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Mathematical analysis of the true and spurious eigensolutions 
for free vibration of plate using real-part BEM 

Sheng-Yih Lin1, Ying-Te Lee1, Kue-Hong Chen2, Jeng-Tzong Chen3 

Abstract 

In this paper, a real-part BEM for solving the eigenfrequencies of plates is proposed for saving 
half effort in computation instead of using the complex-valued BEM. By employing the real-part 
fundamental solution, the spurious eigensolutions in conjunction with the true eigensolution are 
obtained for free vibration of plate. To verify this finding, the circulant is adopted to analytically 
derive the true and spurious eigenequation in the discrete system of a circular plate. In order to obtain 
the eigenvalues and boundary modes at the same time, the singular value decomposition (SVD) 
technique is utilized. For the continuous system, mathematical analysis for the spurious eigensolution 
was done by using the degenerate kernel and Fourier series. Good agreement among the analytical 
solutions (continuous and discrete systems) is made. The clamped circular plate is demonstrated 
analytically and numerically to see the validity of the present method. 

 
實部邊界元素法之板自由振動 
真假特徵方程數學分析 

林盛益 1, 李應德 1, 陳桂鴻 2, 陳正宗 3 

摘要 

本文以實部邊界元素法求解一固定圓板之特徵頻率問題以節省數值運算。使用實部邊界元

素法在求解過程中所伴隨而來的假根問題為此文章之討論重點。為證明假根產生之機制，本文

在連續系統中採用退化核及富利葉級數來進行數學推導，於離散系統中利用退化核及循環矩陣

來做一解析之動作，並使用奇異值分解法來同時獲得特徵頻率之邊界模態。本中並以一固端圓

板為例來說明由本文所提出之方法不論是在連續或是離散系統中，均能得到相吻合之結果，以

驗證此方法之正確性。 
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1. Introduction 
For the simply-connected problems of interior 

acoustics, either the real-part or imaginary-part BEM 

results in spurious eigensolutions [8]. Tai and Shaw 

[24] first employed BEM to solve membrane 

vibration using  complex-valued kernel. De Mey 

[11, 12], Hutchinson and Wong [15] employed only 
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the real-part kernel to solve the membrane and plate 

vibrations to avoid the complex-valued computation 

in sacrifice of occurrence of spurious eigensolutions. 

Kamiya et al. [18, 19] and Yeih et al. [27] linked the 

relation of MRM and real-part BEM independently. 

Wong and Hutchinson [17] have presented a direct 

BEM involving displacement, slope, moment and 

shear force. They were able to obtain numerical 

results for simply-connected and clamped plates by 

employing only the real-part BEM with obvious 

computational gains. However, this saving leads to 

the spurious eigenvalues in addition to the true ones 

in free vibration analysis. One has to investigate the 

mode shapes in order to identify and reject the 

spurious ones. Shaw [24] commented that only the 

real-part approach was incorrect since the 

eigensolution must satisfy the real-part and 

imaginary-part equations at the same time. 

Hutchinson [16] replied that the claim of 

incorrectness was perhaps a little strong since the 

real-part BEM can obtain all the true eigensolutions 

although the solution is contaminated by spurious 

ones according to his experience. If we need to look 

for the eigenmode as well as eigenvalue as usually, 

the sorting for the spurious eigensolutions pay a 

small price by identifying the mode shapes. Chen et 

al. [8] commented that the spurious modes can be 

reasonable which may mislead the judgement of the 

true and spurious ones, since the true and spurious 

modes may have the same nodal line for the different 

eigenvalues. This is the reason why Chen et al. have 

developed many systematic techniques, dual 

formulation [8], domain partition [4], SVD updating 

technique [6], CHEEF method [5], for sorting out the 

true and the spurious eigensolutions. Niwa et al. [23] 

also stated that ``One must take care to use the 

complete Green's function for outgoing waves, as 

attempts to use just the real or imaginary part 

(regular part) separately will not provide the 

complete spectrum". As quoted from Hutchinson [16], 

this criticism is not correct since the real-part BEM 

does not lose any true eigenvalues. The reason is that 

the real and imaginary-part kernels satisfy the Hilbert 

transform. Complete eigenspectrum is imbedded in 

either one, real or imaginary-part kernel. The Hilbert 

transform is the constraint in the frequency domain 

corresponding to the casual effect in the time-domain 

fundamental solutions. The physical meaning of the 

real-part kernel is the standing wave [13]. Tai and 

Shaw [25] claimed that spurious eigenvalues are not 

present if the complex-valued kernel is employed for 

the eigenproblem. However, it is true only for the 

case of problem with a simply-connected domain. 

For multiply-connected problems, spurious 

eigenequation occur even though the complex-valued 

BEM is utilized [9, 10]. 

In this paper, the spurious eigensolution for the 

plate eigenproblem will be studied in the real-part 

BEM. First of all, the true and spurious eigenvalues 

will be examined for the simply-connected plate 

using the real-part BEM. Since any two equations in 

the plate formulation (4 equations) can be chosen, 6 

( ) options can be considered. The occurring 

mechanism for the spurious eigensolution in the 

simply-connected plate problem will be studied 

analytically in the continuous and discrete systems. 

For the continuous system, degenerate kernels for the 

fundamental solution and the Fourier series 

expansion for boundary densities will be employed to 

derive the true and spurious eigenequations 

analytically for a circular plate. For the discrete 

system, the degenerate kernels for the fundamental 

solution and circulants resulting from the circular 

boundary will be employed to determine the spurious 

eigensolution. One example will be designed to 

check the validity of the present formulation.  

4
2C

2. Boundary integral equations 
for plate eigenproblems 

The governing equation for the free flexural 

vibration of a uniform thin plate is written as follows: 
Ω∈=∇ xxuxu ),()( 44 λ  (1)

where  is the lateral displacement, u
D

hρωλ
2

4 = , 

λ  is the frequency parameter, ω  is the circular 

frequency, ρ is the surface density,  is the 

flexural rigidity expressed as 

D

)12 2ν
=

1(

3

−
EhD  in 

terms of Young's modulus , Poisson ratio E ν , the 
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plate thickness h , and Ω  is the domain of the thin 

plate. The integral equations for the domain point can 

be derived from the Rayleigh-Green identity as 

follows [20]: 
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where  and  are the normal vector and 

tangential vector, respectively. The operators 

n t

)(⋅θK , 

)(⋅mK  and )(⋅vK  can be applied to U , , Θ M  

and kernels. The kernel functions can be 

expressed as: 

V

where B  is the boundary, , u θ ,  and   

mean the displacement, slope, normal moment, 

effective shear force, 

m v

and x  are the source and 

field points, respectively, U , , Θ M  and  

kernel functions will be elaborated on later. By 

moving the point to the boundary, Eqs.(2)-(5) reduce 

to 
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where  and  are the zeroth 

order Hankel and modified Hankel functions, 

)()1(
0 rH λ )()1(

0 riH λ

xsr −≡  and , respectively. The 

displacement, slope, normal moment and effective 

shear force are derived by 
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where  denotes the principal value, and ..VP

2
1

=α  for a smooth boundary point. The kernel 

function  is the real-part of the fundamental 

solution  which satisfies 

,(sU

(sU c

Once the field point x  locates outside the domain, 

the null-field BIEs based on the direct method of 

Eqs.(2)-(5) yield 
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where  is the complementary domain of eΩ Ω . 

Note that the null-field BIEs are not singular, since 

x  and s  never coincide.  

When the boundary is discretized into 

constant elements, the linear algebraic equations of 

Eqs.(2)-(5) can be obtained as follows: 
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][ vM ]vV[

N2N2 × , , }{u }{θ ,  and 
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3. Mathematical analysis for the 
true and spurious 

eigensolutions 
In order to obtain the true and spurious 

eigensolutions for plate vibration using the real-part 

BEM, the degenerate kernel is adopted to analytically 

derive the true and spurious eigenequations in the 

continuous and discrete systems of a circular plate. 

For the continuous system, mathematical analysis for 

the spurious eigensolution was done by using the 

degenerate kernel and Fourier series. For the discrete 

system, mathematical analysis for the spurious 

eigensolution was done by using the degenerate 

kernel and circulants. The clamped circular plate is 

demonstrated analytically in the continuous and the 

discrete systems, respectively, in the following 

subsections. 

3.1 Continuous system by using 

degenerate kernels and Fourier 
series 

For the clamped circular plate (  and 0=u

0=θ ) with a radius , we can obtain the 

eigenequation in the continuous formulation. The 

moment and shear force,  and  along the 

circular boundary, can be expanded into Fourier 

series by 
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coefficients. Substituting Eqs.(32) and (33) into 

Eqs.(24) and (25) yields, 
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The kernel functions, U , , 

 and 
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),( xsUθ ),( xsθΘ , can be expanded by using 

the expansion formulae 
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where  and  denote the first kind of the 

mth-order Bessel and modified Bessel functions, 

and  denote the second kind of the 

mth-order Bessel and modified Bessel functions. The 

superscripts ``  '' and ``  '' denote  the interior 

point (

mJ

K

mI

mY m

i e

ρρ > ) and the exterior point ( ρρ < ), 
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),( φρ=s  and ),( φρ=x  are the polar coordinates 

of s  and x , respectively. In this case, 

a== ρρ and φdasdB =)( . Similarly, the other 

kernels can also be expanded into degenerate forms. 

By using the degenerate kernels into Eqs.(34) and 

(35) and by employing the orthogonality condition of 

the Fourier series, the Fourier coefficients , , 
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According to Eq.(38), we have 
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Similarly Eq.(39) yields, 
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To seek nontrivial data for the generalized 

coefficients of , ,  and , we can 

obtain the eigenequation by using either Eqs.(40) and 

(42) or Eqs.(41) and (43) 
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After recollecting the terms, Eq.(44) can be 

simplified to 
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The former part in Eq.(45) inside the middle bracket 

is the spurious eigenequation while the latter part 

inside the big bracket is the true eigenequation after 

comparing the exact solution [22]. 

3.2 Discrete system by using 
degenerate kernel and circulants 

For the clamped circular plate (  and 0=u

0=θ ) with a radius , Eqs.(28) and (29) can be 

rewritten as 
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For the existence of nontrivial solution of , the 

determinant of the matrix versus eigenvalue must be 

zero, i.e., 
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Since the rotation symmetry is preserved for a 

circular boundary, the influence matrices for the 

discrete system are found to be circulants with the 

following forms into Eq.(46), we have  
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The coefficients of each element can be obtained by 

using degenerate kernel 
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where 
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where  and ][Uµ α  are the eigenvalues for  

and , respectively. It is easily found that the 

eigenvalues for the circulants , are the roots 

for  as shown below: 
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The eigenvector for the circulant  is ][ 2NC
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Substituting Eq.(56) into Eq.(55), we have 
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According to the definition for  in Eq.(52), we 

have 

mz
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Substitution of Eq.(59) into Eq.(58) yields 
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Substituting Eq.(52) into Eq.(60) for 0=φ  without 

loss of generality, the Reimann sum of infinite terms 

reduces to the following integral  

φφφ
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By using the degenerate kernel for  and the 

orthogonal conditions of Fourier series, Eq.(61) 

reduces to 

),( xsU
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Similarly, we have 
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where ,  and  are the eigenvalues of ][Θµ ][Uκ ][Θκ

][Θ ,  and [][ θU ]θΘ matrices, respectively. Since 

the four matrices [ , ]U ][Θ ,  and  are 

all symmetric circulants, they can be expressed by 
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Zero determinant in Eq.(75) implies that the 

eigenequation is 
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 (76)

After comparing with the exact solution for the 

clamped circular plate [22], the exact eigensolution 

for a continuous system can be obtained by 

approaching  in the the discrete system to infinity. 

The former part in Eq.(76) inside the middle bracket 

is the spurious eigenequation while the latter part 

inside the big bracket is the true eigenequation. The 

result of Eq.(76) in the discrete system matches well 

with Eq.(45) in the continuous system. 
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Since any two equations in the plate formulation 

(Eqs(2)-(5)) can be chosen, 6 ( ) options can be 

considerd. If we choose different formulae for the 

clamped circular plate, we can obtain the same true 

eigensolution but different spurious eigensolution. 

The occurrence of spurious eigensolution only 

depends on the formulation instead of the boundary 

condition. True eigensolution depends on the 

boundary condition instead of the formulation. All 

the resluts are shown in Table 1. 

4
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By employing Eqs.(66)-(69) for Eq.(49), we have 
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Eq.(71) can be reformulated into 
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Since  is orthogonal (Φ 1detdet 1 =Φ=Φ − ), the 

determinant of  is NNSM 44][ ×

4. Conclusions 
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A real-part formulation has been derived for the 

eigenproblem of the clamped plate. For a circular 

plate, the true and spurious eigenvalues and 

eigenequations were derived analytically by using the 

degenerate kernel, Fourier series and circulants in 

continuous and discrete systems. Since any two 

equations in the plate formulation (4 equations) can 

be chosen, 6 ( C ) options can be considerd. The 

occurrence of spurious eigensolution only depends 

on the formulation instead of the boundary condition, 

while the true eigensolution is independent of the 

formulation and is relevant to the boundary condition. 

All the results are shown in Table 1. The clamped 

4
2

By employing Eqs.(62)-(65) for Eq.(73), we have 
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To simplify Eq.(74), we have 
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10. Chen, J. T., L. W. Liu and H.-K. Hong (2003) 

``Spurious and true eigensolutions of Helmholtz 

BIEs and BEMs for a multiply-connected 

problem,” Royal Society London Series A, 

Accepted. 

circular plate cases were demonstrated analytically 

and numerically to see the validity of the present 

method. 
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Table 1. Spurious eigenequations using the real-part BEMs 

Eqs. number Spurious eigenequation using the real-part BEM 

u,θ 

Eqs.(2) and (3) 
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Eqs.(2) and (4) 
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where  ,......3,2,1,0 ±±±=
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