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Abstract The desingularized meshless method (DMM) has
been successfully used to solve boundary-value problems
with specified boundary conditions (a direct problem) numer-
ically. In this paper, the DMM is applied to deal with the
problems with over-specified boundary conditions. The
accompanied ill-posed problem in the inverse problem is
remedied by using the Tikhonov regularization method and
the truncated singular value decomposition method. The
numerical evidences are given to verify the accuracy of the
solutions after comparing with the results of analytical solu-
tions through several numerical examples. The comparisons
of results using Tikhonov method and truncated singular
value decomposition method are also discussed in the
examples.
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1 Introduction

The boundary-value problems subjected to the over-
specified boundary conditions (B.C.s) can be viewed as one
of the inverse problems. The unreasonable results of tradi-
tional numerical methods often occur in the inverse prob-
lems undergoing the measured and contaminated errors on
the over-specified B.C.s because of the ill-posed behavior in
the linear algebraic system [4, 17]. Mathematically speaking,
the influence matrix in the inverse problem is ill-posed since
the solution is very sensitive to the given data. Such a diver-
gent problem could be avoided by using regularization meth-
ods [1,2,4,7,15,18,19,21-24]. For examples, the truncated
singular value decomposition technique (TSVD) [10,11,17,
19], the zeroth order and first order techniques of Tikho-
nov regularization technique [1,2,9,12,13,19,20] have been
applied to deal with divergent problems. The three techniques
can obtain a convergence solution more precisely and reason-
ably. The numerical methods combined with the regulariza-
tion techniques of the TSVD method and Tikhonov method,
respectively [1,2,10,17,25], had been successfully applied
to overcome the ill-posed problem of the Laplace equation.
In this paper, the desingularized meshless method (DMM)
in conjunction with the two regularization techniques is
employed to solve the inverse problem. To obtain a better
regularization method, the comparison of two regularization
techniques is made through several numerical examples.
For the inverse problem, the influence matrix is often
ill-posed such that the regularization techniques which
regularize the influence matrix are necessary. The TSVD can
alleviate the ill-posed behavior of the solution prone to diver-
gence by the input data errors by choosing an appropriate
truncated number, i. Similarly, the Tikhonov regularization
technique transforms into a well-posed one by choosing an
appropriate parameter for A [22]. An appropriate truncated
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number (or parameter) can be determined according to a
compromise point between regularization errors (due to data
smoothing) and perturbation errors (due to noise disturbance)
by implementing the L2 norm [4,11]. The L2 norm deter-
mines the optimal value of A (or i) which will be employed
to provide the compromise point and will be elaborated on
later. But we are well aware that many real problems usually
have no analytical solution. To find out the optimal solu-
tion reasonably, it is needed to employ the error criterion
technique in the case of no exact solution. An alternative
technique, called L-curve technique [1,14] is introduced. It
is implemented in case 3.

During the last decade, scientific researchers have paid
attention to the method of fundamental solutions (MFS) for
solving engineering problems [3,6,8,16,25], in which the
mesh or element is free. The DMM is one kind of modified
MES and has been applied to solve some potential problems
of elliptic operators [3,5-7,14,16,25,26]. By employing the
desingularization technique of subtracting and adding-back
technique to regularize the singularity and hypersingularity
of the kernel functions [26], the proposed method can dis-
tribute the observation and source points on the coincident
locations of the real boundary and still maintain the spirit
of the MFS. Therefore, the DMM provides a significant and
promising alternative to dominant numerical methods such as
the FEM and BEM. Since neither domain nor surface mesh-
ing is required for the meshless methods, they could be more
attractive for engineers to use.

In this paper, we will employ the DMM in conjunction
with the TSVD method and the zeroth order and first order
techniques of Tikhonov regularization method to circumvent
the ill-posed problems. The results of the examples contam-
inated with artificial noises on the over-specified B. C. are
given to illustrate the validity of the proposed technique.

2 Formulation
2.1 Governing equation subject to over-specified B.C.s

The inverse problem for the Laplace equation subject to over-
specified B.C.s as shown in Fig. 1 can be modeled by:

V¢ (x)=0, xeD, (1)

subjected to the B. C. on Bj as

¢ (x) = ¢,

V() =1,

X € By, (2)
X € By, 3)

where V? is the Laplacian operator, D is the domain of inter-

est, ¥ (x) = d¢(x)/dny, in which ny is the normal vector
at x, Bj is the known boundary (Bp) of B in which B is
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Fig. 1 Problem sketch for the inverse Laplace problem

the whole boundary which consists of boundary (B;) with
over-specified BCs, and the boundary (B;) with unknown
BCs.

2.2 Methods of the solution

2.2.1 Review of conventional method of fundamental
solutions

By employing the radial basis function (RBF) concept
[6-8,16], the representation of the solution for interior prob-
lem can be approximated in terms of the strengths «; of the
singularities s; as

N+M
$Oi) = D Alsj, x)aj, )

j=1

N+M
Y(xi) = D Blsj.x)a, )
j=1
where A(s;, x;) is RBF, B(sj, x;) = 0A(sj, x;)/0ny,, o is
the jth unknown coefficient (strength of the singularity), s;
is the jth source point (singularity), x; is the ith observation
point. The indexes, N and M, are numbers of the bound-
ary points on B and Bj, respectively. The chosen RBFs of
Egs. 4 and 5 in this paper are the double-layer potentials in
the potential theory as

—((xi —sj),nj)

A(sj, xi) = 3 , (6)
ri
Bls; ) = 2((x; —Sj)ynj‘)‘«xi —sj), ) (nj,zn_i)’
Tij Tij

N

where (, ) is the inner product of two vectors, 7;; is |s; — x;],
n; is the normal vector at s;, and 7; is the normal vector
at x;.
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When the collocation point x; approaches to the source
point s;, Egs. 4 and 5 become singular. Equations 4 and 5
for the interior problems need to be regularized by using the
subtracting and adding-back technique [5,26] as follows:

N+M
p(xi) = > AD(s) x)a;
j=1
N+M
- > AB (s x)ai, x; € B, 8)
j=1
in which
N+M
> AP (s x)a; =0, xi € B, ©)
j=1

where the superscript (/) and (E) denotes the inward and
outward normal vectors, respectively. The detailed deriva-
tion of Eq. 9 had been given in the Ref. [26]. Therefore, we
can obtain

i—1 N+M
¢(i) = > AD s xe;+ D AV (s x)a;
j=1 j=i+l

N+M
+ [ > A(”(sm,xl-)—A(”(sz-,xi)} @i, X € B.

m=1
(10)
Similarly, the boundary flux is obtained as
N+M
Y = > BD(sj, xi)a;
j=1
N+M
— > B®(s;. x)ai, xi € B, (11)
j=1
in which
N+M
> BB (sj.x)a; =0, x; €B. (12)

Jj=1

The detailed derivation of Eq. 12 had been demonstrated in
the Ref. [26]. Therefore, we can obtain

i-1 N+M
Y(x;) = ZB(I)(Sj,xi)Olj + Z B (s, xi)e;
j=1 j=it1

N+M
- |: Z B (s, xi) — B(I)(Si,xi)i| ai, Xx; €B.

m=1

13)

According to the dependence of the normal vectors for
inner and outer boundaries [26], their relationships are

AD(sj o x) = —AB(sj x), i#]
‘ (14)
AD(sjx) = AP (sj,x),  i=
BD(sj,xi) =BBE(s;,x;), i#]j
(15)
BD(sj,xi) = BB (sj, ), i=

where the left-hand and right-hand sides of the equal sign in
Egs. 14 and 15 denote the kernels for observation and source
point with the inward and outward normal vectors, respec-
tively.

By using the proposed technique, the singular terms in
Egs. 4 and 5 have been transformed into regular terms

[ZZ;{W AD (5, x1) — AD (s, Xi)] and —[ err\:ifw B
(Sm, xi) — BD (s, xi)] in Egs. 10 and 13, respectively. The

terms of ZZ:{W AD (s, x;) and ZZ:{V[ BWD (s, x;) are
the adding-back terms and the terms of A (s;, x;) and
B (s;, x;) are the subtracting terms in two brackets for
the special treatment technique. After using the abovemen-
tioned method of regularization of subtracting and adding-
back technique [5,26], we have removed the singularity and
hypersingularity of the kernel functions.

2.2.2 Derivation of diagonal coefficients of influence
matrices

The following linear algebraic system can be derived after
collocating N observation points on B and M observation

points on By, {x,'}fV:JEM, in Eq. 10 as
b1
N
ON+1
ON+M
J (N+M)x1

o]

. (16)

|:[A1]N><(N+M):| oN

[A2] % (N+Mm) AN+

AN+M
J(N+M)x1
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where
mN+M .
> aim —ai a2 ai,N - a1, N+M
m=1
N+M
as,| D ym —axn - a N S @ N+M
[Al] = m=1 y (17)
N+M
an,1 a2 > aNgm —aN,N ‘- AN .N+M
L m=1 A NX(N+M)
N+M
AN+1,1 " z AN+1,m — AN+1,N+1 " ** AN+1,N+M
m=1
[A2] = , ,
N+M
aN+m,1 - aAN+M,N+1 Y. AN+M.m — AN+ M.N+M
m=1 Mx(N+M)
(18)
in which
aij =AUV, x), i,j=1,2,...,N+M. (19)
In a similar way, Eq. 13 yields
E (03} ]
YN | [Bilnxv+m) an
= , (20)
YN+1 [B2lpxc(v+m) AN+
YN+M (N+M)x1 AN+M ) ) (Nimyxi
where
N+M 7
- |: > bim— bl,li| b1 bin < biN+m
m=1
N+M
by, —[ > bam —bz,z] by N o by Ntm
[B1] = m=1 , (21)
N+M
by .1 by = |: >, bnm— bN,N] o bN N+M
L m=1 dANx(N+M)
B N+M
bysi1 - —[ 2 bntim —bN+1,N+1] bN+1,N+M
m=1
[B2] = - , (22)
N+M
by+m,1 - bN+m . N+1 s — [ > byimm — bN+M,N+M]
L m=1 Mx(N+M)
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in which

bij=B" (sj,x;), i,j=12,...,N+M. (23)

2.2.3 Derivation of influence matrix

We can rearrange the influence matrices of Eqs. 16 and 20
into the linear algebraic system as

{21}na _|:[A1]NX(N+M)]
{{%}le - [BilnxNv-+M) {a} v - 24)

The linear algebraic system in Eq. 24 can be generally
written as

D =CX. (25)

For the inverse problem, the influence matrix C is often ill-
posed such that the regularization techniques are necessary
to regularize the ill-posed matrix.

2.3 Regularization techniques for the inverse problem

2.3.1 Truncated singular value decomposition method
(TSVD)

In the singular value decomposition (SVD), the matrix C can
be decomposed into

c =[1=1v1’, (26)

where [U] = [ul, Uy on., M(N+M)] and [V] = [vl, V2, ...,
V(N+ M)] are column orthonormal matrices, with column vec-
tors called left and right singular vectors, respectively, T
denotes the matrix transposition, and [X] = diag(oy, 02,
..., O(N+M)) 18 a diagonal matrix with nonnegative diago-
nal elements in non-increasing order, which are the singular
values of C.

A convenient measure of the conditioning of the matrix
C is the condition number defined as

01

Cond = 27

ON+u)
where o7 is the maximum singular value and oy ) is the
minimum singular value, i.e., the ratio between the largest
singular value and the smallest singular value. By means of
the SVD, the solution a® can be written as

kT

u; d;

P, 2

o
i=1 !

where k is the rank of C, u; is the element of the left singular
vector, v; is the element of the right singular vector and d; is
the known boundary data. For an ill-conditioned matrix, there
are small singular values, therefore the solution is dominated

by contributions from small singular values when the noise
contaminates the input data. One simple remedy to treat the
difficulty is to leave out contributions from small singular
values, i.e., taking a” as an approximate solution, where a”
is defined as

P u
aP:E
i=1

i di
vi, (29)

Oi

where p < k is the regularization parameter, which deter-

mines when one starts to leave out small singular values.

Note that if p = k, the approximate solution is exactly the

least squares solution. This method is known as TSVD in the
inverse problem community [10,17,19].

2.3.2 Tikhonov regularization technique

Tikhonov proposed a method [1,2,9,12,13,19,20] to trans-
form an ill-posed problem into a well-posed one. Instead of
solving Eq. 25 directly, the solution of Tikhonov technique
regularized as follows:

fi(X5) = min fi(X), (30)
XeRM

where the X is the regularization parameter and f; is the k-th
order Tikhonov function as given

2
£ = lcX = DIP+ 22 [RO x|
R® € Ros—iyxm, k=0,1,2.... (1)

Solving V f; (X) = 0, we can obtain the Tikhonov regular-
ized solution X, of the Eq. 30 which is given as the solution
of the regularized equation

@Q%ﬂMNM%chnlkzaLZ&w
(32)

where T denotes the matrix transposition. The matrix, R® ,in
Eq. 31 is a matrix that defines a (semi) norm of solution vec-
tor in which the superscript, k, represents the k-th derivative
operator on R. R®is an identity matrix when k = 0 and
the influence matrix, (CTC + AZR(k)TR(k)), in Eq. 32 can
only be regularized in a diagonal term by 1. R®) is a banded
matrix when £ = 1 and the influence matrix in Eq. 32 can
be regularized in a diagonally banded term. In this paper, the
zeroth order and first order techniques of Tikhonov regular-
ization method are considered, respectively. The matrices of
R© and RW of zeroth order and first order techniques of
Tikhonov regularization method are given by
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I 0 0
w0
—0 lM><M
-1 1 0
L Y .1
o 0 i

L (M—=1)xM

An ill-posed matrix will be transformed into a well one
by employing the proposed regularization techniques. If too
much regularization, i.e., Ais large, the solution will be too
smoothing. If too little regularization, i.e., A is small, the solu-
tion will be unreasonable by the contributions from the input
data with perturbation error in measurements. The choice of
the regularization parameter in Eq. 32 is vital for obtaining
areasonable and convergent solution and this is obtained on
the next section.

2.4 Determining the optimal parameter

(1) L2 norm technique
To aid us in selecting the optimal parameter A (or /, trun-
cated number), the value of L2 norm is implemented as
the y-axis and parameter A (or I, truncated number)
as the x-axis. The L2 norm is defined as ||¢p — ¢.| =
f |¢p — ¢0|> d B, where ¢ is the numerical result and ¢,
is the analytical result. When the L2 norm ||¢ — ¢.||
tends to be very small versus the regularization param-
eter, it is the optimal parameter. The L-curve shape can
be similarly observed in the figure. The corner point
of the L-curve shape is a local minimum norm and is
the appropriate choice for the optimal parameter (or the
optimal truncated number of TSVD).

(2) L-curve technique
The L-curve technique is a log-log plot of the norm of
regularized solution versus the norm of corresponding
residual norm [1,11]. The norm of regularized solution
is defined as

Log||ICX — D|*, (30)
and the norm of corresponding residual norm as follows
Log | X, 31)
The x-axis is the solution norm, and y-axis is the resid-
ual norm. The former is the index of how smooth the
solution is treated, and the latter is the distance index

between the predicted output and real output. The cor-
ner point of L-curve technique is a compromise between
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Fig. 3 Relative noise error for the case 1

the regularization errors due to data smoothing and per-
turbation errors in measurements or other noise, even
though an analytical solution is not available. The
L-curve technique belongs to an error criterion tech-
nique and does not need to compare the results with the
analytical solution.

3 Numerical examples

To show the accuracy and validity of the proposed method
and obtain a better regularization method, three cases with
circular, square and infinite strip domains subjected to the
over-specified B.C.s are considered.
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Fig. 4 Numerical result by using the DMM without employing the
regularization technique

Case 1: Circular domain case

The problem sketch of the inverse problem with circular
domain is drawn in Fig. 2. The unit radius is given and
the input data on the over-specified boundary is specified as
Gexacr = sin6 and Yexae; = cos in which =7 < 6 < 7.
By using the random data simulation, we can obtain ran-
dom errors contaminating the input data & = (Di)exact +
(@i)exactrand(i)e and E = (Yi)exact + (¥i)exacrrand(i)e
where the random number rand (i) is chosen between [—1,1]
(also in Cases 2 and 3) and ¢ denotes the percentage of the
relative noise error, as shown in Fig. 3. If regularization tech-
niques are not employed, the results are unreasonable and
divergent as shown in Fig. 4. To see the sensitivity analy-
sis of regularization parameters of the three regularization
techniques to obtain a optimal solution, we find out the rela-
tionship between the norm error and the value of A (or i)
in which the norm error is defined as f027r |Pexact(r = 1,0)
—¢(r = 1, 0)|?d6. Figure 5a displays the optimal truncated
number, 94, for the TSVD technique. Figure 5b, c displays the
optimal value of regularization parameters of 0.0001905 and
0.198, respectively, for the zeroth order and first order tech-
niques of Tikhonov regularization method. We obtain three
better results with the three optimal parameters by employ-
ing the three regularization techniques as shown in Fig. 6 by
distributing 200 nodes. The result of the first order technique
of Tikhonov method is better than other techniques as shown
in Fig. 6. Therefore we adopted the first order technique of
Tikhonov method in cases 2 and 3. The result of absolute
error with the exact solution of three regularization methods
is plotted in Fig. 7. To see the convergent analysis of the
DMM in conjunction with the first order Tikhonov regulari-
zation method, Fig. 8 is plotted. A convergent result can be
obtained after distributing over 100 points.
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Fig. 5 Optimal truncated number and regularization parameter for a
TSVD method, b zeroth order Tikhonov method, ¢ first order Tikhonov
method
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Fig. 6 Numerical results by employing the TSVD method, the zero
and first order Tikhonov methods, respectively, and using 200 nodes
for the case 1

0.8

GC—6—© TSVD method (i,,=94)
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0.5 -
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Absolute error

0.3

0.2

100 120 140 160 180 200
Boundary nodes on unknown boundary

Fig. 7 Absolute error with the exact solution by employing three reg-
ularization methods and using 200 nodes for the case 1

Case 2: Square domain case

The square domain of the inverse problem and B.C.s are
sketched in Fig. 9. The exact solution in the whole domain is
u(x, y) = xy. The over-specified B.C.s is given on the partial
boundary. To see the effects on increasing or decreasing the
information of known or unknown data and to examine how
the diversity of boundary data will affect the solution, three
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Fig. 8 The norm error along the boundary versus the number of nodes
by using the first order Tikhonov method for the case 1

1 #(x,L)
w,(x,L)

¢2 0, y)
v, 0, y)

¢4 (L,y)
v, (L,y)

9,(x,0)
v, (x,0)

Fig. 9 Problem sketch for the case 2

kinds of distributions are given as S1 type: data on boundary 4
isunknown. S2 type: data on boundaries 3 and 4 are unknown.
S3 type: data on boundaries 2, 3 and 4 are unknown. The
length of square domain is 1.0.

Table 1 Optimal regularization parameters for the S1, S2 and S3 labels
of different random errors

Label  Unknown Optimal regularization parameters
boundary
0.1% Random 1% Random 3% Random
error error error
S1 By 7.143 6.953 11.735
S2 B3, By 1.863 2.489 2.699
S3 By,B3, By 124321 132.676 117.817
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Fig. 10 Numerical results for a S1, b S2, ¢ S3 by using the first order
Tikhonov method in different random error
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Fig. 11 Relative root mean square errors for the S1 and S2 cases

The optimal regularization parameters for different rel-
ative noise levels ¢ = 0.1-3% are reported in Table 1. The
numerical results with different relative noise levels are illus-
trated in Fig. 10a—c for the three types (S1, S2 and S3 types).
The phenomenon is apparent that the more number of the
known data are given, the more accurately the results are
derived. To compare the result for different relative noise
levels with the reference [25], the relative root mean square
error [25] respective to the various noise level are graphi-
cally shown in Fig. 11. To see the ill-posed sensitivity, the
condition number of the influence matrix versus the number
of boundary nodes is graphically reported in Fig. 12 for S1
and S2 types. It is shown that the more number of nodes is
distributed, the larger the condition number is obtained.

Case 3: Infinite strip region case

The infinite strip region of inverse problem and overspec-
ified boundary conditions, ¢ (x,[) = 5 and ¢y (x,l) = 0,
are given, respectively, as shown in Fig. 13, and the cosine
and square waves through the surface of infinite strip region
are considered, respectively. We can obtain the optimal reg-
ularization parameters, 0.02 and 0.00025, respectively, for
the cosine wave and square wave in the surface by using
the L-curve technique, which are shown in Figs. 14 and 15.
The unknown boundary data, ¢ (x, 0), is solved by adopting
the optimal parameters. The new specified boundary condi-
tion, ¢ (x, 0), is given again which is obtained before and the
original boundary condition, ¢y (x, ) = 0 is defined as the
new boundary condition. The new problem with new speci-
fied boundary condition is the well-posed problem. The result
of ¢ (x, ) is reformulated by using the DMM and compare it

@ Springer
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Fig. 14 Optimal regularization parameter of cosine wave by employ-

ing the L-curve technique
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Fig. 15 Optimal regularization parameter of square wave by employ-
ing the L-curve technique
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Fig. 16 Numerical result of cosine wave by using the L-curve tech-
nique in conjunction with the first order Tikhonov method

with the original boundary condition, ¢, as plotted in Figs. 16
and 17, respectively.

4 Conclusions

In this paper, we successfully applied the DMM in conjunc-
tion with the regularization techniques to solving inverse
problems. The source and collocation points can be located
on the real boundary at the same time by using the proposed
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desingularization technique. The resulting ill-conditioned
system of linear algebraic equations has been regularized
by using the three regularization techniques. The ill-posed
problems can be effectively remedied by using the first order
regularization method and the absolute error with the exact
solution is smaller than those of other regularization tech-
niques through the given examples.
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