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ABSTRACTS

This paper presents the mechanism for the ir-
regular frequencies appearing in the wave radiation
problem using the dual BEM. The relation between
the matrices of influence coefficients for interior and
exterior acoustic problems is examined. Also, the ir-
regular (fictitious) frequencies (eigenvalues) embed-
ded in the singular or hypersingular integral equa-
tions are discussed, respectively. It is found that the
irregular values depend on the kernels in the inte-
gral representation for the solution. Numerical ex-
periments using dual formulation program are con-
ducted to check the validity in comparison with the
theoretical proof of the independence of boundary
conditions which have been shown by Chen using the
degenerate kernels. A two-dimensional dual BEM
program for the exterior acoustic problems was de-
veloped. Numerical examples are demonstrated by
using the dual BEM program. Two cases, includ-
ing the exterior Dirichlet and Neumann problems,
show that the singular integral equation produces
the fictitious eigenvalues which are associated with
the eigenfrequencies of interior Dirichlet problem,
while the hypersingular integral equation produces
the fictitious eigenvalues which are associated with
the interior Neumann problem.

Keywords: dual BEM, radiation, fictitious eigenval-
ues and exterior acoustic problem

INTRODUCTION

Integral equation method has been used to solve exterior
acoustic problems (radiation and scattering) for many years.
It is well known that fictitious eigenvalues stem from the nu-

merical resonance instead of the physical resonance. Man
references including commercial software claimed that th
integral solution does not have a solution at certain eigenfre
quencies of an associated interior problem. However, the
conclusions are not consistent. Chen (1988) drawed the cor
clusion that the positions of fictitious eigenvalues are inds
pendent of the boundary conditions once the method is che
sen by using dual series model. To demonstrate the mech:
nism why fictitious eigenvalues occur, Chen and Hong (1992
and Chen (1998) showed that the positions where fictitiot
eigenvalues occur depend on the kernels in the integral repre
sentation for the solution by using a one-dimensional sem
infinite example. From the numerical point of view, th
nonunique problem can be seen as the indefinite form of zer
divided by zero. If L’hospital’s rule can be employed ar
alytically, no fictitious eigenvalues should occur. Howeve
L’hospital’s rule can not be applied in the numerical compt
tation.

In this paper, the dual boundary element program we
developed to verify the conclusion by Chen (1998). The du:
BEM program is based on the theory of dual integral equ:
tions. A detailed study on dual BEM can be found by Che
and Hong (1999). The relations of the influence matrices be
tween the interior and exterior acoustic problems are exan
ined. Two examples, including the Dirichlet and Neuman
radiation problems, are illustrated to show the mechanisi
of fictitious eigenvalues. It shows that boundary conditior
can not change the positions of fictitious eigenvalues onc
the integral representation for the solution is chosen. Som
misleading statements in the literature will become clear an
will be corrected after the theoretical proof (Chen, 1998) an
the present numerical studies.

DUAL INTEGRAL FORMULATION FOR AN EX
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TERIOR ACOUSTIC PROBLEM
The governing equation for an exterior acoustic problem is
the Helmholtz equation as follows:

(V2 + E)u(z1,22) =0, (z1,22) € D,

where V2 is the Laplacian operator, D is the domain of the
cavity and k is the wave number, which is angular frequency
over the speed of sound. For simplicity, radiation problem is
considered only. The boundary conditions can be either the
Neumann or Dirichlet type.

Based on the dual integral equations (Chen and Hong,
1999), the dual equations for the boundary points are

mu(z) = C.P.V./I;T(s,x)u(s)dB(s)

_RPV. /B Uls,2)t(s)dB(s), z € B (1)

rt(z) = H.P.V./BM(s,x)u(s)dB(s)
—C.P.V./ L(s,z)t(s)dB(s), z € B (2)
B

where C.P.V., R.P.V. and H.P.V. denote the Cauchy prin-
cipal value, the Riemann principal value and the Hadamard
principal value, t(s) = a;sj), B denotes the boundary en-

closing D and the explicit forms of the four kernels, U, T, L
and M, can be found in Chen and Hong (1999).

RELATIONS OF THE INFLUENCE MATRICES
BETWEEN INTERIOR AND EXTERIOR PROB-
LEMS USING DUAL BEM

The linear algebraic equations for an interior problem dis-
cretized from the dual boundary integral equations Egs.1
and 2 can be written as

[Tyl{ug} = [Up){ts} 3)

[Mp{uq} = [Lyg){te}, (4)

where the superscript “i” denotes the interior problem, {u,}

and {t,} are the boundary potential and flux, and the sub-
scripts p and ¢ correspond to the labels of the collocation
element and integration element, respectively.

For the interior problem, the influence coefficients of the
four square matrices [U], [T], [L] and [M] can be represented
as

Ui, = R.PV. /B Ulsy, ) dB(s,) (5)

T, = Tpg — 2m0p,
— 18,y + C.PV. / T(sy2,)dB(s)  (6)
Bq
L}, = Lyg + 276y,

— 76y, + C.P.V. / L(sp2,)dB(sy) (i
Bq

M} = H.P.JV. /B M (sq4,7,)dB(s,), (8

where B, denotes the ¢'" element and d,, = 1if p =
otherwise it is zero. Ty, and T), differ by a jump term —2m6,
while L,, and L,, differ by a jump term 2md,,.

For the exterior problem, we have

[Tya{ua} = [Ug {ta} (¢

[MpKuq} = [Lp[{tq}- (1€

where the superscript “e” denotes the exterior problem.
According to the dependence of the outnormal vector
in these four kernel functions for the interior and exteric

problems, their relationship can be easily found as show
below (Chen et al. 1995) :

Upa =Usy (11
M;,q = M;q (12
3 _Te 9 Zf p ;é q, P
T = pev 15
P { Thy» ifpP=q (
; =Ly, ifp#q
L = pe> ’ 1¢
P { Ly, ifp=gq (

Based on the relations for the influence matrices betwee
the interior and exterior problems, the dual BEM prograi
can be easily extended to exterior problems. For compariso
with analytical solutions, a circular domain is considerec
The absolute value for the determinant of the eight matr
ces, U}, Ty, Ly, M), Ue T LS and My, versus the wax
number k are plotted in Fig.1. It is found that the characte:
istic values match the same for the four kernels UI’;q, L;q, U,
and T, which are the eigenvalues of the associated interic
Dirichlet problem as shown in Table 1. On the other han
the four kernels T; , M} , Lt , and My, have the same cha
acteristic values which are the eigenvalues of the associate
interior Neumann problem as shown in Table 2.

NUMERICAL EXAMPLES FOR FICTITIOU
FREQUENCIES USING THE DUAL BEM

Two examples, including the Dirichlet and Neumann bounc
ary conditions, are provided (Harari et al., 1998) and a
shown in Fig.2. In the two cases, the same exact solutior
are designed as shown in Fig.3. For the specified value one fc
k, the numerical solutions u(r, ) for the Dirichlet and Net
mann exterior problems by using the dual BEM are show
in Figs.4 and 5, respectively. Good agreement can be mads
The Neumann exterior problem by using the UT formulatio
has the fictitious eigenvalues near k = 2.41 as shown in Fig.(
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However, the Dirichlet exterior problem by using the UT for-
mulation has the same fictitious eigenvalues near k£ = 2.40
as shown in Fig.7. This indicates that the type of boundary
conditions (Dirichlet or Neumann) for the exterior problem
can not change the position of the fictitious eigenvalues once
the integral representation for the solution is chosen, e,g.,
in this case UT formulation is adopted. Also, it is found
that the fictitious eigenvalues resulted from the UT formu-
lation corresponds to the associated Dirichlet problem since
k = 2.40 can be found in Table 1. In a similar way, the Neu-
mann exterior problem by using the LM formulation has the
fictitious eigenvalues at k& = 3.8355 as shown in Fig.8. Also,
the Dirichlet exterior problem by using the LM formulation
has the same fictitious eigenvalues near k£ = 3.83 as shown
in Fig.9. This also indicates that the type of boundary con-
ditions (Dirichlet or Neumann) for the exterior problem can
not change the position of the fictitious eigenvalues. The nu-
merical experiments for the fictitious eigenvalues match well
with the theoretical derivation in Chen (1998).

CONCLUDING REMARKS

The occurring mechanism of fictitious eigenvalues in direct
BEM has been examined using the dual BEM by considering
the relations between the influence matrices of interior and
exterior problems. It is found that the irregular values de-
pend on the first (UT') or second (LM) equation used in the
dual integral equations no matter what the types of specified
boundary conditions are. Two examples have been given to
verify this point of view. Both examples show that the first
UT equation results in fictitious eigenvalues which are asso-
ciated with the interior eigenfrequency with essential homo-
geneous boundary conditions, while the second LM equation
produces fictitious eigenvalues which are associated with the
interior eigenfrequency with natural homogeneous boundary
conditions. The numerical results are consistent with the
analytical derivations.
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Table 1 Characteristic solutions for the interior Helmholt
equation with the Dirichlet boundary conditions

No. (n) | eigenvalues (k,) | eigen equation | eigenmode
1 2.4048(2.4070) | Jo(ka) =0 o (2.4(
2.3 3.8317(3.8342) | Ji(ka) =0 J1(3.831"
15 5.1356(5.1388) | Ja(ka) =0 | Ja(5.135€

6 5.5201(5.5223) | Jo(ka) =0 Jo(5.5:

Note that data in parenthesis are obtained by using du:

BEM.

Table 2 Characteristic solutions for the interior Helmholt
equation with the Neumann boundary conditions

No. (n) | eigenvalues (k,) | eigen equation | eigenmode
1 0.0000(0.0000) | Ji(ka) =0 Jo (0.0
23 1.8412(1.8436) | J!(ka) =0 J1(1.841:
45 3.0542(3.0586) | Ji(ka) = T (3.0542
6 3.8317(3.8364) | J(ka) = Jo(3.8:

Note that data in parenthesis are obtained by using du:

BEM.
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