Null-field integral equation approach for boundary value problems with circular boundaries

J. T. Chen Ph.D.

Taiwan Ocean University Keelung, Taiwan NCHU Mech. Lecture

December, 21, 15:00-17:00, 2005

(Chung-Hsing2005.ppt)

省立中興大學第一任校長

林致平校長 (民國五十年~民國五十二年)

Outlines

- Motivation and literature review
- Mathematical formulation
- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Numerical examples
- Conclusions

Present approach

Advantages of degenerate kernel

- 1. No principal value
- 2. Well-posed
- 3. No boundary-layer effect
- 4. Exponetial convergence

Engineering problem with arbitrary geometries

Motivation and literature review

Analytical methods for solving Laplace problems with circular holes

Conformal mapping

Chen and Weng, 2001, "Torsion of a circular compound bar with imperfect interface", ASME Journal of Applied Mechanics

Bipolar coordinate

Lebedev, Skalskaya and Vyand, 1979, "Work problem in applied mathematics", Dover Publications

Special solution

Honein, Honein and Hermann, 1992, "On two circular inclusions in harmonic problem", Quarterly of Applied Mathematics

MSVLAB

Limited to doubly connected domain

Fourier series approximation

- Ling (1943) torsion of a circular tube
- Caulk et al. (1983) steady heat conduction with circular holes
- Bird and Steele (1992) harmonic and biharmonic problems with circular holes
- Mogilevskaya et al. (2002) elasticity problems with circular boundaries

Contribution and goal

However, they didn't employ the null-field integral equation and degenerate kernels to fully capture the circular boundary, although they all employed Fourier series expansion.

To develop a systematic approach for solving Laplace problems with multiple holes is our goal.

Outlines (Direct problem)

- Motivation and literature review
- Mathematical formulation
- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Numerical examples
- Conclusions

Boundary integral equation and null-field integral equation

Outlines (Direct problem)

- Motivation and literature review
- Mathematical formulation
- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Numerical examples
- Degenerate scale
- Conclusions

Expansions of fundamental solution and boundary density

Degenerate kernel - fundamental solution

$$U(\mathbf{s},\mathbf{x}) = \begin{cases} U^{i}(R,\theta;\rho,\phi) = \ln R - \sum_{m=1}^{\infty} \frac{1}{m} (\frac{\rho}{R})^{m} \cos m(\theta-\phi), \ R \ge \rho \\ U^{e}(R,\theta;\rho,\phi) = \ln \rho - \sum_{m=1}^{\infty} \frac{1}{m} (\frac{R}{\rho})^{m} \cos m(\theta-\phi), \ \rho > R \end{cases}$$

Fourier series expansions - boundary density

$$u(s) = a_0 + \sum_{n=1}^{M} (a_n \cos n\theta + b_n \sin n\theta), \ s \in B$$
$$t(s) = p_0 + \sum_{n=1}^{M} (p_n \cos n\theta + q_n \sin n\theta), \ s \in B$$

Separable form of fundamental solution (1D)

Separable form of fundamental solution (2D)

 $U(\mathbf{s},\mathbf{x}) = \begin{cases} U^{i}(R,\theta;\rho,\phi) = \ln R - \sum_{m=1}^{\infty} \frac{1}{m} (\frac{\rho}{R})^{m} \cos m(\theta-\phi), \ R \ge \rho \\ \\ U^{e}(R,\theta;\rho,\phi) = \ln \rho - \sum_{m=1}^{\infty} \frac{1}{m} (\frac{R}{\rho})^{m} \cos m(\theta-\phi), \ \rho > R \end{cases}$ $\mathbf{s} = (\mathbf{R}, \theta)$ 10--5-=(a, b)-10-0 $\phi, \phi)$ -15--10 HRE, HTOU -15 15

Outlines

- Motivation and literature review
- Mathematical formulation
- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Numerical examples
- Conclusions

Adaptive observer system

 \circ collocation point

Outlines

- Motivation and literature review
- Mathematical formulation
- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Numerical examples
- Conclusions

Vector decomposition technique for potential gradient

True normal direction $-\xi$ HRE, HTOU

$$2\pi \frac{\partial u(\mathbf{x})}{\partial \mathbf{n}} = \int_{B} M_{\rho}(\mathbf{s}, \mathbf{x}) u(\mathbf{s}) dB(\mathbf{s}) - \int_{B} L_{\rho}(\mathbf{s}, \mathbf{x}) t(\mathbf{s}) dB(\mathbf{s}), \ \mathbf{x} \in D$$
$$2\pi \frac{\partial u(\mathbf{x})}{\partial \mathbf{t}} = \int_{B} M_{\phi}(\mathbf{s}, \mathbf{x}) u(\mathbf{s}) dB(\mathbf{s}) - \int_{B} L_{\phi}(\mathbf{s}, \mathbf{x}) t(\mathbf{s}) dB(\mathbf{s}), \ \mathbf{x} \in D$$

Non-concentric case:

$$L_{\rho}(\mathbf{s},\mathbf{x}) = \frac{\partial U(\mathbf{s},\mathbf{x})}{\partial \rho} \cos(\zeta - \xi) + \frac{1}{\rho} \frac{\partial U(\mathbf{s},\mathbf{x})}{\partial \phi} \cos(\frac{\pi}{2} - \zeta + \xi)$$
$$M_{\rho}(\mathbf{s},\mathbf{x}) = \frac{\partial T(\mathbf{s},\mathbf{x})}{\partial \rho} \cos(\zeta - \xi) + \frac{1}{\rho} \frac{\partial T(\mathbf{s},\mathbf{x})}{\partial \phi} \cos(\frac{\pi}{2} - \zeta + \xi)$$

Special case (concentric case):
$$\zeta = \xi$$

 $L_{\rho}(\mathbf{s}, \mathbf{x}) = \frac{\partial U(\mathbf{s}, \mathbf{x})}{\partial \rho}$ $M_{\rho}(\mathbf{s}, \mathbf{x}) = \frac{\partial T(\mathbf{s}, \mathbf{x})}{\partial \rho}$

Outlines

- Motivation and literature review
- Mathematical formulation
- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Numerical examples
- Conclusions

Linear algebraic equation

$$[\mathbf{U}]\{\mathbf{t}\}\!=\![\mathbf{T}]\{\mathbf{u}\}$$

Comparisons of conventional BEM and the present method

	Boundary density discretization	Auxiliary system	Formulation	Observer system	Singularity
Conventional BEM	Constant, Linear, (Algebraic Convergence)	Fundamental solution	Boundary integral equation	Fixed observer system	CPV, RPV and HPV
Present Method HRE, H	Fourier series Expansion Exponential Convergence)	Degenerate kernel	Null-field integral equation	Adaptive observer system	No principal value

Outlines

- Motivation and literature review
- Mathematical formulation
- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Numerical examples
- Conclusions

Numerical examples

- Laplace equation (EABE 2005, CMES 2005)
- Eigen problem
- Exterior acoustics
- Biharmonic equation (JAM, ASME 2005)

HRE, HTOL

Laplace equation

- Steady state heat conduction problems
- Electrostatic potential of wires
- Flow of an ideal fluid pass cylinders
- A circular bar under torque
- An infinite medium under antiplane shear
- Half-plane problems

Steady state heat conduction problems

Relative error of flux on the small circle

M

Convergence test - Parseval's sum for Fourier coefficients

Laplace equation

- Steady state heat conduction problems
- Electrostatic potential of wires
- Flow of an ideal fluid pass cylinders
- A circular bar under torque
- An infinite medium under antiplane shear
- Half-plane problems

Electrostatic potential of wires

Two parallel cylinders held positive and negative potentials

HRE, HTOU

Hexagonal electrostatic potential

Contour plot of potential

Contour plot of potential

Laplace equation

- Steady state heat conduction problems
- Electrostatic potential of wires
- Flow of an ideal fluid pass cylinders
- A circular bar under torque
- An infinite medium under antiplane shear
- Half-plane problems

Flow of an ideal fluid pass two parallel cylinders

 v^{∞} is the velocity of flow far from the cylinders γ is the incident angle

Velocity field in different incident angle

Laplace equation

- Steady state heat conduction problems
- Electrostatic potential of wires
- Flow of an ideal fluid pass cylinders
- A circular bar under torque
- An infinite medium under antiplane shear
- Half-plane problems

Torsion bar with circular holes removed

The warping function φ $\nabla^2 \varphi(x) = 0, \ x \in D$ Boundary condition $\frac{\partial \varphi}{\partial n} = x_k \sin \theta_k - y_k \cos \theta_k$ on B_k where $x_i = b \cos \frac{2\pi i}{N}, \ y_i = b \sin \frac{2\pi i}{N}$

Axial displacement with two circular holes

Dashed line: exact solution Solid line: first-order solution

Caulk's data (1983) ASME Journal of Applied Mechanics

Present method (M=10)

Torsional rigidity

	Case				
		N = 2, c/R = 0 a/R = 2/7, b/R = 3/7	N = 2, c/R = 1/5 a/R = 1/5, b/R = 3/5	N = 6, c/R = 1/5 a/R = 1/5, b/R = 3/5	
$\frac{2G}{\left(\mu\pi R^4\right)}$	Caulk(First-order	0.0500	0.0741	0.50(1	
	approximate)	0.8739	0.8741	0.7261	
	Exact BIE	0.8712	0.8722	0.7261	
	formulation	0.8715	0.8752	0.7201	
	Ling's results	0.8809	0.8093	0.7305	
	The present	0.8712	0.8732	0.7245	
	method	0.0712	0.0752	0.7245	

HRE, HTOU

12

MS

Laplace equation

- Steady state heat conduction problems
- Electrostatic potential of wires
- Flow of an ideal fluid pass cylinders
- A circular bar under torque
- An infinite medium under antiplane shear
- Half-plane problems

Infinite medium under antiplane shear

The displacement w^s $\nabla^2 w^s(x) = 0, x \in D$ Boundary condition $\frac{\partial w^s(x)}{\partial n} = \frac{\tau}{\mu} \sin \theta$ on B_k Total displacement $w = w^s + w^\infty$

Shear stress $\sigma_{z\theta}$ around the hole of radius a_1 (x axis)

Shear stress $\sigma_{z\theta}$ around the hole of radius a_1

Laplace equation

- Steady state heat conduction problems
- Electrostatic potential of wires
- Flow of an ideal fluid pass cylinders
- A circular bar under torque
- An infinite medium under antiplane shear
- Half-plane problems

Half-plane problems

Dirichlet boundary condition (Lebedev et al.)

HRE, HTOU

Mixed-type boundary condition (Lebedev et al.)

Isothermal line

Exact solution (Lebedev et al.)

Isothermal line

Exact solution (Lebedev et al.)

Numerical examples

- Laplace equation
- Eigen problem
- Exterior acoustics
- Biharmonic equation

The former five true eigenvalues by using different approaches

	k ₁	<i>k</i> ₂	k ₃	k4	<i>k</i> ₅
FEM (ABAQUS)	2.03	2.20	2.62	3.15	3.71
BEM (Burton & Miller)	2.06	2.23	2.67	3.22	3.81
BEM (CHIEF)	2.05	2.23	2.67	3.22	3.81
BEM (null-field)	2.04	2.20	2.65	3.21	3.80
BEM (fictitious)	2.04	2.21	2.66	3.21	3.80
Present method	2.05	2.22	2.66	3.21	3.80
Analytical solution[19]	2.05	2.23	2.66	3.21	3.80

MS

The former five eigenmodes by using present method, FEM and BEM

Mode Method	1	2	3	4	5
Present method					
	k = 2.05	<i>k</i> = 2.22	<i>k</i> = 2.22	<i>k</i> = 2.66	<i>k</i> = 2.66
BEM					
	<i>k</i> = 2.06	k = 2.23	k = 2.23	<i>k</i> = 2.67	<i>k</i> = 2.67
FEM					

Numerical examples

- Laplace equation
- Eigen problem
- Exterior acoustics
- Biharmonic equation

Sketch of the scattering problem (Dirichlet condition) for five cylinders

The contour plot of the real-part solutions of total field for $k = \pi$

The contour plot of the real-part solutions of total field for $k = 8\pi$

Fictitious frequencies

60

Numerical examples

- Laplace equation
- Eigen problem
- Exterior acoustics
- Biharmonic equation

Plate problems

Geometric data: $O_1 = (0,0), R_1 = 20; O_2 = (-14,0), R_2 = 5;$ $O_3 = (5,3), R_3 = 2; O_4 = (5,10), R_4 = 4.$

Essential boundary conditions: u(s) = 0 and $\theta(s) = 0$ on B_1 $u(s) = \sin \theta$ and $\theta(s) = 0$ on B_2 u(s) = -1 and $\theta(s) = 0$ on B_3 u(s) = 1 and $\theta(s) = 0$ on B_4

Contour plot of displacement

Stokes flow problem

Governing equation: $\nabla^4 u(x) = 0$, $x \in \Omega$ Angular velocity: $\omega_1 = 1$ Boundary conditions: $u(s) = u_1$ and $\theta(s) = 0.5$ on B_1 u(s) = 0 and $\theta(s) = 0$ on B_2 (Stationary) Eccentricity: $\varepsilon = \frac{e}{(R_2 - R_1)}$

Comparison for $\varepsilon = 0.5$

65

Contour plot of Streamline for $\varepsilon = 0.5$

Kelmanson (Q=0.0740, n=160)

Outlines

- Motivation and literature review
- Mathematical formulation
- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Numerical examples
- Conclusions

Conclusions

- A systematic approach using degenerate kernels, Fourier series and null-field integral equation has been successfully proposed to solve Laplace Helmholtz and Biharminic problems with circular boundaries.
- Numerical results agree well with available exact solutions, Caulk's data, Onishi's data and FEM (ABAQUS) for only few terms of Fourier series.

Conclusions

- Engineering problems with circular boundaries which satisfy the Laplace Helmholtz and Biharminic problems can be solved by using the proposed approach in a more efficient and accurate manner.
- Free of boundary-layer effect
- Free of singular integrals
- Well posed
- Exponetial convergence

Thanks for your kind attentions. Your comments will be highly appreciated.

URL: <u>http://msvlab.hre.ntou.edu.tw/</u>

Chinese Version English Version

如有任何問題,諸與網頁管理者連絡 泌

版權所有 All rights reserved. Copyright @ 2004