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Abstract In this paper, we employ the null-field boundary integral equation method (BIEM) in conjunction
with degenerate kernels to solve eigenproblems of the prolate spheroidal resonators. To detect the spurious
eigenvalues and the corresponding occurring mechanisms which are common issues while utilizing the bound-
ary element method or the BIEM, we use angular prolate spheroidal wave functions and triangular functions
to expand boundary densities. In this way, the boundary integral of a prolate spheroidal surface is exactly
determined, and eigenequations are analytically derived. It is revealed that the spurious eigenvalues depend
on the integral, representations and the shape of the inner boundary. Furthermore, it is interesting to find
that some roots of the confocal prolate spheroidal resonator are double roots no matter that they are true or
spurious eigenvalues. Illustrative examples include confocal prolate spheroidal resonators of various boundary
conditions. To validate these findings and accuracy of the present approach, the commercial finite-element
software ABAQUS is also applied to perform acoustic analyses. Good agreement is obtained between the
acoustic results obtained by the null-field BIEM and those provided by the commercial finite-element software
ABAQUS.

1 Introduction

Eigenanalysis is a fundamental issue for vibration, acoustics and electromagnetic wave propagation such
as loudspeaker enclosures, fluid-filled vessels, muffler systems, vehicle compartments, aircraft cabins and
waveguides. It is a useful reference for safety and comfort designs. Besides, it also can provide a base for
the structural health monitoring in recent years. To offer resonance frequencies and modes obtained by model
tests or numerical analyses is very important. From the view point of cost, numerical analyses are more
efficient than model tests. Therefore, a demand for eigenanalysis is to develop an efficient and reliable method
for computations of eigenvalues and eigenmodes. During the recent decades, many numerical methods have
been employed to solve eigenproblems. Two approaches, the finite element method (FEM) and the boundary
element method (BEM), have been recognized as effective methods in numerical analyses. Although the FEM
is a popular method for solving eigenproblems, it needs a lot of time to generate the mesh for problems with
complex geometries. In this aspect, the BEM is an efficient alternative from the viewpoint of mesh reduction.
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For 2D eigenproblems, Tai and Shaw [1] first employed the complex-valued BEM to solve membrane
vibration. De Mey [2] revisited this problem in 1976. Later, De Mey [3] proposed a simplified approach by
using only the real part or imaginary part kernel where he found that spurious solutions were imbedded as
well as the ill-conditioned matrix appeared. In a similar way of using the real part kernel, Hutchinson [4,5]
solved the free vibration of a plate. Also, Yasko [6] as well as Duran et al. [7] employed the real part kernel
approach. Chen and his NTOU/MSV group proposed the null-field BIEM in conjunction with degenerate
kernels to solve eigenproblems containing circular [8] or elliptical holes [9]. The advantage of being free of
calculating the principal value is gained. Their approach is a semi-analytical method since errors only occur
from the truncation of the number of the boundary density.

Regarding 3D eigenproblems, Tsai et al. [10] used the method of fundamental solutions to determine
the eigenvalues of a concentric sphere. Chen et al. [11] also considered the same problem by using the
null-field BIEM. Chang [12] determined the natural frequencies of a prolate acoustical resonator. Chen [13]
employed the variational formulation to calculate natural frequencies. Both Dirichlet and Neumann boundary
conditions were considered. Filippi [14] used the integral equation method to obtain eigenfrequencies of an
oblate spheroidal cavity containing a concentric sphere. In 1999, Kokkorakis and Roumeliotis [15] extended
the problem considered by Filippi to a prolate spheroidal cavity containing a concentric penetrable sphere by
using the wave function expansion and the shape perturbation method.

Although the BEM or BIEM only generates the mesh on the boundary, it may face with the calculation of the
principal value and the pollution of spurious eigenvalues. When we deal with the simply connected problems
by using only the real or the imaginary part kernel [16,17], spurious eigenvalues may appear. Even though
we employ the complex-valued kernel for eigenproblems containing multiply connected domain, the spurious
eigensolutions also occur [18,19]. Therefore, it is not trivial to study the appearing mechanism of spurious
eigenvalues. Kuo et al. [16] proved the existence of spurious eigensolutions and pointed out that spurious
eigenvalues occur at the zeros of the mth-order Bessel functions of the second kind or their derivatives through
a circular membrane for the real part dual BEM. Later, Chen et al. [20], and Lee and Chen [21] extended a
circular membrane to a circular plate by using the real-part BEM and BIEM, respectively. Later, they also
extended studies of circular membranes to elliptical ones [22]. Besides, Shi et al. [23] employed the boundary
knot method to solve the problem of free vibration of thin plates. Then, Chen et al. [24] numerically investigated
spurious eigenvalues of plate problems by using the non-dimensional dynamic influence function method. For
multiply connected eigenproblems, Chen et al. [9,11,18,19] employed the degenerate kernels to analytically
study the reason why spurious eigenvalues may occur in the cases of an annular and a confocal ellipse, even
though the complex-valued kernels are used. They found that spurious eigenvalues depend on the geometry of
inner boundary and the integral representation. Extension to study 3D problems is not trivial.

Following the successful experiences of employing the null-field BIEM to solve eigenproblems containing
circular and elliptical boundaries, respectively, we extend the null-field BIEM to analytically study the eigen-
problems of the confocal prolate spheroidal resonator in this paper. A null-field BIEM is utilized in conjunction
with the degenerate kernel and the eigenfunction expansion. To fully utilize the prolate spheroidal geometry for
an analytical study, the prolate spheroidal coordinates and prolate spheroidal wave functions [25,26] are used.
To describe the discontinuity of double-layer potential, three alternatives were provided. One is the Taylor
expansion with respect to the boundary density function. Another is the bump contour with respect to the
boundary contour integral. The other is to express the closed-form fundamental solution into the expression
of the degenerate kernel. Here, the last technique is considered. The fundamental solution is expanded to the
degenerate kernel [27] in the prolate spheroidal coordinates. Also, the boundary densities are expanded by
using the eigenfunction expansions. The advantage of being free of calculating the principal value is also
gained. Finally, the true and spurious eigenequations of the confocal prolate spheroidal resonator are analyt-
ically derived by using the null-field BIEM and numerically verified by using the commercial finite-element
software ABAQUS.

2 System of prolate spheroidal coordinate and problem statement

2.1 System of prolate spheroidal coordinate

For the prolate spheroidal coordinates, the relation of (ξ, η, φ) to the 3D Cartesian coordinates. (x, y, z) is
defined as
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Fig. 1 Sketch of a confocal prolate spheroidal resonator
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x = c
√

(ξ2 − 1)(1 − η2) cos(φ),

y = c
√

(ξ2 − 1)(1 − η2) sin(φ),

z = cξη,

(1)

where c is the semi-focal length and the range of the three coordinates is

1 ≤ ξ,−1 ≤ η ≤ 1, 0 ≤ φ ≤ 2π. (2)

2.2 Problem statement

For the eigenproblem of a confocal prolate spheroidal resonator as shown in Fig. 1, the acoustic pressure
satisfies the Helmholtz equation as follows:

(∇2 + k2)u(x) = 0, x ∈ V (3)

where ∇2 is the Laplacian operator, k is the wave number, u(x) is the acoustic pressure, x is the field point and
V is the domain of interest. As shown in Fig. 1, a0 and b0 are the lengths of semi-major and semi-minor axes
for the outer prolate spheroid, a1 and b1 are the lengths of semi-major and semi-minor axes for the inner prolate
spheroid, ξ0 and ξ1 stand for the radial coordinates for the outer and inner prolate spheroids, respectively, S0
and S1 stand for the surfaces for the outer and inner prolate spheroids, respectively. For this confocal case,
the analytical solution can be derived in the prolate spheroidal coordinates since we can utilize global prolate
spheroidal coordinates to describe the inner and outer surfaces simultaneously as shown later.

3 Dual boundary element formulations—the conventional version

Based on Green’s third identity, the dual boundary integral equations for the boundary point are shown below:

2πu(x) = C.P.V .

∫

S

T c(s, x)u(s)d S(s) − R.P.V .

∫

S

U c(s, x)t (s)d S(s), x ∈ S, (4)

2π t (x) = H.P.V .

∫

S

Mc(s, x)u(s)d S(s) − C.P.V .

∫

S

Lc(s, x)t (s)d S(s), x ∈ S (5)

where Eqs. (4) and (5) are singular and hypersingular boundary integral equations, respectively, R.P.V .,
C.P.V . and H.P.V . denote the Riemann principal value (Riemann sum), Cauchy principal value and Hadamard
(or the so-called Mangler) principal value, respectively, t (x) = ∂u(x)/∂nx, s is the position vector of the source
point of the fundamental solution, S is the surface of the object, and U c(s, x) is the closed-form fundamental
solution which satisfies

(∇2 + k2)U c(s, x) = 4π δ(x − s), (6)

where the closed-form fundamental solution is

U c(s, x) = −eikr

r
= −ik h(1)

0 (kr), (7)
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in which r ≡ |s − x| is the distance between the source point and the field point, and h(1)
0 (kr) is the zeroth-

order spherical Hankel function of the first kind. The other closed-form kernel functions, T c(s, x), Lc(s, x)
and Mc(s, x) are defined by

T c(s, x) = ∂U c(s, x)

∂ns
, (8)

Lc(s, x) = ∂U c(s, x)

∂nx
, (9)

Mc(s, x) = ∂2U c(s, x)

∂ns∂nx
. (10)

3.1 Dual null-field boundary integral formulations—the present version

By introducing degenerate kernels to represent the closed-form fundamental solution, the collocation point
can be exactly located on the real boundary without the need of calculating the principal value in the bump
contour approach. By choosing the proper degenerate kernels, the representations of the conventional integral
equations including the boundary point can be written as

4πu(x) =
∫

S

T d(s, x)u(s)d S(s) −
∫

S

U d(s, x)t (s)d S(s), x ∈ V ∪ S, (11)

4π t (x) =
∫

S

Md(s, x)u(s)d S(s) −
∫

S

Ld(s, x)t (s)d S(s), x ∈ V ∪ S, (12)

and

0 =
∫

S

T d(s, x)u(s)d S(s) −
∫

S

U d(s, x)t (s)d S(s), x ∈ V c ∪ S, (13)

0 =
∫

S

Md(s, x)u(s)d S(s) −
∫

S

Ld(s, x)t (s)d S(s), x ∈ V c ∪ S (14)

where V c is the complementary domain. It is noted that the observation point of Eqs. (11)–(14) can contain
the boundary point (x → B) since the kernel functions (U d , T d , Ld and Md) are expressed in terms of proper
degenerate kernels which will be elaborated later on. Although the symbols for four kernels in Eqs. (11), (12)
and (13), (14) are the same, their representation formulae are different. Based on the property of separation
variables in the prolate spheroidal coordinates, the closed-form fundamental solution U c(s, x), other closed-
form kernel functions of T c(s, x) Lc(s, x) and Mc(s, x) can be expressed in terms of the degenerate kernel
as shown below:

U d(s, x) =
⎧
⎨

⎩

U E (s, x) = lim
N→∞ U E

N (s, x), ξx ≥ ξs,

U I (s, x) = lim
N→∞ U I

N (s, x), ξx < ξs,
(15)

T d(s, x) =
⎧
⎨

⎩

T E (s, x) = lim
N→∞ T E

N (s, x), ξx > ξs,

T I (s, x) = lim
N→∞ T I

N (s, x), ξx < ξs,
(16)

Ld(s, x) =
⎧
⎨

⎩

L E (s, x) = lim
N→∞ L E

N (s, x), ξx > ξs,

L I (s, x) = lim
N→∞ L I

N (s, x), ξx < ξs,
(17)

Md(s, x) =
⎧
⎨

⎩

M E (s, x) = lim
N→∞ M E

N (s, x), ξx ≥ ξs,

M I (s, x) = lim
N→∞ M I

N (s, x), ξx < ξs
(18)



Eigenanalysis for a confocal prolate spheroidal resonator 479

where x = (ξx, ηx, φx) and s = (ξs, ηs, φs) stand for the prolate spheroidal coordinates, U E
N (s, x), U I

N (s, x),
T E

N (s, x), T I
N (s, x), L E

N (s, x), L I
N (s, x), M E

N (s, x), and M I
N (s, x) are degenerate kernels in the prolate

spheroidal coordinates (finite-rank approximation) as shown below [27]:

U d(s, x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

U E
N (s, x) = −2ik

N∑

n=0

n∑

m=0

εm
	mn

jemn(q, ξs)hemn(q, ξx)

Smn(q, ηs)Smn(q, ηx) cos[m(φs − φx)], ξx ≥ ξs,

U I
N (s, x) = −2ik

N∑

n=0

n∑

m=0

εm
	mn

jemn(q, ξx)hemn(q, ξs)

Smn(q, ηs)Smn(q, ηx) cos[m(φs − φx)], ξx < ξs,

(19)

T d(s, x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

T E
N (s, x) = −2ik

√
ξ2

s −1

c
√

ξ2
s −η2

s

N∑

n=0

n∑

m=0

εm
	mn

je′
mn(q, ξs)hemn(q, ξx)

Smn(q, ηs)Smn(q, ηx) cos[m(φs − φx)], ξx > ξs,

T I
N (s, x) = −2ik

√
ξ2

s −1

c
√

ξ2
s −η2

s

N∑

n=0

n∑

m=0

εm
	mn

jemn(q, ξx)he′
mn(q, ξs)

Smn(q, ηs)Smn(q, ηx) cos[m(φs − φx)], ξx < ξs,

(20)

Ld(s, x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L E
N (s, x) = −2ik

√
ξ2

x −1

c
√

ξ2
x −η2

x

N∑

n=0

n∑

m=0

εm
	mn

jemn(q, ξs)he′
mn(q, ξx)

Smn(q, ηs)Smn(q, ηx) cos[m(φs − φx)], ξx > ξs,

L I
N (s, x) = −2ik

√
ξ2

x −1

c
√

ξ2
x −η2

x

N∑

n=0

n∑

m=0

εm
	mn

je′
mn(q, ξx)hemn(q, ξs)

Smn(q, ηs)Smn(q, ηx) cos[m(φs − φx)], ξx < ξs,

(21)

Md(s, x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

M E
N (s, x) = −2ik

√
(ξ2

s −1)(ξ2
x −1)

c2
√

(ξ2
s −η2

s )(ξ2
x −η2

x)

N∑

n=0

n∑

m=0

εm
	mn

je′
mn(q, ξs)he′

mn(q, ξx)

Smn(q, ηs)Smn(q, ηx) cos[m(φs − φx)], ξx ≥ ξs,

M I
N (s, x) = −2ik

√
(ξ2

s −1)(ξ2
x −1)

c2
√

(ξ2
s −η2

s )(ξ2
x −η2

x)

N∑

n=0

n∑

m=0

εm
	mn

je′
mn(q, ξx)he′

mn(q, ξs)

Smn(q, ηs)Smn(q, ηx) cos[m(φs − φx)], ξx < ξs

(22)

where εm is the Neumann factor

εm =
{

1, m = 0,
2, m = 1, 2, . . . , ∞,

(23)

and hemn is the radial prolate spheroidal wave function of the third kind and is defined as

hemn(q, ξ) = jemn(q, ξ) + i yemn(q, ξ), (24)

in which jemn and yemn are the radial prolate spheroidal wave functions of the first and second kind, respec-
tively, Smn is the angular prolate spheroidal wave function, 	mn is the normalized constant of the angular
prolate spheroidal wave function as shown below [25]:

	mn =
1∫

−1

Smn(q, η)Smn(q, η)dη = 2
∞∑

j=0,1

′
( j + 2m)!

[
dmn

j (q)
]2

(2 j + 2m + 1) j ! (25)

where dmn
j (q) is the expansion coefficient of the angular prolate spheroidal wave functions [25] and q = ck.

For the detail information of dmn
j (q), it is given in the Appendix. It is noted that U d and Md kernels in Eqs.

(19) and (22) contain the equal sign of ξx = ξs while T d and Ld kernels do not include the equal sign due
to the discontinuity across the boundary. For the representations of degenerate kernels, we consult those of
Morse and Feshbach [27].
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3.2 Expansion for boundary densities

The orthogonal relation of the angular prolate spheroidal wave functions [25] is shown below:

1∫

−1

Smn(q, η)Smn′(q, η)dη, =
{

	mn, n′ = n,
0, n′ �= n.

(26)

In order to fully utilize the orthogonal relations of the angular prolate spheroidal wave functions, we apply
the angular prolate spheroidal wave functions and the triangular function to approximate the acoustic pressure
u(s) and its normal derivative t (s) on the spheroidal surface as follows:

u(s) =
∞∑

v=0

v∑

w=0

gwv Swv(q, ηs) cos(wφs) +
∞∑

v=1

v∑

w=1

hwv Swv(q, ηs) sin(wφs), s ∈ S, (27)

t (s) =
√

ξ2
s − 1

c
√

ξ2
s − η2

s

[ ∞∑

v=0

v∑

w=0

pwv Swv(q, ηs) cos(wφs) +
∞∑

v=1

v∑

w=1

qwv Swv(q, ηs) sin(wφs)

]

, s ∈ S, (28)

respectively, where gwv, hwv, pwv and qwv are the unknown coefficients of the boundary densities.

4 Analytical derivation of eigenequations for a confocal prolate spheroidal resonator

Following successful experiences in the annular cases [18,19] and the confocal elliptical case [9], it has been
revealed that the corresponding mechanism of the spurious eigensolutions of eigenproblems containing a
multiply connected domain depends on the geometry of the inner boundary and the integral formulations. In
this paper, we extend to the case of a confocal prolate spheroidal resonator as shown in Fig. 1. The radial
parameters of the confocal prolate spheroidal resonator are ξ = ξ0 and ξ = ξ1 for the outer and inner surfaces,
respectively. First, we consider the confocal prolate spheroidal resonator subject to the Dirichlet–Dirichlet
B.C. as shown below:

u(x) = 0, x ∈ S0 ∪ S1. (29)
Equations (13) and (14) are rewritten as

0 =
1∑

j=0

∫

S j

T d(s j , x)u j (s j )d S(s j ) −
1∑

j=0

∫

S j

U d(s j , x)t j (s j )d S(s j ), x ∈ V c ∪ S, (30)

0 =
1∑

j=0

∫

S j

Md(s j , x)u j (s j )d S(s j ) −
1∑

j=0

∫

S j

Ld(s j , x)t j (s j )d S(s j ), x ∈ V c ∪ S, (31)

and boundary flux densities are expressed by

t j (s j ) =
√

ξ2
j − 1

c
√

ξ2
j − η2

s j

[ ∞∑

v=0

v∑

w=0

p j
wv Swv(q, ηs j ) cos(wφs j ) +

∞∑

v=1

v∑

w=1

q j
wv Swv(q, ηs j ) sin(wφs j )

]

, s j ∈ S j

(32)
where p j

wv and q j
wv are the unknown coefficients of the boundary density on S j ( j = 0, 1). Substituting Eqs.

(19), (20), (29) and (32) to Eq. (30) and collocating the field point exactly on the outer surface S0, we have

4π ikc(ξ2
0 − 1)

( ∞∑
v=0

v∑

w=0
jewv(q, ξ0)hewv(q, ξ0)Swv(q, ηx) cos(wφx)p0

wv

+
∞∑

v=1

v∑

w=1
jewv(q, ξ0)hewv(q, ξ0)Swv(q, ηx) sin(wφx)q0

wv

)

+ 4π ikc(ξ2
1 − 1)

( ∞∑
v=0

v∑

w=0
jewv(q, ξ1)hewv(q, ξ0)Swv(q, ηx) cos(wφx)p1

wv

+
∞∑

v=1

v∑

w=1
jewv(q, ξ1)hewv(q, ξ0)Swv(q, ηx) sin(wφx)q1

wv

)

= 0.

(33)
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By employing the orthogonal relations for the field point (ξ1), we have

(ξ2
0 − 1) jemn(q, ξ0)hemn(q, ξ0)p0

mn + (ξ2
1 − 1) jemn(q, ξ1)hemn(q, ξ0)p1

mn = 0, (34)

(ξ2
0 − 1) jemn(q, ξ0)hemn(q, ξ0)q

0
mn + (ξ2

1 − 1) jemn(q, ξ1)hemn(q, ξ0)q
1
mn = 0. (35)

By collocating the field point of Eq. (30) exactly on the inner surface S1, we have

4π ikc(ξ2
0 − 1)

( ∞∑

v=0

v∑

w=0

jewv(q, ξ1)hewv(q, ξ0)Swv(q, ηx) cos(wφx)p0
wv

+
∞∑

v=1

v∑

w=1

jewv(q, ξ1)hewv(q, ξ0)Swv(q, ηx) sin(wφx)q
0
wv

)

+ 4π ikc(ξ2
1 − 1)

( ∞∑

v=0

v∑

w=0

jewv(q, ξ1)hewv(q, ξ1)Swv(q, ηx) cos(wφx)p1
wv

+
∞∑

v=1

v∑

w=1

jewv(q, ξ1)hewv(q, ξ1)Swv(q, ηx) sin(wφx)q
1
wv

)

= 0. (36)

By employing the orthogonal relations for the field point (ξ0), we have

(ξ2
0 − 1) jemn(q, ξ1)hemn(q, ξ0)p0

mn + (ξ2
1 − 1) jemn(q, ξ1)hemn(q, ξ1)p1

mn = 0, (37)

(ξ2
0 − 1) jemn(q, ξ1)hemn(q, ξ0)q

0
mn + (ξ2

1 − 1) jemn(q, ξ1)hemn(q, ξ1)q
1
mn = 0. (38)

According to Eqs. (34), (35), (37) and (38), we obtain two simultaneous equations as follows:
[

(ξ2
0 − 1) jemn(q, ξ0)hemn(q, ξ0) (ξ2

1 − 1) jemn(q, ξ1)hemn(q, ξ0)

(ξ2
0 − 1) jemn(q, ξ1)hemn(q, ξ0) (ξ2

1 − 1) jemn(q, ξ1)hemn(q, ξ1)

]{
p0

mn
p1

mn

}

=
{

0
0

}

, (39)

[
(ξ2

0 − 1) jemn(q, ξ0)hemn(q, ξ0) (ξ2
1 − 1) jemn(q, ξ1)hemn(q, ξ0)

(ξ2
0 − 1) jemn(q, ξ1)hemn(q, ξ0) (ξ2

1 − 1) jemn(q, ξ1)hemn(q, ξ1)

]{
q0

mn
q1

mn

}

=
{

0
0

}

. (40)

In order to obtain a non-trivial solution, the determinant of Eqs. (39) and (40) is equal to zero. For unknown

coefficients,
〈
p0

mn p1
mn

〉T
, we have two possible eigenequations as shown below:

jemn(q, ξ0)yemn(q, ξ1) − jemn(q, ξ1)yemn(q, ξ0) = 0, m = 0, 1, 2, . . . , n, n = 0, 1, 2, . . . ,∞, (41)

jemn(q, ξ1) = 0, m = 0, 1, 2, . . . , n, n = 0, 1, 2, . . . ,∞. (42)

Similarly, we have two possible eigenequations for unknown coefficients,
〈
q0

mn q1
mn

〉T
,

jemn(q, ξ0)yemn(q, ξ1) − jemn(q, ξ1)yemn(q, ξ0) = 0, m = 1, 2, . . . , n, n = 1, 2, . . . ,∞, (43)

jemn(q, ξ1) = 0, m = 1, 2, . . . , n, n = 1, 2, . . . ,∞. (44)

Although eigenequations can be analytically derived by using only the singular integral formulation, we cannot
distinguish whether it is true or spurious. Besides, it is found that eigenvalues are double roots no matter if
they are true or spurious eigenvalues, when m �= 0. Based on the hypersingular integral equation of Eq. (31),
we also obtain four possible eigenequations. Namely, the following two equations:

je′
mn(q, ξ1) = 0, m = 0, 1, 2, . . . , n, n = 0, 1, 2, . . . ,∞, (45)

je′
mn(q, ξ1) = 0, m = 1, 2, . . . , n, n = 1, 2, . . . ,∞, (46)
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and the other two are the same like Eqs. (41) and (43). If we employ two different approaches to solve the
same problem, we should obtain the same and true solution. Therefore, it indicates that Eqs. (42), (44) and
(45), (46) are the spurious eigenequations by using Eqs. (30) and (31), respectively.

Following the above procedures, true and spurious eigenequations for the other three kinds of bound-
ary conditions, namely Neumann–Neumann, Dirichlet–Neumann and Neumann–Dirichlet types, can also be
analytically derived. True and spurious eigenequations for problems subject to various boundary conditions
(Dirichlet–Dirichlet, Neumann–Neumann, Dirichlet–Neumann and Neumann–Dirichlet) are summarized in
Table 1. It is interesting to find that spurious eigenequations depend on the geometry of inner boundary and
integral representations. This conclusion agrees well with those of the annular case [18,19] and the confocal
elliptical case [9].

5 Numerical examples

In this paper, we focus on the eigenproblem of a confocal prolate spheroidal resonator and consider four kinds
of boundary conditions as shown in Fig. 1. The four kinds of boundary conditions are Dirichlet–Dirichlet,
Neumann–Neumann, Dirichlet–Neumann and Neumann–Dirichlet types, respectively. The lengths of semi-
major and semi-minor axes for the inner prolate spheroid are a1 = 1.5 and b1 = 1, respectively. The radial
parameter ξ of the inner prolate spheroid is ξ1 = cosh(tanh−1(b1/a1)), and the outer prolate spheroid is
described by ξ0 = 1.5ξ1. We list the former ten possible eigenvalues in Tables 2, 3, 4 and 5 including the
results of the analytical solutions and those of the FEM. Good agreements are made except the results of spurious
eigenvalues because no spurious eigenvalues appear in those of the FEM. Table 6 shows the eigenmodes for
the first double roots. It is found that the even mode is symmetric to the plane of y = 0, while the odd mode
is antisymmetric to the plane of y = 0. It is found that the modes on some planes are zero response because
those planes are nodal surfaces. Besides, the ABAQUS commercial software has its own post processing, so
we plot these eigenmodes obtained by the ABAQUS program in terms of the shading mode.

6 Conclusions

In this paper, we have successfully employed the null-field BIEM in conjunction with degenerate kernels to
solve 3D eigenproblems of a confocal prolate spheroidal resonator. The closed-form kernel functions were
expanded into degenerate kernels in the prolate spheroidal coordinates. We used angular prolate spheroidal
wave functions and triangular functions to expand the boundary densities. In this way, the boundary integral
of the prolate spheroidal surface can be exactly determined, and eigenequations can be analytically derived.
Based on the results of analytical derivation, it is also revealed that spurious eigensolutions depend on the
geometry of the inner boundary and the integral representations. Besides, owing to the symmetry of a confocal
prolate spheroid, true and spurious eigenvalues are double roots for m �= 0. Finally, solutions obtained by
using the null-field BIEM agree well with those results provided by the commercial finite-element software
ABAQUS. Based on the successful experience of this paper, we can attempt to extend the confocal prolate
case to the confocal oblate case in the future work. Furthermore, eigenproblems of non-confocal cases can be
dealt with in a semi-analytical manner by introducing the adaptive observer system. Although the proposed
approach is not suitable for any geometry, the numerical results obtained by the proposed approach are more
accurate than those by the conventional BEM. Besides, it is not trivial to analytically study the occurring
mechanism of spurious eigenvalues in using BEM or BIEM. For the problem with special geometry such as
sphere and prolate spheroid, the proposed approach can also analytically solve the problem. Although the
degenerate kernel looks more complicated than the closed-form fundamental solution, the main advantage has
three aspects. One is analytical integration for singular and hypersingular integrals free of C.P.V . and H.P.V .
Another is analytical prediction for the true and spurious eigenvalues. The other is that the BIE is nothing more
than the linear algebra after using a degenerate kernel for the BIE.
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Table 6 The corresponding eigenmodes to the first double roots
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Appendix

The normalized constant of the angular prolate spheroidal wave function, 	mn , can be analytically determined
by the following equation [25]:

	mn =
1∫

−1

Smn(q, η)Smn(q, η)dη = 2
∞∑ ′

j=0,1

( j + 2m)!
[
dmn

j (q)
]2

(2 j + 2m + 1) j ! (A1)

where dmn
j (q) are the expansion coefficients of the angular prolate spheroidal wave functions, Smn , as shown

below:

Smn(q, η) =
∞∑ ′

j=0,1

dmn
j (q)Pm

m+ j (η), (A2)
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in which Pm
m+ j (η) is the associated Legendre function of the first kind. The expansion coefficients can be

obtained by the following linear eigenvalue equations:

⎡

⎢
⎢
⎢
⎢
⎢
⎣

β0 α0
γ2 β2 α2

. . .

γ2 j β2 j α2 j
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

dmn
0 (q)

dmn
2 (q)

...
dmn

2 j (q)

...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= λmn(q)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

dmn
0 (q)

dmn
2 (q)

...
dmn

2 j (q)

...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (n − m = even), (A3)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

β1 α1
γ3 β3 α3

. . .

γ2 j+1 β2 j+1 α2 j+1
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

dmn
1 (q)

dmn
3 (q)

...
dmn

2 j+1(q)

...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

= λmn(q)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

dmn
1 (q)

dmn
3 (q)

...
dmn

2 j+1(q)

...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (n − m = odd) (A4)

where λmn(q) is the characteristic value and

α j = (2m + j + 2)(2m + j + 1)

(2m + 2 j + 5)(2m + 2 j + 3)
q2, (A5)

β j = (m + j)(m + j + 1) + 2(m + j)(m + j + 1) − 2m2 − 1

(2m + 2 j − 1)(2m + 2 j + 3)
q2, (A6)

γ j = j ( j − 1)

(2m + 2 j − 3)(2m + 2 j − 1)
q2. (A7)

To determine the unique coefficients, normalization for the coefficients is introduced as shown below:

∞∑ ′

j=0,1

(−1)( j−δ)/2( j + 2m + δ)!
2 j

(
j−δ
2

)
!
(

j+2m+δ
2

)
!

dmn
j (q) = (−1)(n−m−δ)/2(n + m + δ)!

2n−m
( n−m−δ

2

)! ( n+m+δ
2

)! , (A8)

where

δ =
{

0, n − m = even,
1, n − m = odd. (A9)
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