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Abstract In this article, a systematic approach is proposed
to calculate the torsional rigidity and stress of a circular bar
containing multiple circular inclusions. To fully capture the
circular geometries, the kernel function is expanded to the
degenerate form and the boundary density is expressed into
Fourier series. The approach is seen as a semi-analytical man-
ner since error purely attributes to the truncation of Fourier
series. By collocating the null-field point exactly on the real
boundary and matching the boundary condition, a linear alge-
braic system is obtained. Convergence study shows that only
a few number of Fourier series terms can yield acceptable
results. Finally, torsion problems are revisited to check the
validity of our method. Not only the torsional rigidities but
also the stresses of multiple inclusions are also obtained by
using the present approach.

Keywords Torsional rigidity · Null-field integral equation ·
Degenerate kernel · Fourier series · Inclusion

1 Introduction

In the past, multiply-connected Laplace problems have been
solved either by conformal mapping or by other techniques.
Ling [14] solved the torsion problem of a circular bar with
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several holes. Muskhelishvili [19] solved the problem of a
circular bar reinforced by an eccentric circular inclusion.
Chen and Weng [8] have introduced conformal mapping
with a Laurent series expansion to analyze the Saint-Venant
torsion problem. They concerned with an eccentric bar of
different materials with an imperfect interface under torque.
Since the conformal mapping is limited to the doubly-con-
nected region, it encounters difficulty for multiple inclusions.
Therefore, many researchers have paid more attentions on
other techniques or numerical methods. In 1983, Caulk [3]
developed a special boundary integral method to deal with
the problem of a torsion bar with circular holes. Katsikadelis
and Sapountzakis [11] used the boundary element method to
solve the problem of an elliptic bar including one and two
elliptic inclusions. Also, a practical problem of a rectangular
concrete containing a Steel-I beam was concerned in their
research. Later, Sapountzakis and Mokos [22–24] extended
to deal with the nonuniform torsion problem that the com-
posite bar is subject to an arbitrarily concentrated or distrib-
uted twisting moment. Shams-Ahmadi and Chou [25] used
the complex variable boundary element method (CVBEM)
to solve the torsion problem of composite shafts with arbi-
trary number of inclusions of different materials. Ang and
Kang [1] developed a general formulation for solving the
second-order elliptic partial differential equation for a multi-
ply-connected region in a different version of CVBEM. Pet-
rov [21] developed an effective technique of boundary ele-
ment method (BEM) to determine torsion, shear and other
characteristics of beam cross-sections of arbitrary complex
shape including multiply-connected cross sections. Tang [27]
utilized the singular and hypersingular formulations to solve
the torsion problem with inclusions and/or cracks.

Recently, meshless methods [10,26] become very popu-
lar, since it is free of mesh generation and only nodes are
needed. The present formulation can be seen as one kind of
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meshless methods, since only the collocation points on the
real boundary are required to satisfy the boundary condition.
Mogilevskaya and Crouch [16] have solved the problem of an
infinite plane containing arbitrary number of circular inclu-
sions based on the complex-variable singular integral
equation. Later, they [9] utilized Somigliana’s formula and
Fourier series for elasticity problems with circular bound-
aries. In their analysis procedure, the authors used the
Fourier series to simulate the boundary densities on the cir-
cular geometry. Besides, they used the complex variable and
the residue theorem to calculate the singular integrals. There-
fore, for calculating an integral over a circular boundary, they
didn’t expand the fundamental solution to degenerate kernel
by using the polar coordinates of local system. By moving the
null-field point exactly on the real boundary, the boundary
integral can be easily determined using series sums in our
formulation due to the introduction of degenerate kernels.
Also, it is free of worrying how to choose the collocation
points, since uniform collocation along the circular bound-
ary yields a well-conditioned matrix. Caulk [3] proposed a
special BIEM to determine the torsional rigidity of a circu-
lar bar with circular holes. He pointed out that Ling’s result
of three holes deviated from his data. Chen et al. [7] sup-
ported the Caulk’s comment by using the null-field integral
approach. On the other hand, Bird and Steele [2] found the
discrepancy between the Naghdi’s solution [20] and their data
for the beam bending problem with four holes. Also, Chen
et al.’s result [4] agreed with the Naghdi’s result. Following
the success of [7], we extend to solve torsion problems with
multiple circular inclusions. It is noted that we can deal with
other shape of cross section in our approach, if the degenerate
kernels corresponding to the special geometry are available.
For example, degenerate kernel for the ellipse can be found
in the book of Morse and Feshbach [17]. It is straightfor-
ward to extend the present method to solve the problem with
the geometry of an ellipse. Unfortunately, some formulae are
not found in the mathematical handbook or were not derived
by mathematicians for special geometry. That is to say, it is
a challenging work in deriving the degenerate kernel for a
special geometry case.

In this paper, the null-field integral equation is utilized
to solve the Saint-Venant torsion problem of a circular bar
with circular inclusions. The mathematical tools, the degen-
erate kernel for the fundamental solution and Fourier series
for the boundary density, are utilized in the null-field inte-
gral formulation. By collocating the null-field point exactly
on the real boundary and matching the boundary condition,
the linear algebraic system is obtained and the unknown
Fourier coefficients can be easily determined. Then, series
solutions for the warping function, torsional rigidity and
stress are obtained. Convergence study is also addressed.
Numerical examples are given to show the validity and effi-
ciency of our formulation.

B0

B1

B2

B3

Bi

B4

a0

a1

a2

a3

a4

ai

x

y

Fig. 1 Sketch of a circular bar with circular inclusions and/or holes
under torsion

2 Formulation of the problem

A circular bar containing N circular inclusions bounded to
the contours Bk (k = 0, 1, 2, . . . , N ) is shown in Fig. 1. We
define

B =
N⋃

k=0

Bk . (1)

The radii of circular bar and inclusions are a0 and ai (i =
1, 2, . . . , N ), respectively. The circular bar twisted by cou-
ples applied at the end is taken into consideration. Follow-
ing the theory of Saint-Venant torsion [28], we assume the
displacement to be

u = −αyz, v = αxz, w = αϕ(x, y), (2)

where α is the angle of twist per unit length along the z direc-
tion and ϕ is the warping function. The relation of strain and
displacement is defined in the elasticity book [28] as shown
below:

εx = ∂u

∂x
, γxy = ∂u

∂y
+ ∂v

∂x
,

εy = ∂v

∂y
, γyz = ∂v

∂z
+ ∂w

∂y
,

εz = ∂w

∂z
, γzx = ∂w

∂x
+ ∂u

∂z
.

(3)
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Then, substituting the displacement of Eq. 2 into Eq. 3, we
have the strain components as follows:

εx = εy = εz = γxy = 0,

γxz = α

(
∂ϕ

∂x
− y

)
,

γyz = α

(
∂ϕ

∂y
+ x

)
.

(4)

By applying the Hooke’s law, the stress components are

σx = σy = σz = σxy = 0,

σxz = µα

(
∂ϕ

∂x
− y

)
,

σyz = µα

(
∂ϕ

∂y
+ x

)
,

(5)

where µ is the shear modulus. There is no distortion in the
planes of cross sections since εx = εy = εz = γxy = 0.
We have the state of pure shear at each point defined by the
stress components σxz and σyz . By substituting Eq. 5 to the
equilibrium equation

∂σx

∂x
+ ∂σxy

∂y
+ ∂σxz

∂z
+ Fx = 0,

∂σy

∂y
+ ∂σxy

∂x
+ ∂σyz

∂z
+ Fy = 0,

∂σz

∂z
+ ∂σxz

∂x
+ ∂σyz

∂y
+ Fz = 0,

(6)

the warping function satisfies the Laplace equation

∂2ϕ

∂x2 + ∂2ϕ

∂y2 = 0 in D, (7)

where the body forces (Fx , Fy and Fz) are neglected and D
is the domain of interest. On the cylinder surface, the stress
states in Eq. 5 result in zero traction of tx = ty = 0. The only
nonzero traction is tz . Since there is no external traction, tz ,
on the cylindrical surface, we have

tz = σxznx + σyzny

= µα

(
∂ϕ

∂x
nx + ∂ϕ

∂y
ny − ynx + xny

)
= 0. (8)

Therefore, the bracket in Eq. 8 is equal to zero and we have
the boundary condition as follows:

∂ϕ

∂x
nx + ∂ϕ

∂y
ny = ∇ϕ · n = ∂ϕ

∂n
= ynx − xny . (9)

For the ideal boundary between the matrix and inclusions,
the continuity condition for the displacement and equilib-
rium condition for traction on the interface [19] yield:

ϕM = ϕ I on Bi , (10)

µ0
∂ϕM

i

∂n
− µi

∂ϕ I
i

∂y
= (µ0 − µi )(ynx − xny) on Bi ,

(11)

where the superscripts “I ” and “M” denote the inclusion and
matrix, respectively, Bi is the i th interface boundary, µ0 is
the shear modulus for the matrix andµi is the shear modulus
for the i th inclusion.

3 Method of solution

3.1 Dual null-field integral equations—the conventional
version

The integral equation for the domain point can be derived
from the third Green’s identity [6], we have

2πϕ(x) =
∫

B

T (s, x)ϕ(s) dB(s)

−
∫

B

U (s, x)ψ(s) dB(s), x ∈ D, (12)

2π
∂ϕ(x)

∂nx
=

∫

B

M(s, x)ϕ(s) dB(s)

−
∫

B

L(s, x)ψ(s) dB(s), x ∈ D, (13)

where s and x are the source and field points, respectively,
D is the domain of interest, ψ(s) = ∂ϕ(s)

∂ns
, ns and nx denote

the outward normal vectors at the source point s and field
point x , respectively, and the kernel function U (s, x) = ln r,
(r ≡ |s − x |), is the fundamental solution which satisfies

∇2U (s, x) = 2πδ(x − s) (14)

in which δ(x −s) denotes the Dirac-delta function. The other
kernel functions, T (s, x), L(s, x), and M(s, x), are defined
by

T (s, x) = ∂U (s, x)

∂ns
, (15)

L(s, x) = ∂U (s, x)

∂nx
, (16)

M(s, x) = ∂2U (s, x)

∂ns∂nx
. (17)
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By moving the field point to the boundary, Eqs. 12 and 13
reduce to

πϕ(x) = C.P.V .
∫

B

T (s, x)ϕ(s) dB(s)

−R.P.V .
∫

B

U (s, x)ψ(s) dB(s), x ∈ B, (18)

π
∂ϕ(x)

∂nx
= H.P.V .

∫

B

M(s, x)ϕ(s) dB(s)

−C.P.V .
∫

B

L(s, x)ψ(s) dB(s), x ∈ B, (19)

where R.P.V ., C.P.V . and H.P.V . denote the Riemann
principal value, Cauchy principal value and Hadamard prin-
cipal value, respectively. Once the field point x locates
outside the domain (x ∈ Dc), we obtain the dual null-field
integral equations as shown below

0 =
∫

B

T (s, x)ϕ(s) dB(s)

−
∫

B

U (s, x)ψ(s) dB(s), x ∈ Dc, (20)

0 =
∫

B

M(s, x)ϕ(s) dB(s)

−
∫

B

L(s, x)ψ(s) dB(s), x ∈ Dc, (21)

where Dc is the complementary domain. Equations 12, 13,
20 and 21 are conventional formulations where the point can
not be located on the real boundary. Singularity occurs and
concept of principal values is required once Eqs. 18 and 19
are considered.

3.2 Dual null-field integral formulation—the present
version

By introducing the degenerate kernels, the collocation point
can be located on the real boundary free of facing singu-
larity. Therefore, the representations of integral equations
including the boundary point for the interior problem can be
written as

2πϕ(x) =
∫

B

T i (s, x)ϕ(s) dB(s)

−
∫

B

Ui (s, x)ψ(s) dB(s), x ∈ D ∪ B, (22)

2π
∂ϕ(x)

∂nx
=

∫

B

Mi (s, x)ϕ(s) dB(s)

−
∫

B

Li (s, x)ψ(s) dB(s), x ∈ D ∪ B, (23)

and

0 =
∫

B

T e(s, x)ϕ(s) dB(s)

−
∫

B

U e(s, x)ψ(s) dB(s), x ∈ Dc ∪ B, (24)

0 =
∫

B

Me(s, x)ϕ(s) dB(s)

−
∫

B

Le(s, x)ψ(s) dB(s), x ∈ Dc ∪ B, (25)

once the kernels are expressed in term of an appropriate
degenerate forms (denoted by subscripts i and e) instead of
the closed-form fundamental solution without distinction. It
is noted that x in Eqs. 22–25 can exactly be located on the
real boundary. For the exterior problem, the domain of inter-
est is in the external region of the circular boundary and the
complementary domain is in the internal region of the circle.
Therefore, the null-field integral equations are represented as

2πϕ(x) =
∫

B

T e(s, x)ϕ(s) dB(s)

−
∫

B

U e(s, x)ψ(s) dB(s), x ∈ D ∪ B, (26)

2π
∂ϕ(x)

∂nx
=

∫

B

Me(s, x)ϕ(s) dB(s)

−
∫

B

Le(s, x)ψ(s) dB(s), x ∈ D ∪ B, (27)

and

0 =
∫

B

T i (s, x)ϕ(s) dB(s)

−
∫

B

Ui (s, x)ψ(s) dB(s), x ∈ Dc ∪ B, (28)

0 =
∫

B

Mi (s, x)ϕ(s) dB(s)

−
∫

B

Li (s, x)ψ(s) dB(s), x ∈ Dc ∪ B, (29)

Also, x in Eqs. 26–29 can exactly be located on the real
boundary. For various problems (interior or exterior), we
used different kernel functions (denoted by superscripts “i”
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and “e”) so that jump behavior across the boundary can be
captured. Therefore, different expressions of the kernels for
the interior and exterior observer points are used and they
will be elaborated on latter.

It is worthy of noting that our approach can yield the
same linear algebraic equation derived from boundary inte-
gral equation in Eqs. 18 and 19. However, the procedure is
quite different although collocation points are located on the
real boundary for both the conventional BIEM and the pres-
ent approach. For the conventional BEM, it is necessary to
calculate the singular or hypersingular integral by using the
sense of principal value. Our approach is free of calculat-
ing principal value due to the introduction of the degenerate
kernel since the kernel functions were separated into two
parts, interior and exterior parts. If the appropriate kernels
(interior and exterior parts) are chosen, we can easily obtain
the same linear algebraic equation derived from the conven-
tional BIE and free of calculating principal value.

3.3 Expansions of fundamental solution and boundary
density

Based on the separable property, the kernel function U (s, x)
can be expanded into degenerate form by separating the
source points and field points in the polar coordinates [5]:

U (s, x)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ui (R, θ; ρ, φ) = ln R−
∞∑

m=1

1

m

(ρ
R

)m
cos m(θ−φ),

R ≥ ρ,

U e(R, θ; ρ, φ) = ln ρ−
∞∑

m=1

1

m

(
R

ρ

)m

cos m(θ−φ),
R < ρ,

,

(30)

where the superscripts “i” and “e” denote the interior
(R ≥ ρ) and exterior (R < ρ) cases, respectively. In order
to ensure the log singularity and the series convergence, the
leading term and the numerator in the above expansion is
dominated by the larger argument. After taking the deriva-
tive operators in Eqs. 15-17, T (s, x), L(s, x) and M(s, x)
kernels can be easily derived and the detailed representation
can be found in [7]. It is noted that the null-field point or
the domain point can be exactly located on the real boundary
when the appropriate degenerate kernels are employed. The
main advantage of present formulation is that the colloca-
tion point x is located on the real boundary free of singular
integrals, while the conventional BEM needs to deal with sin-
gularities since a closed-form kernel is used. Therefore, the
main difference between our approach and the conventional
method is that we don’t use the bump contour approach on the
integration path to obtain free term. Furthermore, the jump

behavior for potentials of integral equations between the
domain point and the null-field point is captured when various
degenerate kernels for fundamental solutions are employed
for the domain point and complementary domain point. In
other words, the jump behavior is revealed by using various
degenerate kernels for the fundamental solution instead of
employing the bump contour approach in the conventional
boundary integral equation method.

For the boundary densities, we apply the Fourier series
expansions to approximate the potential ϕ and its normal
derivative ψ on the boundary

ϕ(sk) = ak
0 +

∞∑

n=1

(ak
n cos nθ + bk

n sin nθ),

sk ∈ Bk, k = 1, 2, . . . , N , (31)

ψ(sk) = pk
0 +

∞∑

n=1

(pk
n cos nθ + qk

n sin nθ),

sk ∈ Bk, k = 1, 2, . . . , N , (32)

where ak
n, bk

n, pk
n and qk

n are the Fourier coefficients and θ is
the polar angle (0 < θ < 2π ).

3.4 Linear algebraic system

After locating the null-field point xk exactly on the kth cir-
cular boundary in Eq. 24 or Eq. 28 as shown in Fig. 2, we
have

Fig. 2 Sketch of the null-field integral equation in conjunction with
the adaptive observer system
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0 =
N∑

k=0

∫

Bk

T (s, x)ϕ(s) dBk(s)

−
N∑

k=0

∫

Bk

U (s, x)ψ(s) dBk(s), x ∈ Dc ∪ B, (33)

where N is the number of circles including the outer bound-
ary and the inner circular holes. Since the boundary integral
equations are frame indifferent, i.e. objectivity rule is satis-
fied. The origin of observer system is adaptively chosen at the
center of circular boundary under integration. The dummy
variable in the circular integration is angle (θ ) instead of
radial coordinate (R). In the real computation, we select the
collocation point on the boundary and the integration path is
counterclockwise for the outer circle. Otherwise, it is clock-
wise. For the B integral of the circular boundary, the kernels
of U (s, x) and T (s, x) are expressed in terms of degener-
ate kernels, and ϕ(s) and ψ(s) are substituted by using the
Fourier series. In the Bk integral, we set the origin of the

observer system to collocate at the center ck to fully utilize
the degenerate kernels and Fourier series. By collocating the
null-field point exactly on the boundary, a linear algebraic
system is obtained

[U]{ψ} = [T]{ϕ}, (34)

where [U] and [T] are the influence matrices with a dimen-
sion of N × (2L + 1) by N × (2L + 1), {ϕ} and {ψ} denote
the column vectors of Fourier coefficients with a dimension
of N × (2L + 1) by 1 in which [U], [T], {ϕ} and {ψ} can be
defined as follows:

[U] =

⎡

⎢⎢⎢⎣

U00 U01 . . . U0N

U10 U11 . . . U1N
...

...
. . .

...

UN0 UN0 . . . UN N

⎤

⎥⎥⎥⎦ , (35)

[T] =

⎡

⎢⎢⎢⎣

T00 T01 . . . T0N

T10 TN N . . . T1N
...

...
. . .

...

TN0 TN1 . . . TN N

⎤

⎥⎥⎥⎦ , (36)

{ϕ} =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕ0

ϕ1

ϕ2
...

ϕN

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, {ψ} =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ψ0

ψ1

ψ2
...

ψN

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(37)

where the vectors {ϕk} and {ψk} are in the forms of{
ak

0ak
1bk

1 . . . a
k
Lbk

L

}T
and

{
pk

0 pk
1qk

1 . . . pk
Lqk

L

}T
, respectively;

the first subscript “ j” ( j = 0, 1, 2, . . . , N , ) in [U jk] and
[T jk] denotes the index of the j th circle where the collo-
cation point is located and the second subscript “k” (k =
0, 1, 2, . . . , N ,) denotes the index of the kth circle where the
boundary data {ϕk} and {ψk} are specified and L indicates
the truncated terms of Fourier series. The coefficient matrix
of the linear algebraic system is partitioned into blocks, and
each off-diagonal block corresponds to the influence matrices
between two different circular holes. The diagonal blocks are
the influence matrices due to itself in each individual hole.
After uniformly collocating the null-field point along the kth
circular boundary, the submatrix can be written as

[K jk] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K 0c
jk (φ1) K 1c

jk (φ1) K 1s
jk(φ1) . . . K Lc

jk (φ1) K Ls
jk (φ1)

K 0c
jk (φ2) K 1c

jk (φ2) K 1s
jk(φ2) . . . K Lc

jk (φ2) K Ls
jk (φ2)

K 0c
jk (φ3) K 1c

jk (φ3) K 1s
jk(φ3) . . . K Lc

jk (φ3) K Ls
jk (φ3)

...
...

...
. . .

...
...

K 0c
jk (φ2L) K 1c

jk (φ2L) K 1s
jk(φ2L) . . . K Lc

jk (φ2L) K Ls
jk (φ2L)

K 0c
jk (φ2L+1) K 1c

jk (φ2L+1) K 1s
jk(φ2L+1) . . . K Lc

jk (φ2L+1) K Ls
jk (φ2L+1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (38)

where K can be substituted by U or T . Although the matrix
in Eq. 38 is not sparse, it is diagonally dominant. It is found
that the influence coefficient for the higher-order harmonics
is smaller. It is noted that the superscript “0s” in Eq. 38 dis-
appears since sin(0θ) = 0. The element of [K jk] is defined,
respectively, as

K nc
jk (φm) =

∫

Bk

K (sk, xm) cos(nθk)Rkdθk, (39)

K ns
jk (φm) =

∫

Bk

K (sk, xm) sin(nθk)Rkdθk, (40)

where n = 0, 1, 2, . . . , L ,m = 1, 2, . . . , 2L + 1, and φm is
the polar angle of the collocating points xm along the bound-
ary. The physical meaning of the influence coefficient for
U nc

jk (φm) in Eq. 39 denotes the response at xm due to the
cos(nθ) distribution. By rearranging the known and unknown
sets, the unknown Fourier coefficients are determined.
Equation 24 can be calculated by employing the orthogonal
relations of trigonometric functions in the real computation.
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Only the finite L terms are used in the summation of Eqs. 31
and 32.

By using the concept of domain decomposition, the prob-
lem in Fig. 1 can be decomposed into two parts as shown in
Figs. 3(a) and 3(b). One is the torsion problem of a circular
bar with multiple circular holes and the other is a problem of
each inclusion. For the torsion problem with circular holes
which satisfies the Laplace equation, the linear algebraic sys-
tem from Eq. 34 can be obtained as
⎡

⎢⎢⎢⎢⎢⎣

TM
00 TM

01 . . . TM
0N −UM

01 . . . −UM
0N

TM
10 TM

11 . . . TM
1N −UM

11 . . . −UM
1N

...
...

. . .
...

...
. . .

...

TM
N0 TM

N1 . . . TM
N N −UM

N1 . . . −UM
N N

⎤

⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕM
0
ϕM

1
...

ϕM
N
ψM

1
...

ψM
N

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0
0
...

0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
. (41)

For each inclusion, we have
⎡

⎢⎣
TI

11 0 0 −UI
11 0 0

0
. . . 0 0

. . . 0
0 0 TI

N N 0 0 −UI
N N

⎤

⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ I
1
...

ϕ I
N
ψ I

1
...

ψ I
N

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎨

⎪⎩

0
...

0

⎫
⎪⎬

⎪⎭
. (42)

In order to satisfy the continuity conditions of displacement
and equilibrium condition of traction on the interface, we
have
{
ϕM

i

}
−

{
ϕ I

i

}
= {0} , (43)

µ0

{
ψM

i

}
− µi

{
ψ I

i

}
=

{
bi

}
, (44)

where {bi } is

{
bi

}
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(µ0 − µi )(ei
y cos θ i

1 − ei
x sin θ i

1)

(µ0 − µi )(ei
y cos θ i

2 − ei
x sin θ i

2)

...

(µ0 − µi )(ei
y cos θ i

2L − ei
x sin θ i

2L)

(µ0 − µi )(ei
y cos θ i

2L+1 − ei
x sin θ i

2L+1)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

(45)
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Fig. 3 a Torsion problem of a circular bar with circular holes.
b Each circular inclusion problem

Combining with the above mentioned linear algebraic system
of Eqs. 41–44, the global linear algebraic equation is obtained
by correctly arranging the Fourier coefficients. After obtain-
ing the Fourier coefficients, the torsional rigidity can be easily
determined as follows:

G = µ

∫

D

(x2 + y2)d D − µ

N∑

k=1

∫

Bk

ϕ
∂ϕ

∂n
d Bk, (46)

GT = G M + G I , (47)
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R1

R0

ex

0µ

1µ

Fig. 4 Sketch of an eccentric circular inclusion problem

where the subscripts of “T ”, ”M” and “I ” denote the torsion
rigidity of total, matrix and inclusion, respectively.

4 Illustrative examples and discussions

In this section, we revisit the torsion problems with
inclusions and/or holes which have been solved by
Muskhelishvili [19], Petrov [21], Tang [27], Ling [14], and
Kuo and Conway [12,13] for demonstrating the validity of
present method. The torsional rigidity of each example is cal-
culated after determining the unknown Fourier coefficients.

Example 1 A circular bar with an eccentric inclusion.

A circular bar of radius R0 with an eccentric circular inclu-
sion of radius R1 is shown in Fig. 4. The ratio of R1/R0 and
ex/R0 are 0.3 and 0.6, respectively. Fig. 5 shows the torsional
rigidity versus the number of Fourier series term whenµ1/µ0

is equal to 0.6. It is found that the solution converges fast by
using only fourteen terms of Fourier series. The results of
torsional rigidity for different values of µ1/µ0 are shown
in Table 1. For verifying our results, the Muskhelishvili’s
solution [19] is shown below,

G = µ0 I + (µ1 − µ0)I
′ − πR2

1e2
x (µ1 − µ0)

2

µ1 + µ0

−2µ0πe2
xνρ

2
1

∞∑

k=1

αkνk

(1 − a2ρ2
1α

k)2
, (48)

3020100
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Fig. 5 Torsional rigidity versus the number of Fourier series terms

where I = (πR4
0/2), I ′ = (πR4

1/2) + πR2
1e2

x , a = ex/

(

√
(R2

1 − R2
0)

2 − 2e2
x (R

2
1 + R2

0)+ e4
x ), α = (ρ2

1/ρ
2
0 ), ν =

((µ0 − µ1)/(µ0 + µ1)), ρ1 = (

√
1 + 4R2

1a2 − 1/2R1a2)

and ρ0 = (

√
1 + 4R2

0a2 − 1/2R0a2). The exact solution of
Muskhelishvili and the result of integral formulation by Tang
[27] are shown in Table 1 for comparison. The present results
match very well with the exact solution derived by Muskhe-
lishvil and are better than those of Tang [27]. For the rigid
inclusion, the torsional rigidity becomes infinity as shown in
Table 1. Fig. 6 is shown to indicate how shear modulus of
inclusion influences the torsional rigidity. It is observed that
the slope of torsional rigidity versusµ1 is (R1/R0)

4 when the
shear modulus of the inclusion becomes large. This finding
is expected according to Eq. 44.

Example 2 A circular bar with one circular hole (limiting
case).

The problem is different from the Case 1 by setting zero
modulus of the inclusion to simulate the hole in our pro-
gram. The limiting case is used to check the present formu-
lation. The radius of a circular bar is 1.0 and the radius of
the hole is 0.3. The eccentricity (ex = 0.5) is considered.
The shear moduli µ0 and µ1 are chosen 1.0 and 0, respec-
tively. The exact solution of Muskhelishvili [19] is also cal-
culated by using the exact formula. The results are shown
in Table 2. It is found that the results of present method
matches well with those of the Muskhelishvili’s data [19] and
are better than those of the Petrov’s results [21]. However,
the Lurje’s solution [15] is smaller than those of the Petrov’s,
Muskhelishvili’s and our results. Since three various
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Table 1 Torsional rigidity of a circular bar with an eccentric inclusion

µ1

µ0
2G/πµ0 R4

0

Muskhelishvili [19] Tang [27] Present method
(M = 20)

0 0.82370 0.82377 0.82370

0.2 0.89180 0.89181 0.89180

0.6 0.96246 0.96246 0.96246

1.0 1.00000 1.00000 1.00000

5.0 1.10800 1.10794 1.10800

20.0 1.25224 1.25181 1.25224

1000 9.19866 N/A 9.19866

10000 82.09883 N/A 82.09882

1000000 8101.10012 N/A 8101.09883

0 200000 400000 600000 800000 1000000
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Fig. 6 Torsional rigidity versus the shear modulus of inclusion

Table 2 Torsional rigidity of a circular bar with an eccentric hole

G/µ0 R4
0

Present method 1.389 (34) 1.389 (66) 1.389 (130)

Petrov [21] 1.391 (32) 1.390 (64) 1.389 (130)

Lurje [15] 1.311

Muskhelishvili [19] 1.389

The data in the parenthesis denotes number of degrees of freedom

methods obtain the consistent result, the formulae of Lur-
je [15] needs further check.

The stress analysis has been done by Ling [14]. The cor-
responding parameters are shown in Fig. 7. The definition of
shear stress component, ξz , is shown below

t

tm

αη =

βη =

0=ξπξ =

2

D
Dt λ=

t

tt
p m −

= (eccentricity)

Fig. 7 Sketch of eccentric problem

ξz = µ0α
∂ϕ

∂η
. (49)

By using the chain rule, we can obtain the following
relation

ξz = µ0α

(
∂ϕ

∂x

∂x

∂η
+ ∂ϕ

∂y

∂y

∂η

)
, (50)

where x = a sinh η
cosh η−cos ξ , y = a sin ξ

cosh η−cos ξ and a in our case is
1.58016. The stresses along the inner and outer boundaries
for λ = 0.3 and p = 0.4 are shown in Table 3. It is found
that the errors are less than two percents. The stresses on
the x axis in domain are shown in Table 4. The results are
very close to the Ling’s analytical results obtained from the
bipolar coordinate system.

Example 3 A circular rod with a ring of circular inclusions.

In this example, we revisit the problems of a circular rod
with a ring of circular inclusions investigated by Kuo and
Conway [12] as shown in Fig. 8. Three cases are given in
their article as

Case 1: b
a = 3

4 ,
λ
a = 1

8 ,
δ
a = 1

2 ,
G2
G1

= 30, k = 8,

Case 2: b
a = 3

4 ,
λ
a = 1

8 ,
δ
a = 1

2 ,
G2
G1

= 5, k = 3,

Case 3: b
a = 1

2 ,
λ
a = 1

4 ,
δ
a = 0, G2

G1
= 29.4, k = 4.

The results of the present approach are shown in Table 5.
It is found that the results of our approach are slightly dif-
ferent from the Kuo and Conway’s results. For the Case
3, Kuo and Conway [12] claimed that they obtained the
nondimensional torsional rigidity 1.57 analytically and 1.53
in the experiment. It seems that they obtained consistent
results. However, the data of FE solution 1.77 obtained by
Murakami and Yamakawa [18] agrees well with the result of
our approach. In this case, our result deviates from the exper-
iment data of Kuo and Conway [12] but converges to the
data of finer mesh using FEM by Murakami and Yamakawa
[18]. Both our result and that of Murakami and Yamakawa
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Table 3 ξz on the boundary for
λ = 0.3 and p = 0.4 ξ η = α η = β

θ
2

µτD
ξz[14] Present method θ

2

µτD
ξz[14] Present method

π 180◦ 1.166 1.166 180◦ 1.015 1.012

3

4
π 154◦18′ 1.115 1.114 144◦16′ 0.881 0.881

1

2
π 122◦19′ 1.011 1.011 104◦12′ 0.522 0.522

1

4
π 73◦55′ 0.949 0.949 56◦2′ 0.068 0.067

0 0◦ 0.936 0.940 0◦ −0.166 −0.167

Table 4 ξz along the line of
ξ = 0 and π for λ = 0.3 and
p = 0.4

η ξ = π ξ = 0

x1

D

2

µτD
ξz[14] Present method

x2

D

2

µτD
ξz[14] Present method

1.2384 0 1.166 1.166 0 0.940 0.940

1.4084 0.0446 1.097 1.096 0.1335 0.652 0.651

1.5784 0.0848 1.044 1.043 0.2342 0.420 0.418

1.7484 0.1208 1.009 1.010 0.3120 0.215 0.216

1.9784 0.1528 0.998 0.999 0.3730 0.026 0.026

2.0826 0.1800 1.015 1.012 0.4200 −0.166 −0.167

G1
G2

δ

a

b

k

π2

λ

Fig. 8 A circular rod with a ring of circular inclusions

may open the issue that Kuo and Conway’s result may be
questionable. In general, the numerical analysis is developed
to predict the data before experiment. However, we always
find that the results have differences between the numeri-
cal analysis and experiment data. We may wonder that the

numerical result may not be correct if the two results deviate.
As we know, the mathematical model is established under
certain assumptions. Therefore, the mathematical model is
always simpler than the real problem. If the mathematical
model has the analytical or exact solution, it is the basic solu-
tion for comparison with the numerical result. For the real
problem, many uncertain conditions exist in the experiment.
Valid experimental data need special care. The inconsistency
between the experimental data and numerical results stems
from many reasons. So, the mathematical model is continu-
ously modified by adding specific consideration.

Example 4 A circular rod with several rings of circular
inclusions.

In this example, we consider a circular rod with several
rings of circular inclusions proposed by Kuo and Conway
[13]. Four cases were addressed

Case 1: b1
a = 3

8 ,
b2
a = 3

4 ,
λ
a = 1

8 ,
G
G0

= 30, j = 2, k = 6,

Case 2: b1
a = 1

4 ,
b2
a = 17

32 ,
b3
a = 13

16 ,
λ
a = 3

32 ,
G
G0

= 30,
j = 3, k = 6,

Case 3: b1
a = 3

8 ,
b2
a = 3

4 ,
λ
a = 1

8 ,
G
G0

= 0, j = 2, k = 6,

Case 4: b1
a = 1

4 ,
b2
a = 17

32 ,
b3
a = 13

16 ,
λ
a = 3

32 ,
G
G0

= 0,
j = 3, k = 6.
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Table 5 Torsional rigidity of different cases for a circular ring with
inclusions

Case
b

a

λ

a

δ

a

G2

G1
k

Ge

G1
[12]

Ge

G1
(present)

Case 1
3

4

1

8

1

2
30 8 1.2330 1.2924

Case 2
3

4

1

8

1

2
5 3 1.0466 1.0742

Case 3
1

2

1

4
0 29.4 4 1.5706 1 .7740

k

π2

a

G0

G
b1

bj

λ

Fig. 9 A circular rod with several rings of circular inclusions

Table 6 Torsional rigidity of different cases for a circular bar with two
and three rings of holes or inclusions

Case
b1

a

b2

a

b3

a

λ

a

G

G0
j k

Geff

G0
[13]

Geff

G0
(present)

1
3

8

3

4
–

1

8
30 2 6 1.1205 1.3553

2
1

4

17

32

13

16

3

32
30 3 6 1.0618 1.2332

3
3

8

3

4
–

1

8
0 2 6 0.9636 0.7493

4
1

4

17

32

13

16

3

32
0 3 6 0.9745 0.7800

The geometry sketch is shown in Fig. 9. The results of our
approach and those of Kuo and Conway are shown in Table 6.
In a similar situation of the previous example, the torsional
rigidities deviate with those of Kuo and Conway’s result. The
reason may be explained in a similar way of Example 3.

Example 5 A circular rod with three circular inclusions.

a0

a1

a2

a3

Fig. 10 A circular bar with three arbitrary circular inclusions

In this example, we design a circular rod with three arbi-
trary circular inclusions as shown in Fig. 10. The centers of
three inclusions are (−4, 1), (0, 1.732) and (0.75, 0.5). The
radii of the circular bar and three inclusions are 0.4, 1.25, 1
and 0.5, respectively. The shear moduli are given as 1.0, 1.5,
2.25 and 0.5. For the case, the torsional rigidity is obtained as
1.11018 by using the present approach. The torsional rigid-
ity of the circular holes is found to be 0.53209 by setting
zero moduli of the three inclusions as a special case. The
case shows the great generality of the present approach to
deal with the problem of a torsion bar with arbitrary number,
radii and position inclusions and/or holes.

5 Conclusions

Torsion problems with circular inclusions as well as holes
have been successfully solved by using the present formula-
tion. Here, we presented a different way to avoid the singular
and hypersingular integrals by kernel separation instead of
conventional bump contour approach. Our solutions match
well with the exact solution if available and other solutions
by using the integral formulation. Only 41 collocation points
uniformly distributed on each boundary are required to obtain
the accurate results of torsional rigidity with error less than
1% after comparing with the exact solution. For the stress
response, our approach also agrees well with the analytical
solution. The program was developed to deal with arbitrary
number, different positions, various radii and shear moduli of
inclusions. The proposed approach is free from calculating
principal value, of boundary-layer effect, while the exponen-
tial convergence and the meshless method are included in the
original elements and advantages of the method. Besides, the
BIEs for the domain point or the null-field equation in our
formulation can both be employed by exactly collocating the
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point on the real boundary thanks to the introduction of the
degenerate kernels.
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