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Present approachPresent approach

1.1. No principal valueNo principal value
2. Well2. Well--posedposed

3. No boundary3. No boundary--layer effectlayer effect

4. 4. ExponetialExponetial convergenceconvergence
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Engineering problem with arbitrary Engineering problem with arbitrary 
geometriesgeometries

Degenerate boundaryDegenerate boundary

Circular boundaryCircular boundary

Straight boundaryStraight boundary

Elliptic boundaryElliptic boundary

a
(Fourier series)(Fourier series)

((LegendreLegendre polynomial)polynomial) ((ChebyshevChebyshev polynomial)polynomial)

(Mathieu function)(Mathieu function)
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Motivation and literature reviewMotivation and literature review

Analytical methods for solving Laplace 
problems with circular holes

Conformal mappingConformal mapping Bipolar coordinateBipolar coordinate Special solutionSpecial solution

Limited to doubly connected domainLimited to doubly connected domain

Lebedev, Skalskaya and 
Uyand, 1979, “Work 
problem in applied 
mathematics”, Dover 
Publications

Chen and Weng, 2001, 
“Torsion of a circular 
compound bar with 
imperfect interface”, 
ASME Journal of 
Applied Mechanics

Honein, Honein and 
Hermann, 1992, “On 
two circular inclusions 
in harmonic problem”, 
Quarterly of Applied 
Mathematics
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Fourier series approximationFourier series approximation

Ling (1943) Ling (1943) -- torsiontorsion of a circular tubeof a circular tube
Caulk et al. (1983) Caulk et al. (1983) -- steady heat conductionsteady heat conduction with with 
circular holescircular holes
Bird and Steele (1992) Bird and Steele (1992) -- harmonic and harmonic and biharmonicbiharmonic
problems with circular holesproblems with circular holes
MogilevskayaMogilevskaya et al. (2002) et al. (2002) -- elasticityelasticity problems problems 
with circular boundarieswith circular boundaries
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Contribution and goalContribution and goal

However, they didnHowever, they didn’’t employ the t employ the nullnull--field field 
integral equationintegral equation and and degenerate kernelsdegenerate kernels to to 
fully capture the circular boundary, fully capture the circular boundary, 
although they all employed although they all employed Fourier series Fourier series 
expansionexpansion..
To develop a To develop a systematic approachsystematic approach for for 
solving Laplace problems with solving Laplace problems with multiple multiple 
holesholes is our goal.is our goal.
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Boundary integral equation and nullBoundary integral equation and null--field field 
integral equationintegral equation
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Expansions of fundamental solution and Expansions of fundamental solution and 
boundary densityboundary density

Degenerate kernel Degenerate kernel -- fundamental solutionfundamental solution

Fourier series expansions Fourier series expansions -- boundary densityboundary density
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Separable form of fundamental solution Separable form of fundamental solution 
(1D)(1D)
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Boundary density Boundary density discretizationdiscretization

Fourier seriesFourier series Ex . constant elementEx . constant element

Present methodPresent method Conventional BEMConventional BEM
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Adaptive observer systemAdaptive observer system

( , )ρ φ

collocation pointcollocation point
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Vector decomposition technique for Vector decomposition technique for 
potential gradientpotential gradient
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Flowchart of present methodFlowchart of present method

0 [ (s, x) (s) (s, x) (s)] (s)
B

T u U t dB= −∫

Potential of Potential of 
domain pointdomain point

AnalyticalAnalytical

NumericalNumerical

Adaptive Adaptive 
observer systemobserver system

Degenerate kernelDegenerate kernel Fourier seriesFourier series

Linear algebraic equation Linear algebraic equation 

Collocation point and matching B.C.Collocation point and matching B.C.

Fourier coefficientsFourier coefficients

Vector Vector 
decompositiondecomposition

Potential gradientPotential gradient
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Comparisons of conventional BEM and Comparisons of conventional BEM and 
the present methodthe present method

BoundaryBoundary
densitydensity

discretizationdiscretization
AuxiliaryAuxiliary

systemsystem
FormulationFormulation ObserverObserver
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SingularitySingularity

ConventionalConventional
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(Algebraic (Algebraic 
Convergence)Convergence)

FundamentalFundamental
solutionsolution

BoundaryBoundary
integralintegral
equationequation

FixedFixed
observerobserver
systemsystem

CPV, RPVCPV, RPV
and HPVand HPV

PresentPresent
methodmethod

Fourier seriesFourier series
ExpansionExpansion

(Exponential (Exponential 
Convergence)Convergence)
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kernelkernel

NullNull--fieldfield
integralintegral
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Numerical examplesNumerical examples

Laplace equation (EABE 2005, CMES 2005)Laplace equation (EABE 2005, CMES 2005)
EigenEigen problem problem 
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Steady state heat conduction problemsSteady state heat conduction problems

Case 1Case 1 Case 2Case 2

1u=

0u=

1 2.5a =2 1.0a =
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0u=
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a

a
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Case 1: Isothermal lineCase 1: Isothermal line

Exact solutionExact solution
(Carrier and Pearson)(Carrier and Pearson)

BEMBEM--BEPO2DBEPO2D
(N=21)(N=21)

FEMFEM--ABAQUSABAQUS
(1854 elements)(1854 elements)

Present methodPresent method
(M=10)(M=10)
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Convergence test Convergence test -- ParsevalParseval’’ss sum for sum for 
Fourier coefficientsFourier coefficients
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Laplace equationLaplace equation
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Electrostatic potential of wiresElectrostatic potential of wires

Hexagonal electrostatic potentialHexagonal electrostatic potential

Two parallel cylinders held positive Two parallel cylinders held positive 
and negative potentialsand negative potentials

1u=− 1u=

2l

aa
1u=

1u=−1u=

1u=−

1u= 1u=−



34

Contour plot of potentialContour plot of potential

Exact solution (Exact solution (LebedevLebedev et al.)et al.) Present method (M=10)Present method (M=10)
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Contour plot of potentialContour plot of potential
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Laplace equationLaplace equation

Steady state heat conduction problemsSteady state heat conduction problems
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An infinite medium under antiplane shearAn infinite medium under antiplane shear
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Flow of an ideal fluid pass two parallel Flow of an ideal fluid pass two parallel 
cylinderscylinders

is the velocity of flow far from the cylindersis the velocity of flow far from the cylinders
is the incident angleis the incident angle

v∞

γ

v∞

γ

2l

a a
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Velocity field in different  incident angleVelocity field in different  incident angle
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Laplace equationLaplace equation

Steady state heat conduction problemsSteady state heat conduction problems
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Torsion bar with circular holes removedTorsion bar with circular holes removed

The warping functionThe warping function

Boundary conditionBoundary condition

wherewhere

2 ( ) 0,x x Dϕ∇ = ∈
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Axial displacement with two circular holesAxial displacement with two circular holes

Present method (M=10)Present method (M=10)

CaulkCaulk’’ss data (1983)data (1983)
ASME Journal of Applied MechanicsASME Journal of Applied Mechanics
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TorsionalTorsional rigidityrigidity

?
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Laplace equationLaplace equation

Steady state heat conduction problemsSteady state heat conduction problems
Electrostatic potential of wiresElectrostatic potential of wires
Flow of an ideal fluid pass cylindersFlow of an ideal fluid pass cylinders
A circular bar under torqueA circular bar under torque
An infinite medium under antiplane shearAn infinite medium under antiplane shear
HalfHalf--plane problemsplane problems
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Infinite medium under antiplane shearInfinite medium under antiplane shear

The displacementThe displacement

Boundary conditionBoundary condition

Total displacementTotal displacement
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sw
2 ( ) 0,sw x x D∇ = ∈

( ) sin
sw x
n

τ θ
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sw w w∞= +
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Shear stress Shear stress σzq around the hole of around the hole of 
radius aradius a11 (x axis)(x axis)
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Shear stress Shear stress σzq around the hole of around the hole of 
radius aradius a11
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Laplace equationLaplace equation

Steady state heat conduction problemsSteady state heat conduction problems
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HalfHalf--plane problemsplane problems

DirichletDirichlet boundary conditionboundary condition
((LebedevLebedev et al.)et al.)

MixedMixed--type boundary conditiontype boundary condition
((LebedevLebedev et al.)et al.)
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DirichletDirichlet problemproblem

Exact solution (Exact solution (LebedevLebedev et al.)et al.) Present method (M=10)Present method (M=10)

Isothermal lineIsothermal line
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MixedMixed--type problemtype problem

Exact solution (Exact solution (LebedevLebedev et al.)et al.) Present method (M=10)Present method (M=10)
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Numerical examplesNumerical examples

Laplace equationLaplace equation
EigenEigen problemproblem
Exterior  acousticsExterior  acoustics
BiharmonicBiharmonic equationequation
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Problem statementProblem statement

Doubly-connected domain Multiply-connected domain

Simply-connected domain
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Example 1Example 1

2 2( ) ( ) 0,k u x x D∇ + = ∈

2 2.0r =

1B
0u =

2B

0u =

1 0.5r =
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kk11 kk22 kk33 kk44 kk55

FEMFEM
(ABAQUS)(ABAQUS) 2.032.03 2.202.20 2.622.62 3.153.15 3.713.71

BEMBEM
(Burton & Miller)(Burton & Miller) 2.062.06 2.232.23 2.672.67 3.223.22 3.813.81

BEMBEM
(CHIEF)(CHIEF) 2.052.05 2.232.23 2.672.67 3.223.22 3.813.81

BEMBEM
(null(null--field)field) 2.042.04 2.202.20 2.652.65 3.213.21 3.803.80

BEMBEM
(fictitious)(fictitious) 2.042.04 2.212.21 2.662.66 3.213.21 3.803.80

Present methodPresent method 2.052.05 2.222.22 2.662.66 3.213.21 3.803.80

Analytical Analytical 
solution[19]solution[19] 2.052.05 2.232.23 2.662.66 3.213.21 3.803.80

The former five true The former five true eigenvalueseigenvalues by using by using 
different approachesdifferent approaches
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The former five The former five eigenmodeseigenmodes by using by using 
present method, FEM and BEMpresent method, FEM and BEM
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Numerical examplesNumerical examples

Laplace equationLaplace equation
EigenEigen problemproblem
Exterior  acousticsExterior  acoustics
BiharmonicBiharmonic equationequation
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The contour plot of the realThe contour plot of the real--part solutions part solutions 
of total field forof total field for 8k π=

-3 -2 -1 0 1 2 3
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

(a) Present method (M=20) (b) Multiple DtN method (N=50) 



60

Fictitious frequenciesFictitious frequencies
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Numerical examplesNumerical examples

Laplace equationLaplace equation
EigenEigen problemproblem
Exterior  acousticsExterior  acoustics
BiharmonicBiharmonic equationequation
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Plate problemsPlate problems
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Geometric data:

1 20;R = 2 5;R =

( ) 0u s = 1B( ) 0sθ =

1 (0,0),O = 2 ( 14,0),O = −

3 (5,3),O = 4 (5,10),O =3 2;R = 4 4.R =

( ) sinu s θ= ( ) 0s

( ) 1u s =

( ) 1u s = −

θ =

( ) 0sθ =

( ) 0sθ =

2B

3B

4B

and

and

and

and
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Essential boundary conditions:

on

on

(Bird & Steele, 1991)
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Contour plot of displacementContour plot of displacement
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Stokes flow problemStokes flow problem

1ω

2 1R =

e

1 0.5R =

1B

Governing equation: 4 ( ) 0,u x x∇ = ∈Ω

Boundary conditions:

1( )u s u= and ( ) 0.5sθ = on 1B

( ) 0u s = and ( ) 0sθ = on 2B

2 1( )
e

R R
ε =

−
Eccentricity:

1 1Angular velocity: ω =

2B

(Stationary)
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Contour plot of Streamline forContour plot of Streamline for
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Motivation and literature reviewMotivation and literature review
Mathematical formulationMathematical formulation
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Vector decomposition techniqueVector decomposition technique
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ConclusionsConclusions

A systematic approach using A systematic approach using degenerate kernelsdegenerate kernels, , 
Fourier seriesFourier series and and nullnull--field integral equationfield integral equation has has 
been successfully proposed to  solve Laplace been successfully proposed to  solve Laplace 
Helmholtz and Helmholtz and BiharminicBiharminic problems with circular problems with circular 
boundaries.boundaries.
Numerical results Numerical results agree wellagree well with available exact with available exact 
solutions, solutions, CaulkCaulk’’ss data, data, OnishiOnishi’’ss data and FEM data and FEM 
(ABAQUS) for (ABAQUS) for only few terms of Fourier seriesonly few terms of Fourier series..
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ConclusionsConclusions

Engineering problemsEngineering problems with with circular boundariescircular boundaries which which 
satisfy the Laplace Helmholtz and satisfy the Laplace Helmholtz and BiharminicBiharminic problems problems 
can be solved by using the proposed approach in a can be solved by using the proposed approach in a more more 
efficient and accurate mannerefficient and accurate manner..
Free of boundaryFree of boundary--layer effectlayer effect
Free of singular integralsFree of singular integrals
Well posedWell posed
ExponetialExponetial convergenceconvergence
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The EndThe End

Thanks for your kind attentions.Thanks for your kind attentions.
Your comments will be highly appreciated.Your comments will be highly appreciated.

URL: URL: http://http://msvlab.hre.ntou.edu.twmsvlab.hre.ntou.edu.tw//
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