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ABSTRACT 
In this paper, we employ the regularized meshless 

method (RMM) to solve antiplane shear and antiplane 
piezoelectricity problems with a multiple inclusions and 
acoustic eigenproblem with multiply-connected domain. 
The solution is represented by a distribution of 
double-layer potentials. The subtracting and adding-back 
technique is used to regularize the singularity and 
hypersingularity of the kernel functions. Only boundary 
nodes on the real boundary are required by using the 
proposed technique in a different way of conventional 
MFS by distributing singularities on fabricated boundary. 
Finally, the numerical results demonstrate the accuracy of 
the solutions after comparing with analytical solutions 
and those of BEM, FEM and PM. Good agreements are 
obtained. 
Keywords: regularized meshless method, subtracting 
and adding-back technique, method of fundamental 
solutions, piezoelectricity, multiple inclusions, multiple 
holes, spurious eigenvalue, acoustics. 

1. INTRODUCTION 
Bleustein (1968) [1] investigated the antiplane 

piezoelectric dynamics problem and discovered the 
existence of Bleustein wave. Pak (1992) [2] has 
considered a more general case by introducing a 
piezoelectric inclusion which, in the limiting case of 
vanishing elastic and piezoelectric constants, become a 
permeable hole containing free space with electric fields. 
He obtained an analytical solution by using the 
alternative method. Later, Honein et al. (1995) [3] have 
visited the problem of two circular piezoelectric fibers 
subjected to out-of-plane displacement and in-plane 
electric field. In 1997, Chen and Chiang [4] solved for 
2D problems of an infinite piezoelectric medium 
containing a solitary cavity or rigid inclusion of arbitrary 
shape, subjected to a coupled anti-plane mechanical and 
in-plane electric load at the matrix by using the 
conformal mapping techniques. In recent years, Chao and 
Chang [5] studied the stress concentration and tangential 
stress distribution on double piezoelectricity inclusions 
by using the complex variable theory and the method of 
successive approximations. The antiplane shear problem 
[6, 7] is a limiting case of antiplane piezoelectricity 

problem, when electric fields and piezoelectric modulus 
approximate to zero.  

For the acoustic eigenproblem with a 
multiply-connected domain, spurious eigensolutions 
always appear, even when the complex-valued BEM is 
employed to solve the eigensolutions [8]. In Chen et al. 
work of [8], the problem of spurious eigensolutions of 
the singular and hypersingular BEMs was studied by 
using circulant for an annular case and treated by using 
the Burton & Miller approach in a discrete system. Chen 
et al. [9] studied spurious and true eigensolutions for a 
multiply-connected problem by using BIE, BEM and 
dual BEM. Also, spurious eigensolutions were examined 
in the MFS for annular eigenproblems [10]. In this study, 
we propose a meshless method to solve engineering 
problems. 

To simplify complexity of numerical methods in the 
preprocessor of data preparation, meshless methods were 
developed to accelerate the speed of model creation. The 
mesh reduction techniques possess a great promise to 
replace the FEM and BEM as a dominant numerical 
method. Because of neither domain nor surface meshing 
are required for the meshless method, it is very attractive 
for engineering communities. In this study, we solve 
antiplane shear and antiplane piezoelectricity problems 
with multiple inclusions and acoustic eigenproblem with 
a multiply-connected domain by using proposed 
meshless method. Spurious eigenvalues are extracted out 
by employing SVD updating term technique. The method 
of fundamental solutions (MFS) is one of the meshless 
methods and belongs to a boundary method for boundary 
value problems, which may be viewed as a discrete type 
of indirect boundary element method. In the MFS [11], 
the solution is approximated by a set of fundamental 
solutions which are expressed in terms of sources located 
outside the physical domain. The unknown coefficients 
in the linear combination of the fundamental solutions 
are determined by matching the boundary condition. The 
method is relatively easy to implement. It is adaptive in 
the sense that it can take into account sharp changes in 
the solution and in the geometry of the domain and can 
easily treat with complex boundary conditions. A survey 
of the MFS and related method over the last thirty years 
has been found [11]. However, the MFS is still not a 
popular method because of the debatable artificial 
boundary distance of source location in numerical 



中華民國力學學會第三十屆全國力學會議   彰化縣大葉大學機械與自動化工程學系   95 年12 月15-16 日 

The 30thNational Conference on Theoretical and Applied Mechanics, December 15-16, 2006, DYU, Changhwa, Taiwan, R.O.C. 
 
implementation especially for a complicated geometry. 
The diagonal coefficients of influence matrices are 
divergent in the conventional case when the fictitious 
boundary approaches the physical boundary. In spite of 
its gain of singularity free, the influence matrices become 
ill-posed when the fictitious boundary is far away from 
the physical boundary. It results in an ill-posed problem 
since the condition number for the influence matrix 
becomes very large. 

Recently, we developed a modified MFS, namely 
regularized meshless method (RMM), to overcome the 
drawback of MFS for solving the Laplace and Helmholtz 
problems [12, 13, 14]. The method eliminates the 
well-known drawback of equivocal artificial boundary. 
The subtracting and adding-back technique [12, 13, 14] is 
implemented to regularize the singularity and 
hypersingularity of the kernel functions. This method can 
simultaneously distribute the observation and source 
points on the physical boundary even using the singular 
kernels instead of non-singular kernels. The diagonal 
terms of the influence matrices can be extracted out by 
using the proposed technique. 

In this study, the RMM is extended to solve three 
engineering problems. The results are compared with 
analytical solutions [3, 6, 9] to show the validity of our 
method. 
2. Formulation 
2.1 Governing Equation and Boundary Conditions 
(1) Acoustic eigenproblem with a multiply-connected 
domain 

Consider an eigenproblem with an acoustic pressure 
field )(xu , which satisfies the Helmholtz equation as 
follows: 

0)()( 22 =+∇ xuk , Dx∈ , (1)
subject to boundary conditions, 

0)( == uxu , u
pBx∈ , mp ,,3,2,1 L=  (2)

0)( == txt , t
qBx∈ , mq ,,3,2,1 L=  (3)

where 2∇  is the Laplacian operator, k is the wave 
number, D is the domain of the problem, 

xnxuxt ∂∂= /)()( , m is the total number of boundaries 
including m-1 numbers of inner boundaries and one outer 
boundary (the mth boundary), u

pB  is the essential 
boundary (Dirichlet boundary) of the pth boundary in 
which the potential is prescribed by u  and t

qB  is the 
natural boundary (Neumann boundary) of the qth 
boundary in which the flux is prescribed by t . Both u

pB  

and t
qB  construct the whole boundary of the domain D 

as shown in Fig. 1(a).  
(2) Antiplane shear and antiplane piezoelectricity 
problems with multiple inclusions 

Consider piezoelectric inclusions embedded in an 
infinite domain as shown in Fig. 2(a). The inclusions and 
matrix have different material properties. The matrix is 
subjected to a remote antiplane shear, τσ =zy , and a 
remote inplane electric field, ∞= EEy . A uniform 

electric field can be induced in piezoelectric material by 
applying a potential field ∞= EE . 

For this problem, the out-of-plane elastic displacement 
w  and the electric potential φ  are only functions of x 
and y, such that 

),( yxww = ,  ),( yxφφ = . (4) 
The equilibrium equations for the stresses and the 

electric displacements are 
0// =∂∂+∂∂ yx zyzx σσ ,  0// =∂∂+∂∂ yDxD yx , (5) 

where zxσ  and zyσ  are the shear stresses, while xD  
and yD  are the electric displacements. For linear 
piezoelectric materials, the constitutive relations are 
written as 

xzxzx Eec 1544 −= γσ ,  yzyzy Eec 1544 −= γσ , 

xzxx EeD 1115 εγ += ,  yzyy EeD 1115 εγ += , (6) 

in which zxγ  and zyγ  are the shear strains, xE  and 

yE  are the electric fields, 44c  is the elastic modulus, 

15e  denotes the piezoelectric modulus and 11ε  
represents the dielectric modulus. The shear strains zxγ  
and zyγ  and the electric fields xE  and yE  are 
obtained by taking gradient of the displacement potential 
w  and the electric potential φ  by the following 
relations: 

xwzx ∂∂= /γ ,  ywzy ∂∂= /γ , 
xEx ∂−∂= /φ ,  yEy ∂−∂= /φ . (7) 

Substituting Eqs. (6) and (7) into (5), we obtain the 
following governing equations: 

⎪⎩

⎪
⎨
⎧

=∇−∇
=∇+∇

0
0

2
11

2
15

2
15

2
44

φε
φ

we
ewc . (8) 

From Eq. (8), we can obtain the equations as 
02 =∇ w ,  02 =∇ φ , (9) 

where 2∇  is the Laplacian operator. The continuity 
conditions across the matrix-inclusion interface are 
written as 

mi ww = ,  m
zr

i
zr σσ = , (10) 

mi φφ = ,  m
r

i
r DD = , (11) 

where the superscripts i and m denote the inclusion and 
material, respectively. The loading is remote shear. 

For the antiplane shear problem, we consider 
inclusions embedded in an infinite matrix as shown in 
Fig. 2(b). The inclusions and matrix have different elastic 
properties. When electric field and piezoelectric modulus 
approximate to zero, we can obtain governing equation 
and continuity conditions as 

0// 22222 =∇=∂∂+∂∂ wywxw , (12) 
mi ww = ,  m

zr
i
zr σσ = . (13) 

2.2 Conventional Method of Fundamental Solutions 
(1) Acoustic eigenproblem with a multiply-connected 
domain 

By employing the RBF technique [10], the 
representation of the solution for a multiply-connected 
problem as shown in Fig. 1(a) can be approximated in 
terms of the jα  strengths of the singularities at js  as 
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where ix  and js  represent the ith observation point 
and the jth source point, respectively, jα  are the jth 
unknown coefficients (strength of the singularity), 

121 ,,, −mNNN L  are the numbers of source points on m-1 
numbers of inner boundaries, respectively, mN  is the 
number of source points on the outer boundary, while N 
is the total numbers of source points 

)( 21 mNNNN +++= L  and 
ixijij nxsTxsM ∂∂= /),(),( . 

After matching boundary conditions, the coefficients 
{ }N

jj 1=
α  are determined. The distributions of source points 

and observation points are shown in Fig. 1(a) for the 
MFS. The chosen bases are the double-layer potentials 
for the Helmholtz problem [14] as 

ijjjiijij rnsxkrHkixsT /)),)((()2/(),( )1(
1 −−= π , (16)

)({2/),( )1(
2 ijij krkHkixsM π=  

2/)),)((),(( ijijijji rnsxnsx −−  

}/)()1(
1 ijkkij rnnkrH− , 

(17)

where ( , ) is the inner product of two vectors, )()1(
2 ijkrH  

is the second-order Hankel function of the first kind, 

ijij xsr −= ,  jn  is the normal vector at js , and in  is 
the normal vector at ix . 
It is noted that the double-layer potentials have both 
singularity and hypersingularity when source and field 
points coincide, which leads to difficulty in the 
conventional MFS. The fictitious distance between the 
fictitious (auxiliary) boundary ( B′ ) and the physical 
boundary ( B ), defined by d , shown in Fig. 1(a) needs 
to be chosen deliberately. To overcome the above 
mentioned shortcoming, js  is distributed on the real 
boundary, as shown in Fig. 1(b), by using the proposed 
regularized technique as stated in the following Section 
2.3. The rationale for choosing double-layer potential as 
the form of RBFs instead of the single-layer potential in 
the RMM is to take the advantage of the regularization of 
the subtracting and adding-back technique, so that no 
fictitious distance is needed when evaluating the diagonal 
coefficients of influence matrices which will be 
explained in Section 2.4. The single-layer potential can 
not be chosen because the following Eq. (23) in Section 
2.3 is not provided. If the single layer potential is used, 
the regularization of subtracting and adding-back 

technique can not work [12]. 
2.3 Regularized Meshless Method 
(1) Acoustic eigenproblem with a multiply-connected 
domain 

When the collocation point ix  approaches the source 
point js , the potentials in Eqs. (16) and (17) are 
approximated by: 

2/),(),(lim ijkkijijsx
rynxsTxsT

ji
−==

→
, (18)

4/),(),(lim 2ikxsMxsM ijijsx ji
+=

→
 

4/)),)((),((2( ijijijji rnsxnsx −−=  

4/)/),( 22 ikrnn ijij +− , 

(19)

by using the limiting form for small arguments and the 
identities from the generalized function as shown below 
[15] 

)/(22/)(lim )1(
10 ijijijr

krikrkrH
ij

π+=
→

, (20)

))(/(48/)()(lim 22)1(
20 ijijijr

krikrkrH
ij

π+=
→

. (21)

The kernels in Eqs. (18) and (19) have the same 
singularity order as the Laplace equation. Therefore, Eqs. 
(14) and (15) for multiply-connected domain problems 
can be regularized by using the above mentioned 
regularization of subtracting and adding-back technique 
[12, 13] as follows: 
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where I
ix  is located on the inner boundary 

( 1,,3,2,1 −= mp L ) and the superscripts I  and O  
denote the inward and outward normal vectors, 
respectively, and 
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When the observation point O

ix  locates on the outer 
boundary (p=m), Eq. (24) becomes 

L++= ∑∑
+

+==

21

1

1

11
),(),()(

NN

Nj
j

O
i

I
j

N

j
j

O
i

I
j

O
i xsTxsTxu αα  

∑
−

−

++

+++=
+

11

21 1
),(m

m

NN

NNj
j

O
i

I
j xsT

L

L
α  

∑
−

+++= −

+
1

111
),(

i

NNj
j

O
i

O
j

m
xsT

L
α   

∑
+=

+
N

ij
j

O
i

O
j xsT

1
),( α  

i
O
i

O
i

N

NNj

I
i

I
j xsTxsT

m
α⎥⎦
⎤

⎢⎣

⎡ −− ∑
+++= −

),(),(
111 L

,  

p
OandI

i Bx ∈ , mp = . 

 
 
 
 
 
 
(25) 

Similarly, the boundary flux is obtained as 
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The detailed derivations of Eq. (23) can be found in the 
reference [12]. According to the dependence of normal 
vectors for inner and outer boundaries [12], their 
relationships are 
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where the left and right hand sides of the equal sign in 
Eqs. (28) and (29) denote the kernels for observation and 
source points with the inward and outward normal 
vectors, respectively. 
(2) Antiplane shear and antiplane piezoelectricity 
problems with multiple inclusions 

When k approaches to zero, the above-mentioned 
formulation can be also applied to the Laplace problem 
with multiple holes, because of the same double-layer 
potentials for Helmholtz and Laplace problems. 
2.4 Derivation of Influence Matrices 

(1) Acoustic eigenproblem with a multiply-connected 
domain 

By collocating N observation points to match with the 
BCs from Eqs. (24) and (25) for the Dirichlet problem, 
the linear algebraic equation is obtained 
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For the Neumann problem, Eqs. (26) and (27) yield 
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For the mixed-type problem, a linear combination of Eqs. 
(30) and (31) is required to satisfy the mixed-type BCs. 
(2) Antiplane shear and antiplane piezoelectricity 
problems with multiple inclusions 

The antiplane piezoelectricity problem with multiple 
inclusions is decomposed into two parts as shown in Fig. 
3. One is the exterior problem for matrix with hole 
subjected to the far-displacement field and far-electric 
field, the other is the interior problem for each inclusion. 
The two boundary data of matrix and inclusion satisfy 
the interface conditions in Eqs. (10) and (11). 
Furthermore, the exterior problem for matrix with holes 
subjected to a far-displacement field and far-electric field 
can be superimposed by two systems as shown in Fig. 4.  
For an interior problem, the linear algebraic system can 
be obtained as: 
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where w  and φ  denote the out-of-plane elastic 
displacement and in-of-plane electric potential, 
respectively. 
For an exterior problem, we have 

[ ]
[ ] [ ]
[ ] [ ] ⎪

⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

N
O
NN

O
N

O
N

O

N

O
q

N TT

TT
T

u

u

α

α

α

α
M

L

MOM

L

MM
1

1

11111

, φorwq∈ , (34)

[ ]
[ ] [ ]

[ ] [ ] ⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

N
O
NN

O
N

O
N

O

N

O
q

N MM

MM
M

t

t

α

α

α

α
M

L

MOM

L

MM
1

1

11111

, φorwq∈ . (35)

Substituting Eqs. (32), (33), (34) and (35) into Eqs. (10) 
and (11), the linear algebraic system for antiplane 
piezoelectricity problem is obtained as: 
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The unknown densities ( { }i
wα , { }m

wα , { }i
φα , { }m

φα ) in Eq. 
(36) can be  obtained by implementing the linear 
algebraic solver and the stress concentration can be 
solved by using Eq. (6). 

For the antiplane shear problem with multiple 
inclusions, we obtain 
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where iμ  and mμ  are equal to ic44  and mc44 , 
respectively. 
2.5 Extraction of the Eigenvalues 
(1) Acoustic eigenproblem with a multiply-connected 
domain 

In order to sort out the eigenvalues, the SVD technique 
is utilized [9]. We obtain Eqs. (30) and (31) by using the 
double-layer potentials approach for the Dirichlet and 
Neumann problems, respectively. Form Eqs. (30) and 
(31), we can obtain eigenvalues by using the SVD 
technique as follows: 
[ ] [ ][ ][ ]HTTTT ΨΣΦ= , (38)
[ ] [ ][ ][ ]HMMMM ΨΣΦ= , (39)
where the superscript H  denotes the transpose and 
conjugate, TΣ  and MΣ  are  diagonal matrices with 
diagonal elements of positive or zero singular values and 
[ ]TΦ , [ ]MΦ , [ ]TΨ  and [ ]MΨ  are the left and right 
unitary matrices corresponding with [ ]T  and [ ]M , 
respectively. Thus the minimum singular value of [ ]T  or 
[ ]M  as a function of k  can be utilized to detect the 
eigenvalue and eigenmodes by using unitary vectors. 
However, spurious eigenvalues are present for a 
multiply-connected domain eigenproblem. Spurious 
eigenvalue can be extracted out by using SVD updating 
term techniques as shown in the next section. 
2.6 Treatments of Spurious Eigenvalues 
(1) Acoustic eigenproblem with a multiply-connected 
domain 

In order to sort out the spurious eigenvalues, the SVD 
updating term is utilized [9]. We can combine Eqs. (30) 
and (31) by using the SVD updating term as follows: 
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The rank of the matrix [ ]P  must be smaller than 2N to 
have a spurious mode [9]. By using the SVD technique, 
the matrix in Eq. (40) can be decomposed into 
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Based on the equivalence between the SVD technique 
and the least-squares method, we extract out the spurious 
eigenvalue by detecting zero singular values for [ ]P  
matrix. 
3. Numerical examples 

In order to show the accuracy and validity of the 
proposed method, four numerical examples are 
considered.   
Case 1 Antiplane shear problem 

Fig. 5 shows the matrix imbedded three inclusions 
under antiplane shear. The geometry conditions is 12rd = . 
It is interesting to note that a uniform stress field results 
when the shear modulus is the same for the inclusion and 
the matrix. Therefore, the stress concentrations θσ Z  in 
the matrix around the interface of the first inclusion are 
shown in Fig. 6 (a)~(d), respectively. From Fig. 6 (a), it 
is obvious that the case of holes 
( 0.0/// 030201 === μμμμμμ ) leads to the maximum stress 
concentration at o0=θ . Because of the interaction effects, 
it is larger than 2 of a single hole [6]. The stress 
component θσ Z  vanishes in the case of approximation 
to rigid inclusions ( 0.5/// 030201 === μμμμμμ ). The 
results are compared with those of the Laurent series 
expansion method [7]. 
Case 2 Antiplane piezoelectricity problem 

The single piezoelectric inclusion in a piezoelectric 
matrix is shown in Fig. 7. In this case, the remote shear, 
shear modulus, piezoelectric modulus, dielectric modulus 
and elastic modulus are 7105×=τ  Nm-2, 0.1015 =

ie  Cm-2, 
8

1111 1051.1 −×== im εε  CV-1m-1 and 10
4444 1053.3 ×== im cc  

Nm-2, respectively. Stress concentrations versus different 
piezoelectric modulus ratio are shown in Fig. 8 (a)~(b) 
for the case of 610−=E V/m. When 610−=E V/m and 

10/ 1515 −=im ee  for the negative poling direction, the 
negative maximum stress concentration occurs in the 
matrix of 0=θ  as shown in Fig. 8 (a). However, the 
positive maximum stress concentration occurs in the 
matrix of 2/πθ =  as shown in Fig. 8 (b). Good 
agreement is made after comparing with the analytical 
solution [3]. 
Case 3 Acoustic eigenproblem 

The inner and outer radii of domain are 5.01 =r  and 
0.22 =r , respectively. All the boundary conditions are the 

Dirichlet type ( 0=u ) and Neumann type ( 0=t ) as shown 
in Fig. 9. The analytical solutions of true eigenequations 
[9] for Dirichlet and Neumann types, respectively, are 
shown below: 

0)()()()( 1221 =− krYkrJkrYkrJ nnnn , (Dirichlet) (42)
0)()()()( 1221 =′′−′′ krYkrJkrYkrJ nnnn , (Neumann). (43)

The analytical solutions of spurious eigenequations [9] 
for both types are the same as: 

0)( 1
' =krJn . (44)

The minimum singular value versus wave number by 
using our proposed method for the Dirichlet and 
Neumann BCs are shown in Fig. 10(a) and (b), 
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respectively. Good agreement is obtained after 
comparing with analytical solutions. The spurious 
eigenvalues for the Dirichlet and Neumann problems are 
found out by employing SVD updating term as shown in 
Fig. 10(c). From Fig. 10(c), we find that one spurious 
eigenvalue appear at 68.3=sk  ( 1

1J ′ ) in the range of 
50 ≤< k . This spurious eigenvalue is found to be the true 

eigenvalue of Neumann eigenproblem of an interior 
circular domain with a radius 0.5. 
Case 4 Acoustic eigenproblem with four equal holes 

In this case, the eigenvalues were obtained by Chen 
and his coworkers [16]. The radius R  of outer boundary 
is 0.1  and the eccentricity e  and radius c  of the 
inner circular boundaries are 5.0  and 1.0 , respectively. 
Dirichlet problem is considered as shown in Fig. 11. The 
former five eigenvalues by using the RMM, BEM, FEM 
and PM are listed in Table 1, where the results of PM 
miss the eigenvalues of 2k  and 3k . In this case, no 
spurious eigenvalue is found in the range of 60 << k  
sine the first spurious eigenvalue is 18.412 ( 1

1J ′ ). The 
eigenvalues of 2k  and 3k  are roots of multiplicity two 
by finding the second successive zero singular value in 
SVD when using RMM and BEM. Besides, the 
symmetry of the fourth mode shape by using the PM is 
quite different from the results of RMM and BEM. The 
former five eigenmodes of the RMM and the BEM are 
shown in Fig. 12. Agreeable results of the RMM are 
obtained by comparing with the BEM data. 
4. CONCLUSION 

In this study, we employed the RMM to solve three 
engineering problems. Only the boundary nodes on the 
physical boundary are required. The major difficulty of 
the coincidence of the source and collocation points in 
the conventional MFS is then circumvented. Furthermore, 
the controversy of the fictitious boundary outside the 
physical domain by using the conventional MFS no 
longer exists. Although it results in the singularity and 
hypersingularity due to the use of double-layer potential, 
the finite values of the diagonal terms for the influence 
matrices have been determined by employing the 
regularization technique. The numerical results were 
obtained by applying the developed program to solve 
antiplane shear and antiplane piezoelectricity problems 
and acoustic eigenproblems through four examples. 
Numerical results agreed very well with the analytical 
solution and those of BEM, FEM and PM. 
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(a) (b) 

Fig. 1 The distribution of the source points and 
observation points and definitions of φρθ ,,,r  by using 
the (a) conventional MFS, (b) RMM. 

 
(a) (b) 

Fig. 2 Problem sketch for (a) antiplane piezoelectricity 
and (b) antiplane shear problems with multiple 
inclusions. 
 

 

Fig. 3 Decomposition of the 
problem. 

Fig. 4 Decomposition of 
the problem of Fig. 3(b).

 

 
Fig. 5 Problem sketch of three inclusions under antiplane 
shear. 
 

 
(a) (b) 

(c) (d) 
Fig. 6 Stress concentration factor τσ θ /m

z  along the 
boundaries of both the left inclusion and matrix for 
various different shear modulus ratios. 
 

 
Fig. 7 Problem sketch of a single piezoelectric inclusion.
 

 
(a) (b) 

Fig. 8 Stress concentration result of single piezoelectric 
inclusion in piezoelectric matrix for different piezoelectric 
modulus ratios when 610−=E V/m, (a) 0=θ , (b) 2/πθ =  
 

 
Fig. 9 Problem sketch for an annular eigenproblem. 
 

(a) (b) 
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(c) 

Fig. 10 The result of RMM and analytical solution for the 
(a) Dirichlet BC, (b) Neumann BC, (c) SVD updating 
term. 
 

 
Fig. 11 Problem sketch for an acoustic eigenproblem with 
four equal holes. 

Table 1 The former five eigenvalues for a circular domain 
with four equal holes by using different approaches. 
 

Fig. 12 Eigenmodes of the RMM and BEM for the case 4. 
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摘要 

本文藉由正規化無網格法求解含多夾雜之反平面剪

力及反平面壓電材問題與多連通聲場特徵值問題。以

雙層勢能來表示整個場解，並配合一加一減技巧來正

規化處理奇異及超奇異核函數。我們所提出的方法有

別於傳統基本解法須將源點佈在虛假邊界上，可將奇

異源放在真實的邊界上。最後，數值結果將與解析解，

邊界元素法，有限元素法及配點法做比較，獲得一致

性的結果。 
關鍵詞：正規化無網格法，一加一減法，基本解法，

壓電，多夾雜，多孔洞，假根，聲場。 


