour plot by Duclos and Clèment (2004) 

 
(b) Contour plot by using the present method (M=20) 

 
(c) Free-surface elevations by the present method (M=20) 

Fig. 8 Near-trapped mode for the ordered pile array at ka=4.08482 
(a/d=0.8, M=20,  0 0τ = . )
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(a) Duclos and Clèment (2004) 

 
(b) Present method (M=20) 

Fig. 9 Horizontal force on the corresponding cylinder of the ordered 
pile array. (kd/π=1.625293, a/d=0.8, M=20, 0.0τ = ) 

 
Fig. 10 Suppression of near-trapped modes by using disorder ( 0.1τ =  , 

Duclos and Clèment, 2004). 

 
Fig. 11 Suppression of near-trapped modes by using disorder.  

(a/d=0.8, M=20) 
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