Null－field integral equation approach for boundary value problems with circular boundaries

陳正宗特聘教授
海洋大學河海工程學系基隆台灣
中興大學機械系專题演講

J．T．Chen Ph．D．

Taiwan Ocean University
Keelung，Taiwan
NCHU Mech．Lecture
December，21，15：00－17：00， 2005
（Chung－Hsing2005．ppt）

MSMLAB

哲人日已遠 典型在宿昔

省立中興大學第一任校長

林致平校長
（民國五十年～民國五十二年）

Outlines

- Motivation and literature review
- Mathematical formulation
- Expansions of fundamental solution and boundary density
@ Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Numerical examples
- Conclusions

MSMLAB

Motivation and literature review

Present approach

MSMLAB

Advantages of degenerate Kernel

1. No principal value
2. Well-posed
3. No boundary-Cayer effect
4. Exponetial convergence

Engineering problem with arbitrary geometries

Motivation and literature review

Analytical methods for solving Laplace problems with circular holes

Conformal mapping
Chen and Weng, 2001,
"Torsion of a circular
compound bar with
imperfect interface",
ASME Journal of
Applied Mechanics

Bipolar coordinate
Le6edev, Skasskaya and
Uyand, 1979, "Work
pro6lem in applied
mathematics", Dover
Publications

Limited to dou6ly connected domain

Fourier series approximation

- Ling (1943)- torsion of a circular tube
- Caul反et al. (1983)- steady heat conduction with circular holes
- Bird and Steele (1992) - harmonic and biharmonic problems with circular holes
- Mogilevskaya et al. (2002) - elasticity problems with circular Goundaries

Contribution and goal

- However, they didn't employ the null-field integral equation and degenerate kernels to fully capture the circular boundary, although they all employed Fourier series expansion.
- To develop a systematic approach for sofving Laplace problems with multiple holes is our goal.
MSVLAB

Outlines (Direct problem)

- Motivation and literature review
- Mathematical formulation
- Expansions of fundamental solution and boundary density
@ Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Numerical examples
- Conclusions

MSMLAB

Boundary integral equation and null-field integral equation

Interior case

$2 \pi u(\mathrm{x})=\int_{B} T(\mathrm{~s}, \mathrm{x}) u(\mathrm{~s}) d B(\mathrm{~s})-\int_{B} U(\mathrm{~s}, \mathrm{x}) t(\mathrm{~s}) d B(\mathrm{~s}), \mathrm{x} \in D$ $0=\int_{B} T(\mathrm{~s}, \mathrm{x}) u(\mathrm{~s}) d B(\mathrm{~s})-\int_{B} U(\mathrm{~s}, \mathrm{x}) t(\mathrm{~s}) d B(\mathrm{~s}), \mathrm{x} \in D^{c}$
MSMLA B Null-field integral equation

Outlines (Direct problem)

- Motivation and literature review
- Mathematical formulation
- Expansions of fundamental solution
and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Numerical examples
- Degenerate scale
- Conclusions

MSMLAB

Expansions of fundamental solution and boundary density

- Degenerate kernel-fundamental solution

$$
U(\mathrm{~s}, \mathrm{x})=\left\{\begin{array}{l}
U^{i}(R, \theta ; \rho, \phi)=\ln R-\sum_{m=1}^{\infty} \frac{1}{m}\left(\frac{\rho}{R}\right)^{m} \cos m(\theta-\phi), R \geq \rho \\
U^{e}(R, \theta ; \rho, \phi)=\ln \rho-\sum_{m=1}^{\infty} \frac{1}{m}\left(\frac{R}{\rho}\right)^{m} \cos m(\theta-\phi), \rho>R
\end{array}\right.
$$

- Fourier series expansions - boundary density

$$
\begin{aligned}
& u(\mathrm{~s})=a_{0}+\sum_{n=1}^{M}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right), \mathrm{s} \in B \\
& t(\mathrm{~s})=p_{0}+\sum_{n=1}^{M}\left(p_{n} \cos n \theta+q_{n} \sin n \theta\right), \mathrm{s} \in B
\end{aligned}
$$

Separable form of fundamental solution (1D)

Separable property $U(\mathrm{~s}, \mathrm{x})=$

$$
U(\mathrm{~s}, \mathrm{x})=\frac{1}{2} r=\left\{\begin{array}{l}
\frac{1}{2}(\mathrm{~s}-\mathrm{x}), \mathrm{s} \geq \mathrm{x} \\
\frac{1}{2}(\mathrm{x}-\mathrm{s}), \mathrm{x}>\mathrm{s} \\
\frac{S}{2}
\end{array}\right.
$$

$$
T(\mathrm{~s}, \mathrm{x})=\left[\begin{array}{l}
-\mathrm{c}-\mathrm{-}, \\
\frac{1}{2}, \mathrm{~s}>\mathrm{x} \\
\hdashline \frac{1}{2}, \\
\frac{-1}{2}>\mathrm{s} \\
-
\end{array}\right.
$$

Separable form of fundamental solution (2D)

$$
U(\mathrm{~s}, \mathrm{x})=\left\{\begin{array}{l}
U^{i}(R, \theta ; \rho, \phi)=\ln R-\sum_{m=1}^{\infty} \frac{1}{m}\left(\frac{\rho}{R}\right)^{m} \cos m(\theta-\phi), R \geq \rho \\
U^{e}(R, \theta ; \rho, \phi)=\ln \rho-\sum_{m=1}^{\infty} \frac{1}{m}\left(\frac{R}{\rho}\right)^{m} \cos m(\theta-\phi), \rho>R
\end{array}\right.
$$

Boundary density discretization

Fourier series
Ex. constant element

Present method

Conventional $\mathfrak{B E M}$

MSMLAB

Outlines

- Motivation and literature review
- Mathematical formulation
- Expansions of fundamental solution and boundary density
@ Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Numerical examples
- Conclusions

MSMLAB

Adaptive observer system

MSvLAB

- collocation point

Outlines

- Motivation and literature review
- Mathematical formulation
- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Numerical examples
- Conclusions

MSMLAB

Vector decomposition technique for potential gradient

MSMLAB

Outlines

- Motivation and literature review
- Mathematical formulation
- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Numerical examples
- Conclusions

MSMLAB

Linear algebraic equation

$$
[\mathbf{U}]\{\mathbf{t}\}=[\mathbf{T}]\{\mathbf{u}\}
$$

$$
\left.\begin{array}{l}
\text { where } \\
{[\mathbf{U}]=\left[\begin{array}{|cccc}
\mathbf{U}_{00} & \mathbf{U}_{01} & \cdots & \mathbf{U}_{0 N} \\
\mathbf{U}_{10} & \mathbf{U}_{11} & \cdots & \mathbf{U}_{1 N} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{U}_{N 0} & \mathbf{U}_{N 1} & \cdots & \mathbf{U}_{N N}
\end{array}\right]} \\
\text { Index of routing circle }
\end{array}\right]
$$

Cofumn vector of Fourier coefficients (Noth routing circle)

Flowchart of present method

$$
\left.\left.\left.0=\int_{B} T(\mathrm{~s}, \mathrm{x}) / \mathrm{s}\right) \quad U(\mathrm{~s}, \mathrm{x}) \mathrm{t}\right)\right] \mathrm{d} B(\mathrm{~s})
$$

Comparisons of conventional BEM and the present method

	Boundary density discretization	Auxiliary system	Formulation	Observer system	Singularity
$\begin{gathered} \text { Conventional } \\ \text { BEM } \end{gathered}$	Constant, Linear, (Algebraic Convergence)	Fundamental solution	Boundary integral equation	Fixed observer system	CPV, RPV and $\mathcal{H P V}$
\qquad	Fourier series Expansion (Exponential .Convergence)	Degenerate Kernel	Sull-field integral equation	Adaptive observer system	No principal value

Outlines

- Motivation and literature review
- Mathematical formulation
- Expansions of fundamental solution and boundary density
@ Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Numerical examples
- Conclusions

MSMLAB

Numerical examples

- Laplace equation (E.ABE 2005, CMES 2005)
- Eigen problem
- Exterior acoustics
- Bifarmonic equation (JAM, ASME 2005)

Laplace equation

- Steady state heat conduction problems
- Electrostatic potential of wires
- Flow of an idealfluid pass cylinders
- A circular bar under torque
- An infinite medium under antiplane shear
- Half-plane proбlems

Steady state heat conduction problems

MSMLA $\mathbb{B}^{\text {Case } 1}$

Case 2

Case 1: Isothermal line

BEM-BEPO2D
($\mathcal{N}=21$)

FEM-ABAQUS (1854 elements)

Present method ($\mathcal{M}=10$)

Relative error of flux on the small circle

Convergence test - Parseval's sum for Fourier coefficients

MSVLAB

Laplace equation

- Steady state heat conduction problems
- Electrostatic potential of wires
- Flow of an ideal ffuid pass cylinders
- A circular bar under torque
- An infinite medium under antiplane shear
- Half-plane problems

Electrostatic potential of wires

Two parallel cylinders held positive and negative potentials
MSVLAB
Hexagonal electrostatic potential

Contour plot of potential

MSExactsolution (Lebedev et al.)

Present method ($\mathcal{M}=10$)

Contour plot of potential

MSM LOAishis's data (1991)

Present method $(\mathcal{M}=10)$

Laplace equation

- Steady state heat conduction problems
- Electrostatic potential of wires
- Flow of an idealfluid pass cylinders
- A circular bar under torque
- An infinite medium under antiplane shear
- Half-plane proбlems

Flow of an ideal fluid pass two parallel cylinders

v^{∞} is the velocity offlow far from the cylinders
γ is the incident angle

Velocity field in different incident angle

MSM Presentimethod $(\mathcal{M}=10)$

Present method ($\mathcal{M}=10$)

Laplace equation

- Steady state heat conduction problems
- Electrostatic potential of wires
- Flow of an idealfluid pass cylinders
- A circular bar under torque
- An infinite medium under antiplane shear
- Half-plane proбlems

Torsion bar with circular holes removed

The warping function φ
$\nabla^{2} \varphi(x)=0, x \in D$
Boundary condition $\frac{\partial \varphi}{\partial n}=x_{k} \sin \theta_{k}-y_{k} \cos \theta_{k}$ on B_{k} where
$x_{i}=b \cos \frac{2 \pi i}{N}, y_{i}=b \sin \frac{2 \pi i}{N}$

Axial displacement with two circular holes

Dashed fine: exact solution Solid line: first-order solution

Caulk's data (1983) ASME Journal of Applied Mechanics

MSVLAB

Present method $(\mathcal{M}=10)$

Torsional rigidity

MSMLABB

Laplace equation

- Steady state heat conduction problems
- Electrostatic potential of wires
- Flow of an ideal ffuid pass cylinders
- A circular bar under torque
- An infinite medium under antiplane shear
- Half-plane problems

Infinite medium under antiplane shear

The displacement w^{s}
$\nabla^{2} w^{s}(x)=0, \quad x \in D$
Boundary condition
$\frac{\partial w^{\prime}(x)}{\partial n}=\frac{\tau}{\mu} \sin \theta$ on B_{k}
Total displacement
$w=w^{s}+w^{\infty}$

MSMLAB

Shear stress $\sigma_{z \theta}$ around the hole of radius a_{1} (x axis)

Honein's data (1992) Quarterly of Applied Mathematics

Present method ($\mathcal{M}=20$)

Shear stress $\sigma_{z \theta}$ around the hole of radius a_{1}

Stress approach
Steele's data (1992) Present method $(\mathcal{M}=20)$

Analytical
Displacement approach

Laplace equation

- Steady state heat conduction problems
- Electrostatic potential of wires
- Flow of an ideal fluid pass cylinders
- A circular bar under torque
- An infinite medium under antiplane shear
- Half-plane problems

Half-plane problems

Dirichlet boundary condition
(Lebedev et al.)
Mixed-type Goundary condition
(Lebedev et al.)

Dirichlet problem

Isothermal Cine

MSMLAB

Mixed-type problem

Isothermal Cine

Exact solution (Lebedev et al.)

Present method $(\mathcal{M}=10)$
msylab

Numerical examples

- Laplace equation
- Eigen problem
- Exterior acoustics
- Biharmonic equation

Problem statement

Example 1

The former five true eigenvalues by using different approaches

	k_{1}	k_{2}	k_{3}	k_{4}	k_{5}
FEM (ABAQUS)	2.03	2.20	2.62	3.15	3.71
BEM (Burton \& Miller)	2.06	2.23	2.67	3.22	3.81
BEM (CHIEF)	2.05	2.23	2.67	3.22	3.81
BEM (null-field)	2.04	2.20	2.65	3.21	3.80
BEM (fictitious)	2.04	2.21	2.66	3.21	3.80
Present method	2.05	2.22	2.66	3.21	3.80
Analytical solution[19]	2.05	2.23	2.66	3.80	

The former five eigenmodes by using present method, FEM and BEM

	Method Mode	1	2	3	4	5
	Present method					
		$k=2.05$	$k=2.22$	$k=2.22$	$k=2.66$	$k=2.66$
	BEM					
		$k=2.06$	$k=2.23$	$k=2.23$	$k=2.67$	$k=2.67$
	FEM					
A		$k=2.03$	$k=2.20$	$k=2.20$	$k=2.62$	$k=2.62$

Numerical examples

- Laplace equation
- Eigen problem
- Exterior acoustics
- Biharmonic equation

Sketch of the scattering problem (Dirichlet condition) for five cylinders

MSMLAB

The contour plot of the real-part solutions of total field for
 $$
k=\pi
$$

(a) Present method ($\mathrm{M}=20$)

(b) Multiple DtN method ($\mathrm{N}=50$)

MSMLAB

The contour plot of the real-part solutions of total field for
 $k=8 \pi$

(a) Present method $(\mathrm{M}=20)$

(b) Multiple DtN method $\left({ }^{2}=50\right)$

MSMLAB

Fictitious frequencies

Numerical examples

- Laplace equation
- Eigen problem
- Exterior acoustics
- Biharmonic equation

Plate problems

Geometric data:

$$
\begin{aligned}
& O_{1}=(0,0), R_{1}=20 ; O_{2}=(-14,0), R_{2}=5 ; \\
& O_{3}=(5,3), R_{3}=2 ; \quad O_{4}=(5,10), R_{4}=4 .
\end{aligned}
$$

Essential boundary conditions:

$$
\begin{aligned}
& u(s)=0 \text { and } \theta(s)=0 \text { on } B_{1} \\
& u(s)=\sin \theta \text { and } \theta(s)=0 \text { on } B_{2} \\
& u(s)=-1 \text { and } \theta(s)=0 \text { on } B_{3} \\
& u(s)=1 \text { and } \theta(s)=0 \text { on } B_{4}
\end{aligned}
$$

Contour plot of displacement

(No. of nodes=3,462,
No. of elements=6,606)
MS LAL

Bird and Steele (1991)

FEM (ABAQUS)

Stokes flow problem

Governing equation: $\nabla^{4} u(x)=0, \quad x \in \Omega$ Angular velocity: $\omega_{1}=1$
Boundary conditions:

$$
\begin{aligned}
& u(s)=u_{1} \text { and } \theta(s)=0.5 \text { on } B_{1} \\
& u(s)=0 \text { and } \theta(s)=0 \text { on } B_{2} \text { (Stationary) } \\
& \text { Eccentricity: } \varepsilon=\frac{e}{\left(R_{2}-R_{1}\right)}
\end{aligned}
$$

Comparison for $\quad \varepsilon=0.5$

Contour plot of Streamline for $\quad \varepsilon=0.5$

MSMLAE

Present method ($\mathrm{N}=81$)

Kelmanson ($\mathrm{Q}=0.0740, \mathrm{n}=160$)

Outlines

- Motivation and literature review
- Mathematical formulation
- Expansions of fundamental solution and boundary density
@ Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Numerical examples
- Conclusions

MSMLAB

Conclusions

- A systematic approach using degenerate kernels, Fourier series and null-field integral equation has Geen successfully proposed to sofve Laplace $\mathcal{H e f m h o l t z ~ a n d ~ B i h a r m i n i c ~ p r o b l e m s ~ w i t h ~ c i r c u l a r ~}$ 6oundaries.
- Sumerical results agree well with available exact sofutions, Caulk's data, Onishi's data and FEM (ABAQUS) for only few terms of Fourier series.

Conclusions

- Engineering problems with circular boundaries which satisfy the Laplace Helmholtz and Biharminic problems can be sofved by using the proposed approach in a more efficient and accurate manner.
- Free of boundary-layer effect
- Free of singular integrals
- Well posed
- Exponetial convergence

MSVLAB

The End

Thanks for your kind attentions. Your comments will be highly appreciated.

URL: http://msvlab.hre.ntou.edu.tw/

MSMLAB

Chinese Vasson English Version

如有任何問題，請與網頁管理者連絡
版踓所有 All rights reserved．Copyright（©） 2004

