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In this paper, the null-field integral equation method is employed to study the occurring mechanism of
spurious eigenvalues for a concentric sphere. By expanding the fundamental solution into degenerate
kernels and expressing the boundary density in terms of spherical harmonics, all boundary integrals
can be analytically determined. It is noted that our null-field integral formulation can locate the colloca-
tion point on the real boundary thanks to the degenerate kernel. In addition, the spurious eigenvalues are
parasitized in the formulations while true eigensolutions are dependent on the boundary condition such
as the Dirichlet or Neumann problem. By using the updating term and updating document of singular
value decomposition (SVD) technique, true and spurious eigenvalues can be extracted out, respectively.
Besides, true and spurious boundary eigenvectors are obtained in the right and left unitary vectors in the
SVD structure of the influence matrices. This finding agrees with that of 2D cases.

Crown Copyright © 2009 Published by Elsevier Ltd. All rights reserved.

1. Introduction

The application of eigenanalysis is gradually increasing for
vibration and acoustics. The demand for eigenanalysis calls for an
efficient and reliable method of computation for eigenvalues and
eigenmodes. Over the past three decades, several boundary ele-
ment formulations had been employed to solve the eigenproblems
[1,2], e.g., determinant searching method, internal cell method,
dual reciprocity method, particular integral method and multiple
reciprocity method. In this paper, we will focus on the determinant
searching method with emphasis on spurious eigenvalues when
using the BIEM for 3D problems with an inner cavity. Spurious
and fictitious solutions stem from the problems of non-uniqueness
solution which appear in different aspects in computational
mechanics. First of all, the occurrence of hourglass modes in the fi-
nite element method (FEM) using the reduced integration stems
from the rank deficiency [3]. Also, loss of divergence-free con-
straint for the incompressible elasticity results in spurious modes.
On the other hand, while solving the differential equation by using
the finite difference method (FDM), the spurious eigenvalue also
appears due to discretization [4-6]. In the real-part BEM [7] or
the MRM formulation [8-13], spurious eigensolutions occur in
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solving eigenproblems. Even though the complex-valued kernel
is adopted, the spurious eigensolution also occurs for the multi-
ply-connected problem [14,15] as well as the appearance of ficti-
tious frequency for the exterior acoustics [16]. Spurious
eigenvalues in the MFS for 3D problems were also studied by Tsai
et al. [17]. In this paper, a simple case of 3D concentric sphere will
be demonstrated to see how spurious eigensolutions occur and
how they are suppressed by using singular value decomposition
(SVD).

In the recent years, the SVD technique has been applied to solve
problems of fictitious frequency [16] and continuum mechanics
[18]. Two ideas, namely updating term and updating document
[1,16], were successfully applied to extract the true and spurious
solutions, respectively. In this paper, the three-dimensional eigen-
problem of a concentric sphere is studied in both numerical and
analytical ways. Owing to the introduction of degenerate kernel,
the collocation point can be located exactly on the real boundary.
Besides, true and spurious equations can be found by using the
null-field integral equation in conjunction with degenerate kernels
and spherical harmonics for a concentric sphere. Surface distribu-
tions of the inner and outer boundaries can be expanded in terms
of spherical harmonics. Since a spurious eigenvalue is embedded in
the numerical method and has no physical meaning, the remedies,
SVD updating term and SVD updating document, are used to ex-
tract or filter out true and spurious eigenvalues, respectively. Final-
ly, an example with various boundary conditions is utilized to
validate the present approach by using singular and hypersingular
formulations.
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2. Null-filed integral equation formulation
2.1. Problem statements

The governing equation for the eigenproblem of a concentric
sphere is the Helmholtz equation as follows:

(V> +K)u(x)=0, xeD, (1)
where V2, k and D are the Laplacian operator, the wave number
and the domain of interest, respectively. The concentric sphere is
depicted in Fig. 1. The inner and outer radii are a and b, respectively.

2.2. Dual null-field integral formulation—the conventional version

The dual boundary integral formulation [6] for the domain
point is shown below:

47mu(x /T s,X)u(s)dB(s xeD, (2

/st 8ns dB(s),

ax )2 dp(s), xeD. (3)

/Msx s)dB(s

an

where x and s are the field and source points, respectively, B is the
boundary, n, and n; denote the outward normal vector at the field
point and the source point, respectively, and the kernel function
U(s,x) is the fundamental solution which satisfies

(V2 4+ K*)U(s,x) = 4md(x — S), (4)

where § is the Dirac-delta function. The other kernel functions can
be obtained as

Tis.x) = 50, )

Lisi) = S0, )
2

M(s,x) = %. (7)

If the collocation point x is on the boundary, the dual boundary inte-
gral equations for the boundary point can be obtained as follows:

271u(x) = C.P.V./T(s,x)u(s)dB(s)

—RPV/st gf)dB(s), XeB, 8)
Znagr(lf) —HPV. / M(s, X)u(s)dB(s)
—CPV/Lsx 8()dB() X €B, 9)

where R.P.V., C.P.V. and H.P.V. are the Riemann principal value, the
Cauchy principal value and the Hadamard (or called Mangler) prin-

Fig. 1. A concentric sphere.

cipal value, respectively. By collocating x outside the domain, we
obtain the null-field integral equation as shown below:

/st

O—/Tsx s)dB(s dB(s), xeD", (10)

0= /Msx s)dB(s dB(s), xeDf, (11)

where D¢ denotes the complementary domain.
2.3. Dual null-field integral formulation—the present version

By introducing the degenerate kernels, the collocation points
can be located on the real boundary free of facing the principal va-
lue by using the bump contour approach. Therefore, the represen-
tations of integral equations including the boundary point can be
written as

47zu(x)=/BT(s,x)u(s)dB(s)f/BU(s,x)aau—éj)dB(s), x€DUB,
(12)

US) 4B(s), x e DUB,

an agr(l’:) - /B M(s, x)u(s)dB(s) —

(13)

and

0— /Tsx 5)dB(s dB(s), xeD'UB, (14)

0= /Msx s)dB(s /L

once the kernel is expressed in terms of an appropriate degenerate
form. It is found that the collocation point is categorized to three
positions, domain (Eqgs. (2) and (3)), boundary (Egs. (8) and (9))
and complementary domain (Eqs. (10) and (11)) in the conventional
formulation. After using the degenerate kernel for the null-field
BIEM, both Egs. (12)-(15) can contain the boundary point. The
resulted linear algebraic systems derived from Egs. (12)-(15) are
the same [19], i.e. we can move to the boundary either from the
domain point or null-field point. The main reason can be found from
the Appendix A to see how jump terms appear.

dB(s), xeDUB, (15)

2.4. Expansions of the fundamental solution and boundary density

The fundamental solution as previously mentioned is

e—ikr
Uls.x) = ——, (16)

where r = |s — x| is the distance between the source point and the
field point and i is the imaginary number with i = —1. To fully uti-
lize the property of spherical geometry, the mathematical tools,
degenerate (separable or finite rank) kernel and spherical harmon-
ics, are utilized for the analytically calculating the boundary
integrals.

2.4.1. Degenerate kernel for fundamental solutions

In the spherical coordinates, the field point (x) and source point
(s) can be expressed as x = (p, ¢,0) and s = (p, ¢, 0), respectively.
By employing the addition theorem for separating the source point
and field point, the kernel functions, U(s,x), T(s,x), L(s,x) and
M(s,x), are expanded in terms of degenerate kernel as shown
below:
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Uls.x) = ik > (2n + 1) i -t cos(m (¢ — ¢))

n=0

P™(cos 0)P™(cos 0)j,(kp)h'? (kp), p = p,

U(s,x) = ‘ )
Ue(s, x) = ik j:;O(szr 1) ; (m(¢ — ¢))
P™(cos 0)P™ (cos 0)j,(kp)h'? (kp), p > p,
(17)
T(5.0 = i @0 +1) 3 e i cos(m(g — $))
Py (cos 0)Py (cos 0)j, (ko) (kp),  p > p,
T(s,x) =
Te(s,x) = ik* > (2n+ 1) z oy cos(m(¢ — @)
n=0 m=0
P} (cos 0)P} (cos O)ji, (kp)hy” (kp),  p > p,
(18)
L(5.%) = i 52+ 1) 3 & 522 cos(m(g - §))
= m=0
Ls.x) = P} (cos O)P'"(cos 0) ';<kp>h '(kp), P> p,
L(s,x) = ik> > (2n 4+ 1) Z & o COS(M($ — §))
n=0
P} (cos 0)P} (cos B) n<kp>h<2 (kp), p>p,
(19)
M(s.x) =ik S-@n+1) 2 e (m(¢ - 9))
n=0 m=0
m m ] — > ,
M(s.x) — Py (cos §)P; (cos n) (ko) (kp), p = p
Me(s,x) = ik* 3> (2n + 1) Z (m($ - ¢))
n=0 m=0
P} (cos 0)P}! (cos O)jy, (kp)hy? (kp),  p > p,
(20)

u ”

where the superscrlpts and “e” denote the interior and exterior
regions, j, and hn are the nth order spherical Bessel function of
the first kind and the nth order spherical Hankel function of the sec-
ond kind, respectively, Py is the associated Lengendre polynomial
and &, is the Neumann factor,

1, m=0
_ ) ) 2‘1
om {2~ m:172,"',OC. ( )

It is noted that U and M kernels in Egs. (17) and (20) contain the
equal sign of p = p while T and L kernels do not include the equal
sign due to discontinuity in Egs. (18) and (19). Besides, the potential
across the boundary is also addressed here. For 2D Laplace and
Helmholtz equations, the continuous and jump behavior across
the boundary were studied, respectively, in [20,21]. After using
the Wronskian property of j,, and y,,, we have

W (i (KP) Y (kD)) = (KDY (kD) — o (KD)Ym(KD) = o, (22)

k”p?

where hf?(kf)) =j(kp) —
by

iy(kp). The jump behavior is well captured

@) s JAN
U(s,x)i
1
| l(s—x),xSs
! 2
' U(s, x)= 1
. —(x—5),x>s
'S X 2
T(s,x):
: 1
, —— ,x<s
'S X T(s,x): 12
— )
: — ,Xx>s
' 2

Fig. 2. Jump behavior for a rod case.

/27I /n[Ti(s,x) — T*(s,X)]P" (cos 0) cos(m¢) p* sin(0)dOdp
0 0
= —47kP} (cos 0) cos(im¢) (23)

Similarly, the potentials due to L' and L° kernels are discontinuous
across the boundary. For clarity, a detailed description is given in
Appendix A. For simplicity, we also give a simple example by a
rod case to show how the jump appears. The degenerate kernels
are shown in Fig. 2.

2.4.2. Spherical harmonics for boundary densities
We used the spherical harmonics to approximate the boundary
density and its normal derivative as expressed by

zx: ZAUWPW (cos 0) cos(we), seB, (24)
v=0 w

v

= i > BuwP} (cos 0) cos(wg),

ans =0 w=0

s€B, (25)
where A,,, and B,,, are the unknown coefficients.

3. Null-field integral equation

In order to fully utilize the geometry of sphere boundary, the
potential u and its normal derivative t can be approximated by
employing the spherical harmonic functions. Therefore, the follow-
ing expressions can be obtained

i ZA PY(cos 0) cos(wé), s € By, (26)
v=0 w=l

Uy (s) = i 3 A% P¥(cosB) cos(Wg), s € By, (27)
v=0 w=0

ti(s) = i - B! P (cos0) cos(w¢), s e By, (28)
v=0 w=0

ta(s) = i - B2,PY(cos 0) cos(w¢g), s By, (29)
v=0 w=0

where A and B!, are the spherical coefficients on B; (i = 1,2). By

substituting Egs. (26)-(29) into the null-field integral equations and
moving the null-field point to the boundary, we have
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2 w0 Mo ¥ According to Eqgs. (32) and (33), the spherical coefficients, B! and
2 1 nm
0= /0 /o Z — Z lk émA (20 +1) B2, satisfy the relation as follows:
(m—m @ om ] 2 _ @i (ka)hy (ka) o,

Jn(kp)hy?) (ka)Py (cos(0)) cos(m(¢ — ) Bin=—75""——¢ B 34
m+myr b%j, (ka)h’® (kb) G4
cos(we)(Py (cos(0 ))Pw(cos(O)) sin(0))a’dod¢ B j, (ka)h? (kb) . 35)

2w n nm T T 2. 1 (2) . onm
/ / S ikenBl, (20 + 1) b*ju(kb)h,” (kb)
n=0 m=0 v= 0 w= 0 To seek the nontrivial data for the spherical coefficients B}, and BZ,,,
n-— m - i i ion:
En . mgl-’"(kp)h @ (ka)P™ (cos(0)) cos(m(¢ — @) we obtain the eigenequation
in(ka)h?) (kb)[j, (kb)y (ka) — ju (ka)hy” (kb)) = (36)

cos(WqS)(Pm(cos(@))Pw(cos(é))sm( ))a*d0d$
/zn/ Sy lk 2emAZ, (20 + 1)

For the Neumann problem, the Egs. (30) and (31) are reduced to

( , w=0 0=>"3 dA,,j.(ka)h? (ka) —s—z ST 0AL i (ka)hy? (kb), (37)
n-m 1 m n=0 m=0 n=0 m=0
T m),1n<kp>h " (kb)Py! cos(0)) cos(m(¢ — $)) - 1 .
) , 0=>"Y dA,j,(ka)h? (kb) + > S bA% j, (kb)h? (kb). (38)
cos(wg)(Py (cos(0 ))P""(cos(@))sm( ))b=dod¢ n=0 m=0 n=0 m=0
& 2 According to Egs. (37) and (38), the spherical coefficients A,lm and
/ / o) ; lkgmB @n+1) A% satisfy the relations:
n-— m _ 2 (2)
( )' i, (kp)h (kb)P™ (cos(0)) cos(m(¢ — §)) 2 _%L’WA;W (39)
(n+m)! b’j, (ka)h;? (kb)
cos(w4) (P (cos(0))Ps (cos(0) sin(6))b’didg. 6O @ kah k) )
When the field point is located on the outer boundary B,, we have "m sz;(kb)hf)(kb) m
L L N - To seek the nontrivial data for the spherical coefficients A} and A?
2 nm?»
0= !/0 '/0 ; mo ; < lk EmApy (20 +1) we obtain the eigenequation:
EZ ; z;:];(ka)h @) (kp)P™(cos(0)) cos(m(¢ — b)) ]n(ka) (kb)[]n(kb) (ka) ]n(ka)h (kb)} (41)

According to Egs. (36) and (41), the spurious eigenequation of the
singular formulation is j,(ka) = 0, which is also the true eigenequa-

2m °° n ”‘ tion of the sphere of radius a with the fixed boundary condition. The
/ / 0 'k‘gm w(2n+1) latter parts in the bracket of Eqs. (36) and (41) are the true
eigenequations,

cos(wd))(P"'(cos(@))P""(cos(@))sm( ))a*dod$

n

(n— ),1n<ka>h 2 (k)P (cos(6) cos(m(s — $))

(n+m)! (kb)h ) (ka) ]n(ka)h @) (kb) =0 for the Dirichlet problem
cos(w¢)(Pm(cos(é))PW(cos(é))sm( ))a*dodé (42)
21 0 n 00
/ / Z > Olk 2enAl, (20 + 1) j, (kb)H'? (ka) — j. (ka)h'* (kb) = 0 for the Neumann problem
(nom . “3)

Jn (kD) (kp)Py! (cos(0)) cos(m(¢ — )

(n+m)! The spurious and true eigenequations of the concentric sphere sub-
cos(w¢)(Pm(cos(O))PW(cos(D)) sin(?)))bded{b jecF to various boundary conc'litions are listed ip Table 1. It is intler—
o " oo esting to find that spurious eigenvalue of UT (singular) formulation
/ / lkSm L2n+1) results in trivial outer boundary modes for the fixed-fixed case. Be-
n =0 o 0 v 0 sides, spurious eigenvalue of LM (hypersingular) formulation results

(n—m)! @ " _ in the trivial outer boundary modes of free-free case.

i m),ln(kb)h (k)P (cos(0)) cos(m(¢ — §))

cos(wd)(P™(cos(9))P" (cos(d)) sin( ))b2d9d¢ (31) 4. Proof of the existence for the spurious eigensolutions of the

eccentric sphere
For the Dirichlet problem, Egs. (30) and (31) can be reduced to
- In order to prove that the spurious eigensolutions of a eccentric
0= Z Z C,Zanm,n ka)h 2) (ka)P’”(cos(G)) cos(me) sphere satisfy the BIE by collocating the inner and outer boundary
=0 m points, we first derive the true eigensolutions of a sphere subject to
© N @ " the Dirichlet boundary condition. Now, we consider the sphere
+ Z b kB i (ka)h?) (kb)PY (cos(0)) cos(md), (32)  with a radius a in the continuous system. By using the null-field
n=0 m integral equation and collocating the point on the boundary, we
obtain the true eigenequation

O

0=>"3"a*kB,,j,(ka)h}" (kb)P} (cos(0)) cos(m¢p) j(ka) =0, (44)
n=0 m=0
L] and the corresponding true eigenmode is By, where > >~ [Bym| # O.
2,p2 : 2
+ E | > bkByyja(kb)hy '(kb)Py (cos(0)) cos(m). (33) By collocating the point in the complementary domain (x¢ € D) as
n=0 m=0

shown in Fig. 3, the null-field equation yields
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Table 1

Eigensolutions and boundary modes for the concentric sphere subject to different boundary conditions.

Solution BC

Fixed-fixed u; =u; =0

B,

Free-fixed t; =u; =0

Fixed-free u; =t =0 Free-free t; =t =0

ur True
formulation eigenequation
Spurious
eigenequation
Inner boundary
mode

Outer boundary g2 _ @
nm i nm
mode b7jn (kb)

LM True

Jn(ka) =0 Jn(ka)=0

223 Bum| # 0

formulation eigenequation
Spurious jn(ka)=0 jn(ka)=0
eigenequation
Inner boundary > [Bum| # 0 S5 1Anm| # 0
mode
23 24
S DU B = FA B Bl = i A

22" |Aum| # 0

_ @%jy(ka) p1 2 _ a’j(ka) o1
B Bnm - bT.j;@Anm

Jn(ka)yn(kb) — ju(kb)yn(ka) = O j, (ka)y,(kb) — ju(kb)y, (ka) = 0 j,(ka)y, (kb) — j, (kb)y,(ka) = O j, (ka)y (kb) — j, (kb)y (ka) = O

Jn(ka) =0 Jn(ka) =0

2222 |Bum| # 0 222" |Aum| # 0
2 djy(ka) p1 2 _ d%y(ka) o1

Al = 1%, (kb) Bum A = szf'(kb)A""'

Jn(ka)y, (kb) — j, (kb)y,(ka) =0  j. (ka)y,(kb) — j,(kb)y,(ka) = 0  j,(ka)y,(kb) — j,(kb)y,(ka) = 0  j.(ka)y,(kb) — j,(kb)y,(ka) = 0

Jn(ka) =0 Jn(ka) =0

2222 |Bum| # 0 222 |Anm| # 0
2 2j. (ka) p1 2 a¥k

Anm = ;Z}HE;‘Z; nm Anm = sz':. Ek;; rllm

Fig. 3. Collocation point on the sphere boundary from the null-field point (p = a*).

%
-

Fig. 4. Collocation point of the eccentric sphere (p =a").

0= [ Ue(s,x)t(s)dB(s), x° D, (45)

By
We can obtain the null-field response for x¢ as shown below
By (ka)hy? (ka* )P}l (cos(6)) cos(me) = 0, (46)

where n and m belong to nature number and k satisfies Eq. (44).

Secondly, we consider the spherical case with the fixed-fixed
boundary condition as shown in Fig. 4. By selecting a nontrivial in-
ner boundary mode for the boundary mode and trivial outer
boundary mode, we have j,(ka) = 0 and

) {5 @

This indicates that spurious eigenevalues of j,(ka) = 0 and the non-
trivial boundary mode of Eq. (47) satisfy Eqs. (32) and (33) due to
U'(s,a”) = U*(x,a"). Therefore, spurious eigenvalues in conjunction
with the trivial outer boundary mode happen to be the true eigen-
value of the domain bounded by the inner boundary. Similarly, the

concentric sphere subjected to the Neumann boundary condition by
using the hypersingular formulation results in the trivial outer
boundary mode.

5. SVD technique for extracting out true and spurious
eigenvalues by using updating terms and updating documents

5.1. Method of extracting the true eigensolutions (updating terms)

SVD technique is an important tool in the linear algebra. The
matrix [A] with a dimension M by N can be decomposed into a
product of the unitary matrix [®] (M by M), the diagonal matrix
[Z] (M by N) with positive or zero elements, and the unitary matrix
[¥] (N by N) as follows:

[A]MxN = [q)]MxM[Z}MxN[‘Y}ZxNv (48)

where the superscript “H” is the Hermitian operator, [®] and [¥] are
both unitary matrices that their column vectors which satisfy

i by = 0y, (49)
Uity = oy, (50)

in which [@]"[®] = [1],,.,, and [¥]"[¥] = [I]5,. For the eigenproblem,
we can obtain a nontrivial solution for the homogeneous system
from a column vector {i;} of [¥] when the singular value (g;) is
zero. For the BIEM, we have

Singular formulation (UT method)

[T{u} = [U°]{t} = {0}, (51)
Hypersingular formulation (LM method)
M°){u} = [L){t} = {0}, (52)

where {u} and {t} are the boundary excitations. For the Dirichlet
problem, Eqs. (51) and (52) can be combined to have

MR 53)

By using the SVD technique, the two submatrices in Egs. (51) and
(52) can be decomposed into



186 J.-T. Chen et al./Applied Acoustics 71 (2010) 181-190

U] = @)=V or U] =6 {9 Hy (54)
j

L] = [@V]=)Y)T or [ = Y6 (e My} (55)
j

where the superscripts, (U) and (L), denote the corresponding
matrices. For the linear algebraic system, {t} is a column vector of
{¥;} in the matrix [¥] corresponding to the zero singular value
(o; = 0). By setting {t} as a vector of {y;} in the right unitary matrix
for the true eigenvalue k¢, Eqs. (51) and (52) reduce to

(U°(k)l{yi} = {0}, (56)
[L* (k)] {¥i} = {0}. (57)
According to Eqgs. (54)-(57), we have

o {9} = {0}, (58)
o (4"} = {0} 59)

We can easily extract out the true eigenvalues, aj(.”) = a;L) = {0},
since there exists the same eigensolusion ({t} = {y;}) for the

Table 2a

Dirichlet problem by using Eqs. (53) or (56) and (58). In a similar
way, Egs. (51) and (52) can be combined to have

{ T (k)

ME (k;) (60)

=1

for the Neumann problem. We can easily extract out the true eigen-
values for the Neumann problem with respect to the jth zero singu-
lar values of 6/ = /" = {0}.

5.2. Method of filtering out the spurious eugensolutions (updating
documents)

By employing the LM formulation in the direct BEM, we have
M°[{u} = [L°)}{t} = {p}. (61)

Since the spurious eigenvalue k; is embedded in both the Dirichlet
and Neumann problems, we have

{p}{¢} = {0},

where {¢;} satisfies

(62)

SVD structure of the four influence matrices for the Dirichlet and Neumann problems in the case of true eigenvalue.

Dirichlet problem (k = k) Neumann problem (k = k")
J O D " ; ; qH ) o T O v H
[(I) ]{ :||:?, .. :| [cI)’ ][Z' ][‘I"] [@U][Zb ][\Pu] [d) ]{ :|[Z’. .. :'
¥ A
The same @“i The same ¢1~E
True eigenvalue T ur U o
k, ! :
k°, k") i M L | M i
0 v 0 v
@l Jo-T | e | erer e o]

where k? and k'}' devotes the true eigenvalues for the Dirichlet and Neumann problems, respectively.

Table 2b

SVD structure of the four influence matrices by using theUT singular formulation and LM hypersigular formulation in the case of spurious eigenvalue.

UT singular formulation (k = k.")

LM hypersingular formulation (k = k.")

Dirichlet

Neumann

Dirichlet Neumann

—
-
g

Lw...][o _}[\pg,]"

: i

Spurious eigenvalue
k. i i
(k5K ]

The same ¢°"

[u]T]

Jeeer

T

<

S R A RS e U7

>
S EEEETEES 2

The same ¢

[L]M]

where ké’T and kéM devotes the spurious eigenvalues by using UT singular and LM hypersigular formulation, respectively.
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[L°(ky))"{¢;} = {0} for the Dirichlet problem, (63)
[MC(k;)]"{¢;} = {0} for the Neumann problem, (64)

according to the Fredholm alternative theorem. By substituting
Eq. (61) into Egs. (62)-(64), we have

Singular formulation
450

T
7.850
440 — (7.845)

430 —

T
— 6.280
420 (6.283)

T

7.110

(7.111) T
8.720
717

T: True eigenvalue 923\)
i (): Analytical solution (9.682)
Jin (k) 3y (kD) = j (kb) vy (ka) = 0
400 T T T T T T T
0 2 4 6 8 10
The wave number (k)
(a) Determinant versus the wave number by using the

singular formulation for the Dirichlet condition.

Determinant of the influence matrix for U kernel

Hypersingular formulation

720

_ T (7.845) T
680 T: True eigenvalue 6.570 9.680
(6572) T (9.682)

(): Analytical solution T 5720
Jn(ka)y, (kb) = j, (kb)y, (ka) =0 7.110 (8717)
(7.111)
670 T T T T T T T T
0 2 4 6 8 10
The wave number (k)

(b) Determinant versus the wave number by using
the hypersingular formulation for the Dirichlet
condition.

Determinant of the influence matrix for L kernel

True eigenvalues for the Dirichlet problem
0

T: True eigenvalue
(): Analytical solution T
Jn(ka)yy, (kb) = jy, (kb)y, (ka) =0 8717)
T
4 6280 T
(6.283)7.110
(7.111)

Determinant of the influence matrix

7.850
(7.845)

760 | T | |
0 2 4 6 8 10

The wave number (k)
(c) Extraction of true eigenvalues for the Dirichlet
problem by using the SVD updating terms.

{u}"M®(k,)]"{¢;} = {0} for the Dirichlet problem, (65)
{}"[L°(ks))"{¢;} = {0} for the Neumann problem. (66)

Since {u} and {t} can be arbitrary boundary excitation for the Dirch-
let problem and Neumann problem, respectively, this yields

Singular formulation

710
3 4
8 700
= 4
=
sy
£ 690+
=
=] 4
8 T T
5 680— 1840 3150
= (1840) 3151 T
£ 7 8.440
2 G498 S0
<
s 6707 9501
=}
g 7 T
E 4390 ©718) T
E 660 T True eigenvalue 4390 A :é’;zz‘;)
'E | O: Analytical solution 7830
= T (ka) i, (kb)— iy (kb)) (kay =0 T

650 T ‘ : ‘ . ‘ . ‘

0 2 4 6 8 10

The wave number (k)
(d) Determinant versus the wave numbers by using
the singular formulation for the Neumann
condition.

Hypersingular formulation
1000 yp g

T: True eigenvalue
(): Analytical solution

T (ka) Yy (kb) = jp, (kb) 3 (ka) = 0

Determinant of the influence matrix for M kernel

920 S L B B

The wave number (k)
(e) Determinant versus the wave number by using the

hypersingular formulation for the Neumann
condition.

True eigenvalues for the Neumann problem

1060
q T
9.500
9.501)
>< 1050 — T
g (8:439)
= 4
=
§ 1040 —
3 T
= 1 1840 T
g (1.840) 3150
%‘E) 1030 —| (3.151)
s B 5.570
‘g: (5.575)
£ 1020
g
5} 4 N !
a 439 6 120 8.920
1010 —|T: True eigenvalue @390 (6.718) (8.925)
| (): Analytical solution .
JnCka)yy, (kb) = jr, (kb)yy, (ka) =0 I
1000 T T T T r I ‘ .
0 2 4 6 8 10

The wave number (k)
(f) Extraction of true eigenvalues for the Neumann
problem by using the SVD updating terms.

Fig. 5. True eigenvalues for a concentric sphere by using the SVD updating terms (a = 0.5 and b = 1.0).
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[M®(k)]"{¢;} = {0} for the Dirichelt problem,
[L°(ks))"{¢;} = {0} for the Neumann problem.
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Singular formulation

450
) 4
£ . .
] S: Spurious eigenvalue
> 440 — (: Analytical solution
8 Jp (ka) =0
B
=)
<
£ 430
3
]
5 4
=
g
o 420 —
=
s ]
- s
g o
2 410+
E
2
o] 4
=]
400 I T I I

0 2 4 6 8 10
The wave number (k)

(a) Determinant versus the wave number by using the
singular formulation subject to the Dirichlet
condition.

Singular formulation
710

S
6.280
(6.283)

690 —
680 —

670 —|

1S Spurious eigenvalue
660 — (): Analytical solution 5.590
Jjpkay=0 (8.987)

Determinant of the influence matrix for T kernel

650 I T I I

0 2 4 6 8 10
The wave number (k)

(b) Determinant versus the wave number by using the
singular formulation subject to the Neumann
condition.

Spurious eigenvalues for the singular formulation
712

~
o
@

~
=}
i

~
=3
IS3

Determinant of the influence matrix

S: Spurious eigenvalue
- (): Analytical solution
Jn (ka) =0

696 I \ I I

0 2 4 6 8 10
The wave number (k)

(c) Extraction of the spurious eigenvalues for the
singular formulation by using the SVD updating
document.

Hypersingular formulation

720
Té 4
b5 S: Spurious eigenvalue
i}‘ 710 — (: Analytical solution
o i —
S Jn(ka) =0
=] 1
=
£ 700
@
o
=
5 4
]
=
=}
> 690 — s
= 4.160
5 i (4.163)
g
54
£ 680 — s
é 6.680 s
2 (6.684) 9.030
ot N (9.028)
a

670 I ‘ ‘ ‘

0 2 4 6 8 10

The wave number (k)
(d) Determinant versus the wave number by using the
hypersingular formulation subject to the Dirichlet
condition.

Hypersingular formulation
1000 P g

S: Spurious eigenvalue
- O: Analytical solution
Jp(ka) =0

920 T T T T T

0 2 4 6 8 10
The wave number (k)

Determinant of the influence matrix for M kernel

(e) Determinant versus the wave number by using the
hypersingular formulation subject to the
Neumann condition.

Spurious eigenvalues for the hypersingular formulation
990

£ 980 —
= ]
8
8
& 970 — s
R=i 4.160
,:5) B (4.163)
k]
= 960 —
<
g
g 7 S
3 6.680
(6.684
& 950 ’
S: Spurious eigenvalue s
- O: Analytical solution 9.030
o 9.028)
Jn (ka)=0
940 T T T T T T
0 2 4 6 8 10

The wave number (k)
(f) Extraction of the spurious eigenvalues for the
hypersingular formulation by using the SVD
updating document.

Fig. 6. Extraction of spurious eigenvalues for a concentric sphere by using the SVD updating documents (a = 0.5 and b = 1.0).

By combining Eq. (63) with Eq. (67) for the Dirichlet problem, we

have
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Ny
LME]H {#i} = {0} or {4}"'[[ILY] M]]={0}. (69)
It indicates that two matrices have the same spurious boundary
mode {¢,;} corresponding to the ith zero singular values. By using
the SVD technique, two matrices in Eq. (69) can be decomposed into

L= WOt o 1 =3 e Y. (70)
J
M= M) o M) =3 a)
J

{w H e} (71)

By substituting Eqgs. (70) and (71) into Egs. (65) and (66), we have

o {y} = {0}, (72)
(M) g (M)y

{v;"} ={0}. (73)

We can easily extract out the spurious eigenvalues since there ex-
ists the same spurious boundary mode {¢;} corresponding the ith
zero singular value, 6\” = ¢!™ = 0. Similarly, the spurious eigen-
value parasitized in the UT formulation can be obtained by using
SVD updating documents. To summarize the SVD structure for the
four influence matrices, Tables 2a and 2b show that the spurious
and true boundary modes are imbedded in the left and right unitary
vectors, respectively. Besides, the nontrivial interior boundary
mode and trivial outer boundary mode are also given in Table 2b.

6. Illustrative examples and discussion

Case 1: A concentric sphere subject to the Dirichlet boundary con-
dition (u; = uz = 0) using the present approach.

A concentric case with radiiaand b (a =0.5mand b = 1.0 m) is
shown in Fig. 1. The analytical solution can be obtained by using
the null-filed integral formulation, degenerate kernel and spherical
harmonics. The common drop locations in Fig. 5a and b indicate

the true eigenvalues. We employ the SVD updating term [Ej} to

extract the true eigenvalues for the Dirichlet problem as shown
in Fig. 5c. It is found that all the spurious eigenvalues are filtered
out. The results agree well with the previous solutions.

Case 2: A concentric sphere subject to the Neumann boundary con-
dition (t; = tz = 0) using the present approach.

Similarly, the common drop locations in Fig. 5d and e indicate
the true eigenvalues. Extraction of true eigenvalues by using the

M

locations in Fig. 6a and b indicate the spurious eigenvalues for
the singular formulation. Similarly, the same drop locations in
Fig. 6d and e indicate the spurious eigenvalues for the hypersingu-
lar formulation. The spurious eigenequations for the singular and
hypersigular formulation are

Jn(ka)=0 and (74)
Julka) =0, (75)
respectively. It is found that spurious eigenvalues depend on the in-
ner boundary instead of the outer boundary. Finally, we employed
the SVD updating document to filter out the spurious eigenvalues.

The spurious eigenvalues for singular formulation and hypersingu-
lar formulation are extracted as shown in Fig. 6¢ and f, respectively.

SVD updating term {T } is shown in Fig. 5f. The common drop

7. Conclusions

Spurious eigenvalues for a concentric sphere were studied ana-
lytically and numerically. One example was demonstrated to see
how the spurious eigenvalues occur in the concentric sphere. Spu-
rious eigenvalues depend on the inner boundary and are indepen-
dent of the outer boundary. The trivial outer boundary densities
were examined in case of the spurious eigenvalue which is found
to be the true eigenvalue for the domain bounded by the inner
boundary. The contribution of the work is to show the existence
of spurious eigenvalue for a concentric sphere in an analytical
manner by using the degenerate kernels and the spherical
harmonics.
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Appendix A
U(s,x) and [; U(s, x)t(s)dB(s) T(s,x) and [; T(s,x)u(s)dB(s)
Deﬁi?ﬁé?te Ui(s,x) = ik i(2ﬂ+ 1) Z em meos( (6 — ) Ti(s,x) = ik? i(Zn +1) i em%cos(m(rp —9))
n=0 n=0 =t
Us.x) = Pm(cos G)Pm(cos 0) ,,(Izpr)nh \(kp), p = T(s,%) = P’"(cos 0)P (cos ()) ,,(kp)h;f (kp), p ? 0,
U(s,x) = ik z (2n+1) z Em {1 €OS(M(¢p — b)) Té(s,x) = ik2 3" (2n + 1) Z & Ik cos(m(¢ — $))
n=0
PT(cos 0)P™ (cos 0)j, (kp)hP (kp), p > p. P’"(cos 0)P™(cos 0),(kp)h'® (kp), p > p.
Orth 1 (n—m)! n—m
Morocss | JoT I3 ik S 20 +1) 3 e ihcos(m(s — ) TR S @) 8 o i costm(o — )

P”‘(cos H)P'”(cos 0) ,,(kp) ) (kp)
Pyt (cos 0) cos(md) p? sin(0)dod ¢
= 4ntkip2j, (kp)h'?) (kp)P™ (cos 0) cos(me), p = p,

37 I3 ik 520 +1) 32 e fic cos(m(s — )

P™(cos 0)P’”(cos 0)j I 0)h? (kp)
P (cos 0) cos(m)p? sin(0)dod¢

= 4mkip ]n(kp)h (kp) "(cos 0) cos(me), p < p.

P} (cos 9>P’"(cos 0) n<kmh’<2 (kp)
Py (cos 0) cos(m¢)p? sin(0)d0de
:47Tk21'ﬁ21'n(’<9)h (kp)Py;
R f iR S 2n+1) meﬁ>$§,cos< m(¢ — )
Pm(cos())lgm(cos 0)j,(kp)h'? (kp)
P (cos 0) cos(me) p? sin(0)do
= 4mk*ip?f, (kp)hiy (kp)Py!

™ (cos 0) cos(mg), p > p,

(cos B) cos(mep), p < p.

(continued on next page)
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Appendix A (continued)
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U(s,x) and [; U(s, x)t(s)dB(s)

T(s,x) and [, T(s,x)u(s)dB(s)

Hmit {Mkiﬁﬁ'n( P (kp)PF(cos 0)cos(md). P > . continuous {4nk ip?ly (kp)hy? (kp)PR (€05 0) COSM). P> p (i for
PP amkipi(kp)hl? (k > ™ (cos 0) cos(mg), P < p. amk*ip?y,(kp)h? (kp)P™ (cos ) cos(mep), p < p.
for p~ <p <p7) p~ < p < ptis 4w, (kp)j,(kp) io zn:OPT(cos 0) cos(mg))
n=0 m=
L(s,x) and f; L(s,x)t(s)dB(s) M(s,x) and [ M(s, x)u(s)dB(s)
Degenerate Li(s,x) = ik* 3> (2n+ 1) i m)! cos(m(e — ¢)) Mi(s,x) = ik® 3> (2n+ 1) i ™! cos(m(e — ¢))
kernel = o ” =0 = o ” e
P} (cos 0)P}! (cos 0)fy (kp)h P (kp),  p > p, Pyt (cos 0)Py' (cos 0)j, (kp) > (kp),  p = p,
L(s,x) = . M(s,x) =
L*(s,x) = ik? HZO(ZH +1) mZO &m G €oS(m(p — $)) Me(s,x) = ik HZ;O(Zn +1) Z &m G €OS(m($ — $))
P”‘(cos 0)P™(cos 0)j, (kp)h'® (kp), p > p. P”‘(cos 0)P (cos 0) n(kp)h’nz)(kp), 0> p.
Orthogonal 2n T 320+ 1) m)! ik> S (2n + 1 (n_mt ¢
brocess 5 3 @n 1) 3 e n+m>,cos<m<¢—¢>> 3703 0 (@0 +1) 32 em i cos(m(s - )
P™(cos 0)P™(cos 0 ]n(kp) kp) P™(cos 9)P’"(cos 0) n(kp)h’(z)(kp)
P (cos 0) cos(me) p? sin(0)d0d¢ P} (cos 0) cos(mé¢) p? sin(0)dod¢p
= 47Tk2"f’2fn(kp) '(kp)Py (cos 0) cos(mgp),  p > p, = 47Tk31P ji(kp)hy? (kp)Py (cos 0) cos(mg),  p > p,
2 S o (nem)! % _
[0 ik 0 > (@2n+1) Z:: (?Hm)' cos(m(¢ — ¢)) [0 ik3 S (2n+1) Z &m (Lm;,cos( (¢ — )
m m —\R/(2) =
Pyt (cos O)P (cos 0)j,(kp)hy” (kp) P’"(cos ())P’"(cos 0) ,,(kp)h'(z)(kp)
Pyl (cos 0) cos(me)p? sin(0)d0d¢p P (cos 0) cos(m¢) p? sin(0)dod¢p
= 4ntk?ip2j, (kp)h\® (kp)P™ (cos 0) cos(m¢), p < p. — 47 ip], (kp)H® (kp)P™ (cos 0) cos(mg), P < p.
L‘“;‘t ) { 4nICip?, (kD) (kp)P (€050)cOS(MA), > Py, oy 4nleip?], (kp)h”) (kp)PI (cos 0) cos(mg),  p > p, (Continuous
— ) o ~
Ank”ip i (kp)hn™ (kp)Pr (cos(:o)cczs(mdn, p<p 4nk®ip?, (kp)h® (kp)P™ (cos 0) cos(m¢), p < p
p~ < p < p*is 4w, (kp)jn(kp) 3° 3 Py(cos6) cos(mg)) for p= < p < p*)
n=0m=0
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