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Abstract: The accurate evaluation of nearly singular integrals is one of the major5

concerned problems in the boundary element method (BEM). Although the current6

methods have achieved great progress, it is often possible only for problems de-7

fined in the simplest geometrical domains when the nearly singular integrals need8

to be calculated. However, engineering processes occur mostly in complex geo-9

metrical domains, and always, involve nonlinearities of the unknown variables and10

its derivatives. Therefore, effective methods of dealing with nearly singular inte-11

grals for such practical problems are necessary and need to be further investigated.12

In this paper, a general strategy based on a nonlinear transformation is introduced13

and applied to evaluate the nearly singular integrals in two dimensional (2D) elas-14

ticity problems. The proposed nonlinear transformation method can figure out the15

rapid variations of nearly singular kernels and extremely high accuracy of numer-16

ical results can be achieved without increasing other computational efforts. The17

accuracy and efficiency of the method are demonstrated through three examples18

that are commonly encountered in the applications of the BEM.19

Keywords: BEM, nearly singular integrals, transformation, high-order elements,20

elasticity problem.21

1 Introduction22

Accurate and efficient evaluation of singular and nearly singular integrals is an23

important issue in boundary element analysis. These integrands are singular func-24

tions when the collocation point belongs to the integration elements, and many25

effective methods [Atluri (2004), (2005); Atluri, Liu and Han (2006); Brebbia et26

al. (1984); Chen (2002, 2000); Davies et al. (2007);Li, Wu and Yu (2009); Sanz27

et al. (2007);Sun (1999); Tanaka, Sladek (1994); Guiggiani (1992); Gray et al.28

1 Institute of Applied Mathematics, Shandong University of Technology, Zibo 255049, P.R. China
2 Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung 20224,

Taiwan



CMES Galley Proof Only Please Return in 48 Hours.

Pr
oo

f

2 Copyright © 2009 Tech Science Press CMES, vol.1243, no.1, pp.1-21, 2009

(2006); Young et al. (2007); Zhang and Wen (2004)] have been developed to deal29

with them. If the collocation point is close to but not on the integration elements,30

the ensuring integrals are termed nearly weak singular, nearly strong singular and31

nearly hyper-singular integrals, which are not singular in the sense of mathemat-32

ics. However, from the point of view of numerical integrations, these integrals can33

not be calculated accurately by using the standard Gaussian quadrature. This is34

so-called boundary layer effect in BEM.35

The accurate evaluation of nearly singular integrals plays an important role in many36

engineering problems. In general, these include evaluating the solution near the37

boundary in potential problems and calculating displacements and stresses near38

the boundary in elasticity problems, for example, contact problems, displacement39

around crack tips, sensitivity problems and thin-body problems [Chen and Liu40

(2001); Albuquerque and Aliabadi (2008); Guz et al. (2007); Karlis et al. (2008)].41

Owing to the importance of the nearly singular integrals, a great amount of at-42

tention has been attracted and many numerical methods and techniques have been43

developed in recent years. The proposed methods include, but are not limited to,44

virtual boundary element method [Sun (1999); Zhang and Sun (2000)], rigid-body45

displacement method or the simple solution method [Chen et al. (1998); Cruse46

(1974); Lachat and Watson (1976); liu et al. (2008); Wang et al. (1994); Mukerjee47

(2000); Sladek and Tanaka (1993); Granados and Gallego (2001)], interval subdi-48

vision method [Jun (1985); Tanaka (1991); Gao (2008)], special Gaussian quadra-49

ture method [Earlin (1992); Lifeng (2004)], analytical or semi-analytical methods50

[Yoon and Heister (2000); Zhang and Sun (2001); Friedrich (2002); Fratantonio51

and Rencis (2000); Zhang and Zhang (2004); Cruse and Aithal (1993); Schulz52

(1998); Liu (1998); Zhou et al. (2008); Niu (2007)]. In a recent study, the above53

methods have been reviewed in detail by Zhang et al. [Zhang and Sun (2008)].54

At present, the most common methods for calculating nearly singular integrals are55

various nonlinear transformations, for example, the cubic polynomial transforma-56

tion [Telles (1987)], the bi-cubic transformation [Cerrolaza and Alarcon (1989)],57

the sigmoidal transformation [Johnston (1999)], the semi-sigmoidal transforma-58

tion [Johnston (2000)], the coordinate optimization transformation [Sladek, Sladek59

and Tanaka (2000)], the attenuation mapping method [Earlin (1993); Luo et al.60

(1998)], the rational transformation [Huang and Cruse (1993)], and the distance61

transformation [Ma and Kamiya (2002)]. The basic ideas of the above transforma-62

tions can be generalized into two categories: one is removing the nearly zero factor63

by using another zero factor which usually generated by Jacobian; the other one is64

converting the nearly zero factor in the denominator to be part of the numerator,65

which profits from the idea of the reciprocal transformation for the regularization66

of weakly singular integrals. Numerical tests show that the transformations based67
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on the former idea are effective for the calculation of weakly singular integrals but68

not satisfactory for strong singular or hypersingular integrals. The latter transfor-69

mations, based on the idea of reciprocal transformation, can convert nearly singular70

kernels into regular kernels, but the original regular parts behave nearly singular af-71

ter the transformations, so they are suitable only for a case when the regular part of72

the integrand is constant.73

For most of current numerical methods, the geometry of the boundary element is74

often depicted by using linear shape functions when nearly singular integrals need75

to be calculated. However, most engineering processes occur mostly in complex76

geometrical domains, and obviously, higher order geometry elements are expected77

to be more accurate [Atluri (2005)]. To improve the calculation accuracy and ef-78

ficiency of the nearly singular integrals, efficient approaches for estimating nearly79

singular integrals over high order geometry elements are necessary and need to be80

further investigated.81

When the geometry of the boundary element is approximated by using high order82

elements—usually of second order, the Jacobian J(ξ ) is not a constant but a non-83

rational function which can be expressed as
√

a+bξ + cξ 2, where a,b and c are84

constants, ξ is the dimensionless coordinate; The distance r between the field points85

and the source point is a non-rational function of the type
√

p4(ξ ), where p4(ξ )86

is the fourth order polynomial. Thus, the forms of the integrands in boundary87

integrals become more complex, and it is, generally, more difficult to implement88

when nearly singular integrals need to be calculated.89

This paper aims to develop a general strategy suitable for calculating the nearly90

singular integrals occurring on high order geometry elements. A general nonlinear91

transformation technique [Zhang and Sun (2008)] is adopted to remove the near92

singularities of kernels’ integration by smoothing out the rapid variations of the93

integrand of nearly singular integrals. The strategy proposed in this paper adopted94

isoparametric quadratic elements to describe the integral kernel functions and the95

Jacobean. Owing to the employment of the parabolic arc, only a small number of96

elements need to be divided along the boundary, and high accuracy can be achieved97

without increasing more computational efforts. In addition, the non-singular BIEs98

of indirect variables [Zhang and Wen (2004)] were employed to estimate the singu-99

lar integrals occurring on curved boundaries. Three numerical examples of elastic100

problems are given, with results, showing the high efficiency and the stability of101

the suggested approach, even when the internal point is very close to the boundary.102
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2 Non-singular boundary integral equations (BIEs)103

It is well known that the domain variables can be computed by integral equations104

only after all the boundary quantities have been obtained, and the accuracy of105

boundary quantities directly affects the validity of the interior quantities. How-106

ever, when calculating the boundary quantities, we have to deal with the singular107

boundary integrals, and a good choice is using the regularized BIEs. Therefore, for108

avoiding the “boundary layer effect”, two aspects are necessary. One is the accurate109

computation of the boundary functions, which is generally carried out by adopting110

the regularized BIEs; the other is an efficient algorithm of calculating the nearly111

singular integrals.112

In this paper, we always assume that Ω is a bounded domain in R2, Ωc is its open
complement, and Γ denotes the boundary. t(x) and n(x) (or t and n) are the unit
tangent and outward normal vectors of Γ to the domain Ω at the point x, respec-
tively. For 2D elastic problems, the non-singular BIEs with indirect variables are
given in [Zhang and Wen (2004)]. Without regard to the rigid body displacement
and the body forces, the non-singular BIEs on Ωc can be expressed as

ui(y) =
∫

Γ
ϕk(x)u∗ik(y,x)dΓ,y ∈ Γ (1)

∇ui(y) =
∫

Γ
[ϕk(x)−ϕk(y)]∇u∗ik(y,x)dΓ−ϕk(y)

{∫
Γ
[t(x)− t(y)]

∂u∗ik(y,x)
∂ t

dΓ

+
∫

Γ
[n(x)−n(y)]

∂u∗ik(y,x)
∂n

dΓ+
k0

G
n(y)

(∫
Γ
[nk(x)−nk(y)]

∂ lnr
∂xi

dΓ

+nk(y)
∫

Γ
[ti(x)− ti(y)]

∂ lnr
∂ t

dΓ+nk(y)
∫

Γ
[ni(x)−ni(y)]

∂ lnr
∂n

dΓ
)}

,

y ∈ Γ
(2)

For the domain Ω, the nonsingular BIEs are given as

ui(y) =
∫

Γ
ϕk(x)u∗ik(x,y)dΓ,y ∈ Γ (3)
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∇ui(y) =ϕk(y)n(y)
1
G

[δik−
nk(y)ni(y)
2(1− v)

]+
∫

Γ
[ϕk(x)−ϕk(y)]∇u∗ik(y,x)dΓ

−ϕk(y)
{∫

Γ
[t(x)− t(y)]

∂u∗ik(y,x)
∂ t

dΓ +
∫

Γ
[n(x)−n(y)]

∂u∗ik(y,x)
∂n

dΓ

+
k0

G
n(y)

(∫
Γ
[nk(x)−nk(y)]

∂ lnr
∂xi

dΓ +nk(y)
∫

Γ
[ti(x)− ti(y)]

∂ lnr
∂ t

dΓ

+nk(y)
∫

Γ
[ni(x)−ni(y)]

∂ lnr
∂n

dΓ
)}

,

y ∈ Γ
(4)

For the internal point y, the integral equations can be written as

ui(y) =
∫

Γ
ϕk(x)u∗ik(y,x)dΓ , y ∈ Ω̂ (5)

∇ui(y) =
∫

Γ
φk(x)∇u∗ik(y,x)dΓ , y ∈ Ω̂ (6)

In Eqs. (1)–(6), i,k = 1,2; k0 = 1/4π(1− v); G is the shear modulus; φk(x) is113

the density function to be determined; u∗ik(y,x) denotes the Kelvin fundamental114

solution. In Eqs. (5) and (6) Ω̂ = Ω or Ωc.115

When the field point y is far from the boundary element, a straightforward appli-
cation of Gaussian quadrature suffices to evaluate such integrals. However, when
the field point y is very close to the integral element Γe, the distance r between the
field point y and the source point x tends to zero. Thus, there exist nearly singular
integrals in Eqs. (5) and (6). These nearly singular integrals can be expressed as{

I1 =
∫

Γe
ψ(x) lnr2dΓ

I2 =
∫

Γe
ψ(x) 1

r2α dΓ
(7)

where α > 0, ψ(x) denotes a well-behaved function.116

3 Nearly singular integrals under curvilinear elements117

The quintessence of the BEM is to discretize the boundary into a finite number118

of segments, not necessarily equal, which are called boundary elements. Two ap-119

proximations are made over each of these elements. One is about the geometry of120

the boundary, while the other has to do with the variation of the unknown bound-121

ary quantity over the element. The linear element is not an ideal one as it can not122

approximate with sufficient accuracy for the geometry of curvilinear boundaries.123
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For this reason, it is recommended to use higher order elements, namely, elements124

that approximate geometry and boundary quantities by higher order interpolation125

polynomials—usually of second order. In this paper, the geometry segment is mod-126

eled by a continuous parabolic element, which has three knots, two of which are127

placed at the extreme ends and the third somewhere in-between, usually at the mid-128

point. Therefore the boundary geometry is approximated by a continuous piece-129

wise parabolic curve. On the other hand, the distribution of the boundary quantity130

on each of these elements is depicted by a discontinuous quadratic element, three131

nodes of which are located away from the endpoints.132

Assume x1 = (x1
1,x

1
2) and x2 = (x2

1,x
2
2) are the two extreme points of the segment

Γ j, and x3 = (x3
1,x

3
2) is in-between one. Then the element Γ j can be expressed as

follows

xk(ξ ) = N1(ξ )x1
k +N2(ξ )x2

k +N3(ξ )x3
k ,k = 1,2

where N1(ξ ) = ξ (ξ − 1)/2, N2(ξ ) = ξ (ξ + 1)/2, N3(ξ ) = (1− ξ )(1 + ξ ), −1 ≤
ξ ≤ 1. As shown in Fig. 1, the minimum distance d from the field point y = (y1,y2)

 

t  
2 ( 1)ξ =x  

1( 1)ξ = −x  

Mx

Γ  

Ω

n

y

d

r

( )p ξ η=x

( )ξx  

3 ( 0)ξ =x

Figure 1: The minimum distance d from the field point y to the boundary element

to the boundary element Γ j is defined as the length of yxp, which is perpendicular
to the tangential linet and through the projection point xp. Letting η ∈ (−1,1) is
the local coordinate of the projection pointxp, i.e. xp = (x1(η),x2(η)). Then η is
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the real root of the following equation

x′k(η)(xk(η)− yk) = 0 (8)

If the field point y sufficiently approaches the boundary, then Eq. (8) has a unique
real root. In fact, setting

F(η) = x′k(η)(xk(η)− yk)

there is

F ′(η) = x′k(η)x′k(η)+ x′′k(η)(xk(η)− yk) = J2(η)+ x′′k(η)(xk(η)− yk)

where J(η) is the Jacobian of the transformation from parabolic element to the133

line interval [−1, 1]. Therefore, when the field point y is sufficiently close to the134

element, we explicitly have F ′(η) > 0.135

The unique real root of Eq. (8) can be evaluated numerically by using the Newton’s
method or computed exactly by adopting the algebraic root formulas of 3-th alge-
braic equations. In this paper, two ways are all tested, and practical applications
show that both ways can be used to obtain desired results. Furthermore, the New-
ton’s method is more simple and effective, especially if the initial approximation
is properly chosen and if we can do this, only two or three iterations are sufficient
to approximate the real root. For the root formula of 3-th algebraic equations, let’s
consider the following algebraic equation

ax3 +bx2 + cx+d = 0

if there exists only one real root, the analytical solution can be expressed as follows

x =− b
3a

+
2(
√

s2 + t2)
1
3

3 3
√

2a
cos

(
1
3

arccos
s√

s2 + t2

)
where s =−2b3 +9acb−27a2d, t =

√
−4(3ac−b2)3− (−2b3 +9acb−27a2d)2.136

Using the procedures described above, we can obtain the value of the real root η .
Thus, we have

xk− yk =xk− xp
k + xp

k − yk

=
1
2
(ξ −η)

[
(x1

k−2x3
k + x2

k)(ξ +η)+(x2
k− x1

k)
]
+ xk(η)− yk

(9)

By using Eq. (9), the distance square r2 between the field point y and the source
point x(ξ ) can be written as

r2(ξ ) = (xk− yk)(xk− yk) = (ξ −η)2g(ξ )+d2 (10)
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where d2 = (xk(η)− yk)(xk(η)− yk),

g(ξ ) =
1
4
(x1

k−2x3
k + x2

k)(x
1
k−2x3

k + x2
k)(ξ +η)2

+
1
2
(x1

k−2x3
k + x2

k)(x
2
k− x1

k)(ξ +η)

+h2 +(x1
k−2x3

k + x2
k)(xk(η)− yk),

where h = 1
2

√
(x2

k− x1
k)(x

2
k− x1

k).137

Apparently, there is g(ξ )≥ 0.138

By some simple deductions, the nearly singular integrals in Eq. (7) would be re-
duced to the following two types

I =
∫ A

0
f (ξ ) ln

(
ξ

2g(ξ )+d2)dξ (11)

II =
∫ A

0

f (ξ )
(ξ 2g(ξ )+d2)α dξ (12)

where A is a constant which is possibly with different values in different element139

integrals; f ( ·) is a regular function that consists of shape function, Jacobian and140

ones which arise from taking the derivative of the integral kernels.141

4 Variable transformation142

The main reason why nearly singular integrals can not be calculated accurately143

by using the standard Gaussian quadrature, in common observation, is caused by144

some bad qualities of the nearly singular kernels such as the fiercer oscillation and145

the unboundedness of the integrands. However, in the authors’ opinion, that is not146

true. Some regular integral kernels, such as x2

x2+c2 or x4

x2+c2 which are obviously147

neither unbounded nor oscillating rapidly during the integral interval, still can not148

be calculated accurately by using the standard Gaussian quadrature (See Figs. 2149

and 3). For this phenomenon, we can also speculate that some methods such as150

attenuation mapping method, which eliminate the nearly zero factors by adopting151

another zero factors in the density function, would be not very effective, and the152

practices proved it. According to the authors’ point of view, the main reason of153

this phenomenon is caused by the different orders of magnitude of the zero-divisor.154

In this section, a general variable transformation for high order boundary elements155

was constructed in order to diminish the difference of the orders of magnitude or156

the scale of change for operational factors. The constructed transformation can157

remove the near singularity efficiently and high accurate results can be obtained by158

using the standard Gaussian quadrature.159
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Figure 2: The images of two integral kernels with c2 = 0.2
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Figure 3: Relative errors of the computation results of x2/(x2 +c2) and x4/(x2 +c2)
using 8-point/16-point/24-point Gaussian quadrature

Based on the idea of diminishing the difference of the orders of magnitude or the
scale of changes of operational factors, we introduce the following transformation

ξ = d(ek(1+t)−1) (13)

where k = 1
2 ln(1+ A

d ).160
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Substituting (13) into Eqs. (11) and (12), then we obtain the following equations

I =2kd lnd
∫ 1

−1
f (d(ek(1+t)−1))ek(1+t)dt

+ kd
∫ 1

−1
f (ξ ) ln

(
(ek(1+t)−1)2g(ξ )+1

)
ek(1+t)dt

(14)

II =
1

d2α−1

∫ 1

−1

f (ξ )(
(ek(1+t)−1)2g(ξ )+1

)α ek(1+t)dt (15)

where ξ = d(ek(1+t)−1).161

By following the procedures described above, the near singularity of the boundary162

integrals has been fully regularized. The final integral formulations over parabolic163

elements are obtained as shown in Eqs. (14) and (15), which can be computed164

straightforward by using standard Gaussian quadrature.165

5 Numerical examples166

In this section, three examples of 2D elastostatics with curved boundaries are given167

to test the proposed method. Isoparametric quadratic elements are employed to168

approximate the geometrical elements and the boundary densities. The proposed169

transformation technique is used to estimate the nearly singular integrals when the170

interior points are very close to the integral elements.171

Example 1 As shown in Fig. 4, a thick cylinder subjected to the uniform radial172

pressures p = 5 along the surfaces is considered. The inner and outer radii of the173

cylinder are 1 and 2, respectively. In this example, the elastic shear modulus is174

G = 807692.3N/cm2, and the Poisson’s ratio is v = 0.3.175

Fifteen and ten quadratic elements are divided along the outer and inner surfaces,176

respectively. Therefore, the total number of the elements is 25.177

The numerical solutions of the tangential stresses σθ at the interior points close to178

the outer and inner surfaces are listed in Tab. 1 and Tab. 2. Results of the radial179

stresses σr at the interior points close to the outer and inner surfaces are listed180

in Fig. 5 and Fig. 6, respectively. Both the CBEM and the proposed method are181

employed for the purpose of comparison. The convergence rates of the computed182

σθ at interior points (1.0000001,0) and (1.9999999,0) are shown in Fig.7.183

It can be seen from Tab. 1 and Tab. 2 that the results of stresses σθ can be accurately184

calculated by using the CBEM and the present method when the computed points185

are not very close to the boundary (r < 1.95 or r > 1.04). However, when the186

distance between the interior point and the boundary is equal to or less than 0.04,187

the results calculated by the CBEM become less satisfactory or even invalid. In188
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Figure 4: Thick cylinder subjected to
the uniform radial pressure on the inner
surface
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Figure 5: Radial stresses σr at interior
points close to the outer surface

contrast with the CBEM, the present method can be used to obtain accurate results189

with the largest percentage error less than 0.1% even when the distance between190

the interior point and the outer boundary reaches10−10.191

Table 1: Tangential stresses σθ at interior points

Radius r Exact CBEM Present Relative error
1.9 0.3513389E+01 0.3517443E+01 0.3513383E+01 0.1593349E-03
1.95 0.3419899E+01 0.3520995E+01 0.3418865E+01 0.3023558E-01
1.99 0.3350126E+01 0.3324564E+01 0.3347962E+01 0.6459433E-01
1.999 0.3335001E+01 0.2885692E+01 0.3332540E+01 0.7380650E-01

1.999 9 0.3333500E+01 0.2836292E+01 0.3331008E+01 0.7475973E-01
1.999 99 0.3333350E+01 0.2831348E+01 0.3330852E+01 0.7493745E-01

1.999 999 0.3333335E+01 0.2830854E+01 0.3330847E+01 0.7464263E-01
1.999 999 9 0.3333334E+01 0.2830804E+01 0.3330859E+01 0.7423208E-01

1.999 999 99 0.3333333E+01 0.2830799E+01 0.3330729E+01 0.7813735E-01
1.999 999 999 0.3333333E+01 0.2830799E+01 0.3330762E+01 0.7714073E-01
1.999 999 9999 0.3333333E+01 0.2830799E+01 0.3331151E+01 0.6546329E-01

We can observe from Fig. 5 and Fig. 6 that the results of radial stresses σr calcu-192

lated by using the CBEM become less satisfactory as the computed points locate193

increasingly close to the boundary, i.e., when the distance between the interior point194
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Table 2: Tangential stresses σθ at interior points close to the inner surface

Radius r Exact CBEM Present Relative error
1.1 0.7176309E+01 0.7177468E+01 0.7177468E+01 -0.1616178E-01
1.04 0.7830375E+01 0.7810632E+01 0.7833678E+01 -0.4218329E-01
1.01 0.8201974E+01 0.5963880E+01 0.8207646E+01 -0.6916232E-01
1.001 0.8320020E+01 0.1187044E+02 0.8326496E+01 -0.7783813E-01

1.0001 0.8332000E+01 0.1319104E+02 0.8338553E+01 -0.7864782E-01
1.00001 0.8333200E+01 0.1332452E+02 0.8339803E+01 -0.7923699E-01
1.000001 0.8333320E+01 0.1333787E+02 0.8339923E+01 -0.7923119E-01
1.0000001 0.8333332E+01 0.1333921E+02 0.8339887E+01 -0.7865526E-01

1.00000001 0.8333333E+01 0.1333934E+02 0.8338562E+01 -0.6274595E-01
1.000000001 0.8333333E+01 0.1333935E+02 0.8343783E+01 -0.1253925E+00
1.0000000001 0.8333333E+01 0.1333935E+02 0.8341133E+01 -0.9360174E-01

and the boundary is equal to or less than 0.05. By using the same mesh, the present195

method gains excellent accuracy even when the distance between the interior point196

and the outer boundary approaches 10−10.197

 

20 40 60 80 100 
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
r =1.9999999 
r =1.0000001 

 1E-2 1E-4 1E-6 1E-8 1E-10
-6 

-4 

-2 

0 

2 

4 

6 

8 

Present
CBEM
Exact 

Distance r  
 

Figure 6: Radial stresses rσ at interior
points close to the inner surface 

R
ad

ia
l s

tre
ss

es
 σ

r 

R
ad

ia
l s

tre
ss

es
 σ

r 

Element numbers 
 

Figure 7: Convergence curves of the 
computed θσ   

Figure 6: Radial stresses σr at interior
points close to the inner surface

 

20 40 60 80 100 
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
r =1.9999999 
r =1.0000001 

 1E-2 1E-4 1E-6 1E-8 1E-10
-6 

-4 

-2 

0 

2 

4 

6 

8 

Present
CBEM
Exact 

Distance r  
 

Figure 6: Radial stresses rσ at interior
points close to the inner surface 

R
ad

ia
l s

tre
ss

es
 σ

r 

R
ad

ia
l s

tre
ss

es
 σ

r 

Element numbers 
 

Figure 7: Convergence curves of the 
computed θσ   

Figure 7: Convergence curves of the
computed σθ

In addition, the convergence curves in Fig. 7 show that the convergence rates of the198

present method are fast even when the distance between the computed point and199

the boundary reaches 10−7.200

Example 2 As shown in Fig. 8, an infinite plate with a circular hole subjected to201
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the uniform tensile forces p = 2 at infinity is considered. The radius of the circle202

is r = 1. In this example, the elastic shear modulus G and the Poisson’s ratio v are203

the same as in the example 1. There are 20 uniform quadratic boundary elements204

divided along the circular boundary.

 

p  

p  p

p

Figure 8: An infinite plate with a circular hole subjected to the uniform tensile
forces

Table 3: Tangential stresses σθ at interior points on the line x2 = 0

Coordinatex1 Exact CBEM Present Relative error
1.1 0.4875487E+01 0.4876466E+01 0.4876466E+01 -0.2009130E-01
1.01 0.5863237E+01 0.5805375E+01 0.5866426E+01 -0.5438222E-01
1.001 0.5986033E+01 0.6103824E+01 0.5989719E+01 -0.6157678E-01

1.0001 0.5998600E+01 0.6148594E+01 0.6002340E+01 -0.6234624E-01
1.00001 0.5999860E+01 0.6153027E+01 0.6003606E+01 -0.6243178E-01
1.000001 0.5999986E+01 0.6153470E+01 0.6003737E+01 -0.6251000E-01

1.0000001 0.5999999E+01 0.6153514E+01 0.6003735E+01 -0.6226901E-01
1.00000001 0.6000000E+01 0.6153518E+01 0.6003726E+01 -0.6210675E-01
1.000000001 0.6000000E+01 0.6153519E+01 0.6003862E+01 -0.6437451E-01
1.0000000001 0.6000000E+01 0.6153519E+01 0.6003715E+01 -0.6191998E-01

205

Tab. 3 presents the results of tangential stresses σθ calculated by using both the206

CBEM and the present method at interior points on the line x2 = 0. It can be207

seen that the results calculated by the CBEM are not in a good agreement with the208
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Table 4: Tangential stresses σθ at interior points with the radius of r = 1.000000001

Angle θ Exact CBEM Present Relative error
0 0.6000000E+01 0.6153519E+01 0.6003862E+01 -0.6437451E-01

π/10 0.5236068E+01 0.5503660E+01 0.5239481E+01 -0.6518125E-01
2π/10 0.3236068E+01 0.3802308E+01 0.3238303E+01 -0.6906802E-01
3π/10 0.7639320E+00 0.1699320E+01 0.7647112E+00 -0.1019982E+00
4π/10 -0.1236068E+01 -0.2032196E-02 -0.1236467E+01 -0.3232167E-01
5π/10 -0.2000000E+01 -0.6518910E+00 -0.2000850E+01 -0.4251437E-01
6π/10 -0.1236068E+01 -0.2032196E-02 -0.1236469E+01 -0.3240459E-01
7π/10 0.7639320E+00 0.1699320E+01 0.7647094E+00 -0.1017558E+00
8π/10 0.3236068E+01 0.3802308E+01 0.3238301E+01 -0.6901786E-01
9π/10 0.5236068E+01 0.5503660E+01 0.5239480E+01 -0.6516227E-01

π 0.6000000E+01 0.6153519E+01 0.6003862E+01 -0.6437451E-01

analytic solutions as the computed points locate increasingly close to the boundary,209

i.e., when the distance between the interior point and the boundary is equal to or210

less than 0.01. However, the results calculated by the proposed method are very211

consistent with the exact solutions even when the distance between the interior212

point and the outer boundary approaches 10−10. The percentage errors are also213

listed in Tab. 3, from which we can see that the accuracy of the results calculated214

by the present method are high and stable with the largest relative error less than215

0.07%.216

For different angles, the calculation results of tangential stresses σθ at interior217

points with radius of 1.000000001 are listed in Tab. 4, from which we can observe218

that the results calculated by the CBEM become less satisfactory or even invalid. In219

contrast with the CBEM, the present method can be applied successfully to obtain220

accurate results at these interior points.221

The results of radial stresses σr at interior points on the line x2 = 0 are shown in Fig.222

9, from which we can see that the present method yields excellent accuracy even223

when the distance between the interior point and the inner surface reaches 10−10.224

In addition, the convergence plot in Fig. 10 shows that the convergence rates of the225

present method are fast even when the distance between the computed point and226

the boundary approaches 10−9.227

Example 3 An infinite plate with a circular hole subjected to a uniform radial228

pressure p = 5, as shown in Fig. 11. The radius of the circle is r = 5. In this229

example, the elastic shear modulusG and the Poisson’s ratio v are the same as in230

the example 1.231
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Figure 9: Radial stresses σr at interior
points on the line x2 = 0
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Figure 10: Convergence curve of the
computed σθ at the point (1E-09, 0)
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Figure 11: An infinite plate with a circular 
hole subjected to a uniform radial pressure 
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Figure 11: An infinite plate with a cir-
cular hole subjected to a uniform radial
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Figure 12: Convergence curves of the
stresses σr and σθ at the point (5E-07,
0)

The boundary is discretized into twenty quadratic elements. For the interior points232

increasingly close to the boundary, the results of the radial and tangential stresses,233

σr and σθ , on the line x2 = 0 are listed in Tab. 5 and Tab. 6, respectively. It can234

be observed that the values of the interior stresses obtained by using the CBEM be-235

come deviated when x1 < 5.2. In contrast, the present method can obtain excellent236
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results with the largest relative error less than 0.06% for radial stresses and 0.2%237

for tangential stresses even when x1 = 5.0000000001.238

Table 5: Radial stresses σr at interior points on the line x2 = 0

Radius r Exact CBEM Present Relative error
5.2 -0.462278E+01 -0.4590583E+01 -0.4621969E+01 0.1757317E-01
5.1 -0.480584E+01 -0.3778935E+01 -0.4805366E+01 0.9943386E-02

5.01 -0.498006E+01 0.3201157E+01 -0.4980010E+01 0.9963969E-03
5.001 -0.499800E+01 0.3696937E+01 -0.4997996E+01 0.9480385E-04
5.0001 -0.499980E+01 0.3743547E+01 -0.4999791E+01 0.1804154E-03
5.00001 -0.499998E+01 0.3748205E+01 -0.5000032E+01 0.1049353E-02

5.000001 -0.499999E+01 0.3748671E+01 -0.4999921E+01 0.1531263E-02
5.0000001 -0.500000E+01 0.3748718E+01 -0.4999513E+01 0.9744626E-02
5.00000001 -0.500000E+01 0.3748722E+01 -0.5000367E+01 0.7330816E-02
5.000000001 -0.500000E+01 0.3748723E+01 -0.5002389E+01 0.4778081E-01

5.0000000001 -0.500000E+01 0.3748723E+01 -0.5002995E+01 0.5990278E-01

Table 6: Tangential stresses σθ at interior points on the line x2 = 0

Radius r Exact CBEM Present Relative error
5.2 0.4622781E+01 0.4600389E+01 0.4624871E+01 -0.4521102E-01
5.1 0.4805844E+01 0.4163711E+01 0.4809111E+01 -0.6798521E-01
5.01 0.4980060E+01 0.6704914E+01 0.4984544E+01 -0.9004280E-01
5.001 0.4998001E+01 0.8542143E+01 0.5002605E+01 -0.9213396E-01

5.0001 0.4999800E+01 0.8732868E+01 0.5004408E+01 -0.9217102E-01
5.00001 0.4999980E+01 0.8751950E+01 0.5004650E+01 -0.9339370E-01
5.000001 0.4999998E+01 0.8753859E+01 0.5004510E+01 -0.9023574E-01
5.0000001 0.5000000E+01 0.8754049E+01 0.5004211E+01 -0.8422029E-01

5.00000001 0.5000000E+01 0.8754068E+01 0.5005206E+01 -0.1041124E+00
5.000000001 0.5000000E+01 0.8754070E+01 0.5006909E+01 -0.1381724E+00
5.0000000001 0.5000000E+01 0.8754071E+01 0.5006582E+01 -0.1316304E+00

In addition, the convergence rates of the radial and tangential stresses, σr and σθ ,239

at the point (5.0000001,0) are shown in Fig. 12, from which we can observe that240

the convergence rates of the computed stresses σr and σθ are acceptable even when241

the distance between the computed point and the boundary reaches 10−7.242
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6 Conclusions243

In the present paper, a general strategy based on a nonlinear transformation is pro-244

posed in order to calculate the nearly singular integrals occurring on high-order245

geometrical elements. The strategy produces very high accuracy for determining246

the nearly singular integrals even when the distance between the field points and247

the integral elements are as small as 1.0E−9. Three numerical examples show that248

the present algorithm has been successfully employed in the numerical calculation249

of nearly singular integrals on curved elements. As a result, accurate stress results250

of the interior points close to the boundary are achieved. The present method is251

also general and can be applied to other problems in BEM (such as thin-walled252

structures), which will be discussed later.253
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