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Abstract The stress concentration factor (SCF) along the boundary of a hole and a rigid inclusion in an
infinite isotropic solid under the anti-plane shear is revisited by using degenerate kernels in the boundary
integral equation (BIE) although this result was obtained by invoking the extended circle theorem of Milne-
Thomson as well as the complex variable approach. The degenerate kernel of series form for the closed-form
fundamental solution is used for the circle and the ellipse in terms of polar and elliptic coordinates, respectively.
The slender ratio of the ellipse and the orientation are two parameters for our study. The strain energy density
along the boundary is increased or decreased due to the different types of loading and various aspect ratios of
the ellipse. An analytical solution for the SCF is then derived for any orientation of the ellipse relative to the
applied load. The reciprocal relation for the SCF between a hole and a rigid inclusion with respect to different
loading is also addressed. Besides, this analytical derivation can clearly show the appearing mechanism why
the BEM/BIEM suffers the degenerate scale in the rigid inclusion.

Keywords Stress concentration factor · Anti-plane shear · Degenerate kernel · Rigid inclusion

1 Introduction

The problem of SCF around holes or rigid inclusions under the remote anti-plane shear loading has been
investigated by many researchers, but mostly analytical solutions have been derived primarily for an infinite
plane by using the complex variables of analytical functions. A comparison of the stress concentration around
the circular holes between the theory [1] and experimentswas studied byMeguid andGong [2].An experimental
proof of stress concentrations around stiff rectangular and rhombohedral inclusions has been provided by using
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photoelasticity [3]. Furthermore, real engineering experiments onmortar specimens containing inclusions have
been conducted [4].

Here, we focus on our attention to the problem of anti-plane elasticity which is sometimes considered due
to not only its mathematical abstraction but also its popularity for the anti-plane shear problem of holes or
inclusions embedded in an infinite elastic plane containing in fiber-reinforced composites and crack. Chen et
al. [5] evaluated the degenerate scale for BIE in plane elasticity and anti-plane elasticity by using conformal
mapping. Zou [6] investigated Eshelby’s anti-plane inclusion problem of a cylindrical isotropic elastic body
with finite but arbitrary cross section. Some real examples of anti-plane problems were reported. Most often,
the anti-plane problem of an inclusion has been investigated with respect to uniform boundary conditions
[7–9]. The nonuniform loading has also been studied [10–12]. Savin [13] gave a wide variety of hole shapes
and a number of different multiple-hole patterns under different loading conditions.

Recently, Lubarda [14] revisited the analytical solution of anti-plane shear problems for the circumferential
shear stress around circular and elliptic holes, the strain energy and SCFswere also discussed. Noda and Takase
[15] considered stress concentration formulas for all notch shape by using the body force method. He gave
an example of anti-plane shear to explain the fundamental ideas. Honein et al. [16] have solved problems of
two arbitrary circular holes or rigid inclusions of different shear moduli under the remote shear. They have
introduced theMöbius transformation involving the complex potential to analytically investigate the stress field
around the hole. Since the extension to more than two holes may have difficulty in the Möbius formulation,
NTOU/MSV group [17] proposed a semi-analytical approach, so-called the null-field integral formulation to
solve problems containing several circular holes. The key idea is that they employed the degenerate kernel
to solve the BIE in conjunction with the adaptive observer system. Although the degenerate kernel plays an
important role in the theory of integral equations and gives a natural approximation, its use in engineering
problems seems to have taken a back seat to other methods such as quadrature and collocation as quoted by
Golberg [18]. In the literature, only few researchers have applied the degenerate kernel to solve boundary
value problems. Golberg [18] pointed out the potential power of degenerate kernel in the BIE as well as BEM,
while Galybin [19] solved the crack problems by using the degenerate kernel. Mathematically speaking, the
integral equation is nothing more than the linear algebra [20], once the degenerate kernel is available. In this
regard, we will demonstrate how the analytical tool, degenerate kernel, can solve the anti-plane shear problems
containing a circular and an elliptic hole or rigid inclusion. Lee and Chen [21] first proposed the degenerate
kernel in terms of elliptic coordinates and combined the null-field integral approach to deal with the anti-plane
problem. However, they did not focus on the SCF of the single elliptic/circular hole and rigid inclusions. For
the 3-D rigid inclusion problem, the interaction between elliptic and ellipsoidal inclusion under bending stress
fields were also addressed by Noda and Hayashida [22].

Despite the fact that nowadays FEM, BEM and meshless methods can numerically solve the problem,
a closed-form solution is still eagerly preferred over the numerical results mainly for two reasons. First, an
analytical solution can be chosen as a benchmark example for verifying the accuracy of numerical results.
Secondly, andmore definitely, the solution space of an analytical solution often leads to the clear understanding
of influence of parameter on the solution and get more physical insights into the problem under consideration
which may sometimes yield surprising and counter-intuitive features of the general solution. This is the reason
why we revisit the analytical solution by using the degenerate kernel instead of the complex variables. To
extend to the three dimensional case, our approach is more promising while the complex variables may be
hindered.

The stress field of infinite domain with a circular hole under the remote anti-plane shear follows from
a version of the Milne-Thomson circle theorem [23] for the two-dimensional irrotational flow of an incom-
pressible inviscid fluid. Complex variables in companion with the analytical function is now a classical tool
to solve such a problem. Here, we will employ the degenerate kernel in the BIE to revisit this problem. Not
only a circular/elliptic hole but also circular/elliptic rigid inclusion will be demonstrated by using the degen-
erate kernels in terms of polar and elliptical coordinates, respectively. Parameter study of the slender ratio
and the orientation angle of the ellipse will be done. The occurring mechanism of the degenerate scale in the
BEM/BIEM will also be examined only for the case of rigid inclusion instead of hole. The paper is organized
as follows: Sects. 2.1 and 2.2 begin with analytical solutions for the displacement of an infinite elastic body
containing a circular hole and an elliptic hole under the remote anti-plane shear by using the degenerate kernel,
respectively. Sections 3.1 and 3.2 present analytical solutions for the displacement of an infinite elastic body
containing a circular rigid inclusion and an elliptic rigid inclusion under the remote anti-plane shear by using
the degenerate kernel, respectively. Section 4 present the SCF value of the examples in Sects. 2–3, the general
formula and present approach we used will be compared. The reciprocal relation for the SCF between a hole
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and a rigid inclusion with respect to different loading is also addressed. Section 5 presents the strain energy,
and all figures match well with those of Lubarda [14] although a different approach using the degenerate kernel
is employed. Section 6 concludes with remarks about related and future work.

2 Analytical solution of an infinite elastic body containing circular hole or an elliptic hole under the
remote anti-plane shear by using the degenerate kernel

2.1 A circular hole under the remote anti-plane shear (σ∞
yz = S and σ∞

xz = 0) and (σ∞
yz = 0 and σ∞

xz = S)

The displacements for the anti-plane shear problem are given by

(ux , uy, uz) = (0, 0, uz(x, y)), (1)

where uz is the only nonvanishing component of displacement with respect to the Cartesian coordinates which
is a function of x and y only. Thus, the nonvanishing shear strains are given by

εxz = 1

2

∂uz
∂x

, εyz = 1

2

∂uz
∂y

, (2)

and the corresponding stresses follow Hooke’s law

σxz = 2μεxz, σyz = 2μεyz, (3)

where μ is the shear modulus. Therefore, the equilibrium equation reduces to

∂σxz

∂x
+ ∂σyz

∂y
= 0, (4)

which can be rewritten in terms of the displacement uz by using Eqs. (2) and (3) as follows

∂2uz
∂x2

+ ∂2uz
∂y2

= ∇2uz = 0. (5)

Now, we consider a circular hole in an infinite elastic body under the remote anti-plane shear stress
(σ∞

yz = S and σ∞
xz = 0) as shown in Fig. 1, where B is the boundary and a is the radius of the circle. The

boundary condition on the circular hole is free of traction, which yields the Neumann boundary condition,

t (x) = ∂uz
∂n

= 0, x ∈ B, (6)

where n is the unit outward normal vector. The shear stress and the displacement at infinity are

σ∞
yz = S, |y| → ∞, and u∞

z = Sy

μ
, |y| → ∞, (7)

respectively. By employing the superposition technique, the total displacement is decomposed into two parts
as shown in Fig. 1.

One is due to the remote shear loading σ∞
yz in an infinite plane, and the other uM

z is caused by the infinite
plane problem with a circular hole. The total displacement can be given as

uz = u∞
z + uM

z . (8)

Based on the potential theory, the closed-form fundamental solution in the BEM/BIEM for the Laplace problem
is U (s, x) = ln |x − s| = ln r , where r is the distance between x and s. By employing the separable property
of the kernel, U (s, x) can be expanded into the degenerate form by separating the source point and field point
in the polar coordinates [24] as given below:

U (s, x) =

⎧
⎪⎪⎨

⎪⎪⎩

Ui (R, θ; ρ, φ) = ln R −
∞∑

m=1

1
m (

ρ
R )m cosm(θ − φ), R � ρ, (a)

Ue(R, θ; ρ, φ) = ln ρ −
∞∑

m=1

1
m ( R

ρ
)m cosm(θ − φ), ρ > R, (b)

(9)
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(a) Original problem (b) Anti-plane shear without (c) The displacement
a hole            due to an infinite plane

containing a hole 

Fig. 1 A circular hole in an infinite elastic body under the remote anti-plane shear loading (σ∞
yz = S and σ∞

xz = 0)

where the field point x = (ρ, φ), the source point s = (R, θ), the superscripts “i” and “e” denote the interior
(R > ρ) and exterior (ρ > R) cases, respectively. The degenerate-kernel expression for the closed-form
fundamental solution is plotted in Fig. 2 to show its radial symmetry of the source behavior. After taking the
normal derivative −∂/∂R with respect to the source point, T (s, x) can be obtained as shown below:

T (s, x) =

⎧
⎪⎪⎨

⎪⎪⎩

T i (R, θ; ρ, φ) = −( 1
R +

∞∑
m=1

(
ρm

Rm+1 ) cosm(θ − φ)), R > ρ, (a)

T e(R, θ; ρ, φ) =
∞∑

m=1
( R

m−1

ρm ) cosm(θ − φ), ρ > R. (b)
(10)

The integral formulation for the domain point of Laplace problem can be derived from Green’s third identity.
By employing the degenerate kernel, the collocation point can be located on the real boundary free of facing
the singular integral. Therefore, the representations of conventional integral equations including the boundary
point can be written as

2πu(x) =
∫

B
T e(s, x)u(s)dB(s) −

∫

B
Ue(s, x)t (s)dB(s), x ∈ D ∪ B. (11)

The null-field integral equation is represented as

0 =
∫

B
T i (s, x)u(s)dB(s) −

∫

B
Ui (s, x)t (s)dB(s), x ∈ Dc ∪ B, (12)

where D is the domain, Dc is the complementary domain and t (s) = ∂u(s)
∂ns

.
Equations (11) and (12) can include the boundary point since a proper degenerate kernel is chosen.
To obtain the total displacement uz , we need to solve the unknown displacement uM

z (x) first. Since u∞
z is

given in Eq. (7), the displacement along the circular boundary in the infinite plane without a hole is

u0z (s) = S

μ
R sin θ, s = (R, θ) ∈ B, (13)

in polar coordinates. Therefore, we can easily obtain its normal derivative t0 and t M on the boundary

t0(s) = ∂u0z (s)

ns
= −∂u0z (s)

∂R
= − S

μ
sin θ, s = (R, θ) ∈ B, (14)

t M (s) = −t0 = S

μ
sin θ, s = (R, θ) ∈ B, (15)

respectively.
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(a) Interior field ( )Rρ ≤ (b) Exterior field ( )Rρ > (c) Full field (0 )ρ< < ∞

   

Fig. 2 Contour plot of the degenerate kernel for the fundamental solution (U (s, x)) in polar coordinates, R = a

By applying the Fourier expansions, the specified boundary data uM
z (s) along the circular boundary can be

expressed by

uM
z (s) = p0 +

∞∑

n=1

pn cos nθ +
∞∑

n=1

qn sin nθ, 0 � θ < 2π, s = (R, θ) ∈ B, (16)

where p0, pn and qn are the unknown coefficients of Fourier series to be determined. By substituting Eqs.
(9a), (10a), (15) and (16) into Eq. (12) for dB(s) = adθ(R = a) and locating x on the real boundary (ρ = a)
for the circular hole, we have

− 2πp0 −
∞∑

n=1

π cos(nφ) pn −
∞∑

n=1

π sin(nφ) qn = − S

μ
aπ sin(φ), x = (ρ, φ) ∈ B, (17)

where x can be in the domain or on the boundary since a proper degenerate kernel is already chosen. After
comparing coefficients of the basis, 1, cos nφ and sin nφ, we have

⎧
⎨

⎩

pn = 0, n = 0, 1, 2, 3, . . . ,

q1 = S
μ
a, n = 1,

qn = 0, n = 2, 3, · · · .

(18)

Therefore, Eq. (16) can be written as

uM
z (s) = S

μ
a sin θ, s = (R, θ) ∈ B. (19)

By substituting Eqs. (9b), (10b), (15) and (19) into Eq. (11) for dB(s) = adθ , integration along the real
boundary (R = a) of the circular hole yields

uM
z (ρ, φ) = S

μ

a2

ρ
sin φ, x = (ρ, φ) ∈ D. (20)

By substituting Eqs. (7) and (2) into Eq. (8), we have

uz(ρ, φ) = S

μ
ρ

(

1 + a2

ρ2

)

sin φ. (21)

The total displacement expressed in the polar coordinates can be obtained in Eq. (21). For the circular hole in
the different direction (σ∞

yz = 0 and σ∞
xz = S) as shown in Fig. 3. The total displacement can be obtained by

replacing φ to φ + π/2 in Eq. (21) as

uz(ρ, φ) = S

μ
ρ

(

1 + a2

ρ2

)

cosφ. (22)
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(a) Original problem (b) Anti-plane shear without (c) The displacement
a hole            due to an infinite plane

containing a hole 

Fig. 3 A circular hole in an infinite elastic body under the remote anti-plane shear loading (σ∞
yz = 0 and σ∞

xz = S)

2.2 An elliptic hole under the remote anti-plane shear (σ∞
yz = S and σ∞

xz = 0) and (σ∞
yz = 0 and σ∞

xz = S)

Now, we consider an elliptic hole in an infinite elastic body under the remote anti-plane shear stress (σ∞
yz =

S and σ∞
xz = 0) as shown in Fig. 4, B is the elliptical boundary of ξ = ξ0 = const., a is the semi-major axis

and b is the semi-minor axis of the ellipse. In this case, we follow the similar procedure as the previous section
of the circular case. Based on the separable property, U (s, x) can be expanded into the degenerate form by
separating the source point and field point in the elliptic coordinates [25] as given below:

U (s, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ui (ξs, ηs; ξx , ηx ) = ξs + ln c
2 −

∞∑
m=1

2
m e

−mξs coshmξx cosmηx cosmηs

−
∞∑

m=1

2
m e

−mξs sinhmξx sinmηx sinmηs, ξs � ξx , (a)

Ue(ξs, ηs; ξx , ηx ) = ξx + ln c
2 −

∞∑
m=1

2
m e

−mξx coshmξs cosmηx cosmηs

−
∞∑

m=1

2
m e

−mξx sinhmξs sinmηx sinmηs, ξs < ξx , (b)

(23)

where the field point x = (ξx , ηx ), the source point s = (ξs, ηs), and c is the half distance between two foci,
the superscripts “i” and “e” denote the interior (ξs � ξx ) and exterior (ξs < ξx ) cases, respectively. The
degenerate-kernel expression for the closed-form fundamental solution is plotted in Fig. 5. After taking the
normal derivative with respect to the source point, T (s, x) can be obtained as shown below:

T (s, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T i (ξs, ηs; ξx , ηx ) = −1
J (ξs ,ηs )

(

1 + 2
∞∑

m=1
e−mξs coshmξx cosmηx cosmηs

+2
∞∑

m=1
e−mξs sinhmξx sinmηx sinmηs

)

, ξs > ξx , (a)

T e(ξs, ηs; ξx , ηx ) = 1
J (ξs ,ηs)

(

2
∞∑

m=1
e−mξx sinhmξs cosmηx cosmηs

+2
∞∑

m=1
e−mξx coshmξs sinmηx sinmηs

)

, ξs < ξx . (b)

(24)

It is noted that a Jacobian term, J (ξs, ηs) = Js = c
√
cosh2 ξs sin2 ηs + sinh2 ξs cos2 ηs , is in the denominator.

Since u∞
z is given in Eq. (7), the displacement along the elliptic boundary in the infinite plane without a

hole is

u0z (s) = S

μ
c sinh ξs sin ηs, s = (ξs, ηs) ∈ B, (25)

in elliptic coordinates. We can easily obtain its normal derivative t0 and t M on the boundary

t0(s) = ∂u0z (s)

∂ns
= − 1

Js

∂u0z (s)

∂ξs
= − S

Jsμ
c cosh ξs sin ηs, s = (ξs, ηs) ∈ B, (26)
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Fig. 4 An elliptic hole in an infinite elastic body under the remote anti-plane shear loading (σ∞
yz = S and σ∞

xz = 0)

(a) Interior field ( )x sξ ξ≤ (b) Exterior field ( )x sξ ξ> (c) Full field (0 )xξ< < ∞

Fig. 5 Contour plot of the degenerate kernel for the fundamental solution (U (s, x)) in elliptic coordinates, ξs = ξ0

t M (s) = −t0 = S

Jsμ
c cosh ξs sin ηs, s = (ξs, ηs) ∈ B, (27)

respectively. By applying the Fourier expansions, the specified boundary data uM
z (s) along the elliptic boundary

(ξs = ξ0 is a constant) can be expressed by

uM
z (s) = p0 +

∞∑

n=1

pn cos nηs +
∞∑

n=1

qn sin nηs, 0 � ηs < 2π, s = (ξs, ηs) ∈ B, (28)

where p0, pn and qn are the unknown coefficients of Fourier series to be determined. By substituting Eqs.
(23a), (24a), (27) and (28) into Eq. (12), for dB(s) = J (ξs, ηs)dηs(ξs = ξ0) and locating x on the real boundary
(ξx = ξ0) for the elliptic hole, we have

−2πp0 −
∞∑
n=1

2πe−nξ0 cosh nξ0 cos nηx pn −
∞∑
n=1

2πe−nξ0 sinh nξ0 sin nηxqn

= −2π S
μ
c e−ξ0 sinh ξ0 cosh ξ0 sin ηx , x = (ξx , ηx ) ∈ B,

(29)

where x can be in the domain or on the boundary since a proper degenerate kernel is already chosen. After
comparing coefficients of the basis, 1, cos nηx and sin nηx , we have

⎧
⎨

⎩

pn = 0, n = 0, 1, 2, · · · ,

q1 = S
μ
c sinh ξ0, n = 1,

qn = 0, n = 2, 3, · · · .

(30)

Therefore, Eq. (28) can be written as

uM
z (s) = S

μ
c cosh ξ0 sin ηs, s = (ξs, ηs) ∈ B. (31)
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(a) Original problem (b) Anti-plane shear without (c) The displacement
a hole            due to an infinite plane

containing a hole 

Fig. 6 An elliptic hole in an infinite elastic body under the remote anti-plane shear loading (σ∞
yz = 0 and σ∞

xz = S)

By combining Eqs. (23b), (24b), (27) and (31) into Eq. (11), for dB(s) = J (ξs, ηs)dηs , integration along the
real boundary (ξs = ξ0) of the elliptic hole yields

uM
z (ξx , ηx ) = S

μ
ce−ξx sin ηx cosh ξ0(cosh ξ0 + sinh ξ0), x = (ξx , ηx ) ∈ D. (32)

By substituting Eqs. (7) and (32) into Eq. (8), we have the total displacement

uz(ξx , ηx ) = S

μ
c sin ηx (sinh ξx + eξ0−ξx cosh ξ0). (33)

Now, we consider an elliptic hole in an infinite elastic body under the remote anti-plane shear stress in the
different direction (σ∞

yz = 0 and σ∞
xz = S) as shown in Fig. 6. In this case, we follow the similar solving

procedure, and we have the total displacement

uz(ξx , ηx ) = S

μ
c cos ηx (cosh ξx + eξ0

−ξx
sinh ξ0). (34)

After comparing Eqs. (33) with (34), not only sin ηx but also sinh ξx and cosh ξ0 are all changed to
cos ηx , cosh ξx and sinh ξ0, respectively.

3 Analytical solution of an infinite elastic body containing circular rigid inclusion or an elliptic rigid
inclusion under the remote anti-plane shear by using the degenerate kernel

3.1 A circular rigid inclusion under the remote anti-plane shear (σ∞
yz = S and σ∞

xz = 0) and
(σ∞

yz = 0 and σ∞
xz = S)

In the case of rigid inclusion, the solution procedure of the total displacement is the same as the hole but
different boundary condition (Neumann to Dirichlet). Now, we consider a circular rigid inclusion in an infinite
elastic body under the remote anti-plane shear stress (σ∞

yz = S and σ∞
xz = 0) as shown in Fig. 7. (Since the

inclusion is rigid, taking free body of only inclusion is omitted.)
Rigid inclusion yields the Dirichlet boundary condition,

uz(x) = 0, x ∈ B. (35)

The stress and displacement at infinity give

σ∞
yz = S, |y| → ∞, and u∞

z = Sy

μ
, |y| → ∞, (36)
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(a) Original problem (b) Anti-plane shear without (c) The displacement
a rigid inclusion            due to an infinite plane

containing a rigid inclusion 

Fig. 7 A circular rigid inclusion in an infinite elastic body under the remote anti-plane shear loading (σ∞
yz = S and σ∞

xz = 0)

respectively. Since u∞
z is given in Eq. (36), the displacement along the circular boundary in the infinite plane

without a rigid inclusion is

u0z (s) = S

μ
R sin θ, s = (R, θ) ∈ B, (37)

in polar coordinates. The specified boundary data uM
z (s) along the circular boundary yield

uM
z (s) = −u0z = − S

μ
R sin θ, s = (R, θ) ∈ B, (38)

By applying the Fourier expansions, the unknown boundary density t M (s) can be expressed by

t M (s) = a0 +
∞∑

n=1

an cos nθ +
∞∑

n=1

bn sin nθ, 0 � θ < 2π, s = (R, θ) ∈ B, (39)

where a0, an and bn are the unknown coefficients of Fourier series to be determined. By substituting Eqs.
(9a), (10a), (38), and (39) into Eq. (12), for dB(s) = adθ(R = a) and locating x on the real boundary (ρ = a)
for the circular rigid inclusion, we have

2πa ln a a0 −
∞∑

n=1

1

n
aπ cos(nφ) an +

∞∑

n=1

1

n
aπ sin(nφ) bn = S

μ
aπ sin(φ), x = (ξx , ηx ) ∈ B, (40)

where x can be in the domain or on the boundary since a proper degenerate kernel is already chosen. After
comparing coefficients of the basis, 1, cos nφ and sin nφ, we have

⎧
⎪⎪⎨

⎪⎪⎩

(2 ln a) a0 = 0, n = 0,
an = 0, n = 1, 2, 3, · · · ,

b1 = S
μ
, n = 1,

bn = 0, n = 2, 3, · · · .

(41)

In Eq. (41), a0 can be determined if ln a �= 0. The coefficient of a0 can be arbitrary which results in a nonunique
solution problem once a is equal to one. This indicates the occurring mechanism of the degenerate scale in
the BEM/BIEM due to the ln r kernel in conjunction with the Dirichlet B.C. of rigid inclusion. Therefore, Eq.
(39) can be written as

t M (s) = S

μ
sin θ, s = (R, θ) ∈ B. (42)
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(a) Original problem (b) Anti-plane shear without (c) The displacement
a rigid inclusion          due to an infinite plane

containing a rigid inclusion

Fig. 8 A circular rigid inclusion in an infinite elastic body under the remote anti-plane shear loading (σ∞
yz = 0 and σ∞

xz = S)

Fig. 9 An elliptic rigid inclusion in an infinite elastic body under the remote anti-plane shear loading (σ∞
yz = S and σ∞

xz = 0)

By substituting Eqs. (9b), (10b), (38) and (42) into Eq. (11), for dB(s) = adθ , integration along on the real
boundary (R = a) yields

uM
z (ρ, φ) = − S

μ

a2

ρ
sin φ, x = (ρ, φ) ∈ D. (43)

By substituting Eqs. (36) and (43) into Eq. (8), we have

uz(ρ, φ) = S

μ
ρ

(

1 − a2

ρ2

)

sin φ. (44)

The total displacement expressed in the polar coordinates can be obtained in Eq. (44). For the circular rigid
inclusion in the different direction (σ∞

yz = 0 and σ∞
xz = S) as shown in Fig. 8, the total displacement can be

obtained by replacing φ to φ + π/2 in Eq. (44) as

uz(ρ, φ) = S

μ
ρ

(

1 − a2

ρ2

)

cosφ. (45)

3.2 An elliptic rigid inclusion under the remote anti-plane shear (σ∞
yz = S and σ∞

xz = 0) and
(σ∞

yz = 0 and σ∞
xz = S)

Now, we consider an elliptic rigid inclusion in an infinite elastic body under the remote anti-plane shear stress
(σ∞

yz = S and σ∞
xz = 0) as shown in Fig. 9. (Since the inclusion is rigid, taking free body of only inclusion is

omitted.)
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Since u∞
z is given in Eq. (36), the displacement along the elliptic boundary in the infinite plane without a

rigid inclusion is

u0z (s) = S

μ
c sinh ξs sin ηs, s = (ξs, ηs) ∈ B, (46)

in elliptic coordinates. The specified boundary data uM
z (s) along the elliptic boundary yield

uM
z (s) = −u0(s) = − S

μ
c sinh ξs sin ηs, s = (ξs, ηs) ∈ B, (47)

respectively. By applying the Fourier expansions, the unknown boundary density t M (s) can be expressed by

t M (s) = 1

Js
(a0 +

∞∑

n=1

an cos nηs +
∞∑

n=1

bn sin nηs), 0 � ηs < 2π, s = (ξs, ηs) ∈ B, (48)

where a0, an and bn are the unknown coefficients of Fourier series to be determined. By substituting Eqs.
(23a), (24a), (47) and (48) into Eq. (12), for dB(s) = J (ξs, ηs)dηs(ξs = ξ0) and locating x on the real boundary
(ξx = ξ0) for the elliptic rigid inclusion, we have

(ξ0 + ln c
2 )2πa0 −

∞∑
n=1

2
nπe−nξ0 cosh nξ0 cos nηxan −

∞∑
n=1

2
nπe−nξ0 sinh nξ0 sin nηxbn

= 2π S
μ
c e−ξ0 sinh ξ0 sinh ξ0 sin ηx , x = (ξx , ηx ) ∈ B.

(49)

After comparing coefficients of the basis, 1, cos nηx and sin nηx , we have
⎧
⎪⎪⎨

⎪⎪⎩

(ξ0 + ln c
2 )a0 = 0, n = 0,

an = 0, n = 1, 2, 3, · · · ,

b1 = − S
μ
c sinh ξ0, n = 1,

bn = 0, n = 2, 3, · · · .

(50)

In Eq. (50), a0 can be determined if ξ0 + ln(c/2) �= 0. The coefficient of a0 can be arbitrary which results in a
nonunique solution problem once a + b = 2. This also indicates the occurring mechanism of the degenerate
scale in the BEM/BIEM due to the ln r kernel in conjunction with the Dirichlet B.C. of rigid inclusion.
Therefore, Eq. (48) can be written as

t M (s) = −1

Js

S

μ
c sinh ξ0 sin ηs, s = (ξs, ηs) ∈ B. (51)

By substituting Eqs. (23b), (24b), (47) and (51) into Eq. (11), for dB(s) = J (ξs, ηs)dηs , integration along the
real boundary (ξs = ξ0) of the elliptic rigid inclusion yields

uM
z (ξx , ηx ) = − S

μ
c eξ0−ξx sin ηx sinh ξ0, x = (ξx , ηx ) ∈ D. (52)

By substituting Eqs. (36) and (52) into Eq. (8), we have the total displacement,

uz(ξx , ηx ) = S

μ
c sin ηx (sinh ξx − eξ0−ξx sinh ξ0). (53)

Now, we consider an elliptic rigid inclusion in an infinite elastic body under the remote anti-plane shear stress
in the different direction (σ∞

yz = 0 and σ∞
xz = S) as shown in Fig. 10. (Since the inclusion is rigid, taking free

body of only inclusion is omitted.) We have the total displacement,

uz(ξx , ηx ) = S

μ
c cos ηx (cosh ξx − eξ0−ξx cosh ξ0). (54)

After comparing Eq. (53) with Eq. (54), not only sin ηx but also sinh ξx and sinh ξ0 are all changed to
cos ηx , cosh ξx and cosh ξ0, respectively.
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(a) Original problem (b) Anti-plane shear without (c) The displacement
a rigid inclusion            due to an infinite plane

containing a rigid inclusion 

Fig. 10 An elliptic rigid inclusion in an infinite elastic body under the remote anti-plane shear loading (σ∞
yz = 0 and σ∞

xz = S)

4 SCFs

Since the total displacement is obtained in the previous section, stresses can be easily determined. SCF is
defined as

SCF =
∣
∣
∣

√

(σxz)2 + (σyz)2
∣
∣
∣

σ∞ = |τ |
σ∞ , (55)

where τ is the circumferential shear stress along the boundary of the hole or the rigid inclusion and σ∞ is

the remote shear. The equivalence between
∣
∣
∣

√

(σxz)2 + (σyz)2
∣
∣
∣ and |τ | can be derived by using invariants of

tensor. The eigenvalue of λ for the stress tensor σi jcan be determined by

det (σi j − λδi j ) = 0. (56)

We find the invariant I ,

I = (σ13)
2 + (σ23)

2 . (57)

By employing the transformation law of the second-order tensor in the component form like a Mohr circle, we
have

σ̄pq = l pi lq jσi j . (58)

By rotating the coordinates with respect to the x3 axis, we have x̄1 in the normal vector n and x̄2 in the tangent
vector m as shown in Figs. 11 and 12, we have

σ̄n3 = lni l3 jσi j , (59)

and

σ̄m3 = lmi l3 jσi j . (60)

Therefore, σ̄n3 reduces to

σ̄n3 = ln1l33σ13 + ln2l33σ23 = cos (α)σ13 + sin(α)σ23 (61)

while σ̄m3 reduces to

σ̄m3 = lm1l33σ13 + lm2l33σ23 = − sin(α)σ13 + cos(α)σ23 (62)

By comparing Eqs. (57), (61) and (62), we have

(σ̄n3)
2 + (σ̄m3)

2 = (σ13)
2 + (σ23)

2 . (63)
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nmr r

1x

2

α
θ β

Fig. 11 The normal vector n and tangent vector m along the boundary, �n = (n1, n2) = (cos(α), sin(α)), �m = (−n2, n1) =
(− sin(α), cos(α))

1x

2

3 3( )x x

1( )x nr2 ( )x mr

α

Fig. 12 Two observer systems for the stress tensor

According to the traction-free of the Neumann boundary condition, σ̄n3 is found to be zero. Therefore, Eq.
(63) is simplified to,

σ̄m3 = τ =
√

(σ13)
2 + (σ23)

2. (64)

It is interesting to find that Eq. (64) indicates shear stress along the boundary for the hole, while Eq. (63)
changes to

σ̄n3 = τ =
√

(σ13)
2 + (σ23)

2, (65)

for the rigid inclusion. Equations (64) and (65 provide us expressions for the SCF of a hole or a rigid inclusion,
respectively. This can help us to determine the SCF faster than the general formula although the general formula
can also determine the SCF.

Here, we demonstrated two methods to solve the SCF.

Method 1: General formula SCF =
∣
∣
∣
√

(σxz)2+(σyz)2
∣
∣
∣

σ∞
Based on the analytical displacement of the total field derived by using the degenerate kernel in terms of

polar coordinates(ρ, φ), the Cartesian components of the position vector are

x = ρ cosφ, (66)

y = ρ sin φ. (67)

For a circular hole under the remote anti-plane loading σ∞
yz = S, σ∞

xz = 0, the general formula yields

SCF =
∣
∣
∣μ

√

(
∂uz
∂ρ

cosφ − sin φ
ρ

∂uz
∂φ

)2 + (
∂uz
∂ρ

sin φ + cosφ
ρ

∂uz
∂φ

)2
∣
∣
∣

σ∞ . (68)

By substituting Eq. (21) into Eq. (68) for ρ = a, the maximum SCF occurs at φ = 0 or π,

SCF = |2S cosφ|
S

= 2. (69)

For the case of the remote anti-plane loading σ∞
yz = 0, σ∞

xz = S, the maximum SCF occurs at φ = 1
2π or 3

2π ,

SCF = |2S sin φ|
S

= 2. (70)

Equations (69) and (70) show the SCF of a circular hole in an infinite elastic body under the remote anti-plane
shear σ∞

yz = S, σ∞
xz = 0 and σ∞

yz = 0, σ∞
xz = S, respectively. For the circular rigid inclusion under the

remote anti-plane loading σ∞
yz = S, σ∞

xz = 0, we have the maximum SCF o occurs at φ = 1
2π or 3

2π ,

SCF = |2S sin φ|
S

= 2, (71)
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0η =
2c

( ,0)a

(0, )b
0 const.ξ ξ= =

0ξ =

1ξ ξ=

η π=

2
πη =

2
πη = −

,η

cos ( )cos( ), sin ( )sin( )x c h y c hξ η ξ η= =
0 , 0 2ξ η π≤ ≤ ∞ ≤ ≤

0ξ

τ

is the circumferential shear stressτ

,ξ

Fig. 13 The elliptic coordinates

and the maximum SCF occurs at φ = 0 or π ,

SCF = |2S cosφ|
S

= 2, (72)

under the remote anti-plane loading σ∞
yz = 0, σ∞

xz = S, respectively.
In elliptic coordinates (ξ, η) for the elliptic case as shown in Fig. 13, the Cartesian components of the

position vector are

x = c cosh ξ cos η, (73)

y = c sinh ξ sin η, (74)

where the curve of ξ = constant is the elliptic boundary of the hole or rigid inclusion and the curve of η =
constant is portion of hyperbolae all having the same foci (±c, 0).

Therefore, the SCF of an elliptic hole yields the general formula,

SCF =
∣
∣
∣μ

√

(h1
∂uz
∂ξx

− h2
∂uz
∂ηx

)2 + (h2
∂uz
∂ξx

+ h1
∂uz
∂ηx

)2
∣
∣
∣

σ∞ , (75)

where h1 = sinh ξx cos ηx

c
(
(sinh ξx cos ηx )

2+(cosh ξx sin ηx )
2) , and h2 = cosh ξx sin ηx

c
(
(sinh ξx cos ηx )

2+(cosh ξx sin ηx )
2) .

By substituting Eq. (33) into Eq. (75), for ξx = ξ0, we have

SCF =
√

2e2ξ0 cos2 ηx

cosh 2ξ0 − cos 2ηx
, (76)

By substituting ηx = 0 or π into Eq. (76), for ξ0 = tanh−1( ba ) = 1
2 ln(

a+b
a−b ),we have

SCF = 2

1 − e−2ξ0
= 1 + 1

k
, (77)

where k = b/a is the aspect ratio of the ellipse. By substituting Eq. (34) into Eq. (75), for ξx = ξ0 with respect
to the loading σ∞

yz = 0, σ∞
xz = S, we have

SCF =
√

2e2ξ0 sin2 ηx

cosh 2ξ0 − cos 2η
, (78)



On the stress concentration factor of circular/elliptic hole and rigid inclusion 1147

By substituting ηx = π
2 or 3π

2 into Eq. (78), for ξ0 = tanh−1( ba ) = 1
2 ln(

a+b
a−b ),we have

SCF = 2

1 + e−2ξ0
= 1 + k. (79)

Equations (77) and (79) show the SCF of an elliptic hole in an infinite elastic body under the remote anti-plane
shear of σ∞

yz = S, σ∞
xz = 0 and σ∞

yz = 0, σ∞
xz = S, respectively. For the elliptic rigid inclusion under the

remote anti-plane loading σ∞
yz = S, σ∞

xz = 0, the maximum SCF occurs at ηx = π
2 or 3π

2 and yields

SCF = 2

1 + e−2ξ0
= 1 + k. (80)

For the remote anti-plane loading σ∞
yz = 0 and σ∞

xz = S, the maximum SCF occurs at ηx = 0 or π and yields

SCF = 2

1 − e−2ξ0
= 1 + 1

k
. (81)

These SCFs of circular/elliptic hole or rigid inclusion also yield the same result as mentioned in [12,14]. When
k approaches one (a circular hole), the SCF value tends to the value 2 as in [9,10,12,14,26].

Method 2: The present formula SCF = |τ |
σ∞

One of the reason that we employ the degenerate kernel in terms of polar coordinates or elliptic coordinates
is that we can own its benefits. By employing the transformation law of the 2nd order tensor, we found that
only taking the tangential derivative or the normal derivative of the total displacement and multiplying μ can
obtain τ . For the circular hole, the tangential derivative multiplying μ yields

τ = μ

ρ

∂uz
∂φ

, (82)

in polar coordinates. For the elliptic hole, we have

τ = μ

h

∂uz
∂ηx

, (83)

where h = c
√
sinh2(ξx ) + sin2(ηx ) in elliptic coordinates. The case of the rigid inclusion yields the normal

derivative and multiplying μ yields

τ = μ
∂uz
∂ρ

, (84)

in polar coordinates for the circular case, while the elliptic rigid inclusion yields

τ = μ

h

∂uz
∂ξx

, (85)

in elliptic coordinates. Figure 13 also shows the definition of τ in our system.
The formula of the present approach is simpler to calculate the SCF than the general way. Therefore,

we can efficiently calculate the value of SCF for the hole and rigid inclusion cases. The comparison of a
circular hole and rigid inclusion under the remote anti-plane shear by using the degenerate kernel is shown in
Table 1. The comparison of an elliptic hole and a rigid inclusion under the remote anti-plane shear by using
the degenerate kernel is shown in Table 2. It is interesting that the result shows that the SCF values for hole
and rigid inclusions are the same, but the loadings are switched as the [10] mentioned. The reciprocal relation
can be understood as the general Cauchy–Riemann formula in terms of the tangent derivative and the normal
derivative on the boundary in the present result. It indicates that we can derive an analytic function that its
real part and imaginary part are the total displacement of the rigid inclusion and hole but rely on its loading,
respectively, as shown in Tables 3 and 4. Not only the benefits by using the degenerate kernel we have, but
also the phenomenon we can observe without using the complex variables. Besides, the occurring mechanism
of the degenerate scale in the BEM/BIEM for the rigid inclusion case is well captured.
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Table 1 The comparison of results for a circular hole and a rigid inclusion in an infinite elastic body under the remote anti-plane
shear σ∞

yz = S, σ∞
xz = 0 and σ∞

yz = 0, σ∞
xz = S by using the degenerate kernel

X X XX X X X X

5 Illustration of examples and discussions

To verify our result, we compared with the formula in Lubarda’s paper [14]. In the present method, we do not
need to derive the relation of the angles, β and θ as shown in Fig. 11. We only need take the tangential or
the normal derivative with respect to the total displacement along the boundary. Then, the SCFs can be easily
determined. The variation of the circumferential stresses τ and τ∞ under the remote shear σ∞

yz = σ∞
xz = σ∞

is shown in Fig. 14, where τ∞ = μ
ρ

∂u∞
z

∂ηx
. The elastic strain energy density U is defined as the strain energy

per unit volume as shown below [14]:

U = τ 2/2μ, (86)

while the elastic strain energy along the elliptic boundary in the infinite plane without a hole is

U∞ =
(
(σ∞

yz )2 + (σ∞
xz )2

)
/2μ. (87)
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Table 2 The comparison of results for an elliptic hole and a rigid inclusion in an infinite elastic body under the remote anti-plane
shear σ∞

yz = S, σ∞
xz = 0 and σ∞

yz = 0, σ∞
xz = S by using the degenerate kernel

X X X X X X X X

The variation ofU/U∞ along the boundary of the ellipse versus k, under the loading of σ∞
yz �= 0, σ∞

xz = 0, is
shown in Fig. 15. Figure 16 shows the variation of U/U∞ along the boundary of the ellipse in the case when
the loading is σ∞

xz = σ∞
yz and σ∞

xz = −σ∞
yz .

Four aspect ratios of k are considered. Both figures agree well with those of [14]. When we have the
displacement field solution in an infinite elastic body with an elliptic hole under the remote anti-plane loading
σ∞
yz = S, σ∞

xz = 0 and σ∞
yz = 0, σ∞

xz = S, the displacement field solution of inclined elliptic hole or rigid



1150 J.-T. Chen et al.

Table 3 The Cauchy–Riemann relation between the circular hole and rigid inclusion with respect to different loading.

inclusion under the remote anti-plane loading is nothing more than the superposition technique. Following the
same example of Lubarda [14] as shown in Fig. 17a, we only considered an inclined elliptic hole under the
anti-plane shear loading σ ∞̄

yz̄ . By applying the superposition technique for the inclined elliptic hole, the stress
and displacement at infinity can be expressed as

σ ∞̄
yz̄ = σ∞

yz cosα + σ∞
xz sin α, and ū∞̄

yz̄ = y

μ
σ∞
yz cosα + x

μ
σ∞
xz sin α, (88)

where α is the inclined angle of the elliptic hole. The displacement field caused by the remote shear loading
is shown below:

ū∞
z (ξx , ηx ) = S

μ
c sinh ξx sin ηx cosα + S

μ
c cosh ξx cos ηx sin α. (89)

The displacement field caused by infinite plane problem with an elliptic hole is

ūM
z (ξx , ηx ) = S

μ
c eξ0−ξx cosh ξ0 sin ηx cosα + S

μ
c eξ0−ξx sinh ξ0 cos ηx sin α. (90)
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Table 4 The Cauchy–Riemann relation between the elliptic hole and rigid inclusion with respect to different loading

Fig. 14 The variation of the circumferential stresses τ and τ∞ under the remote shear σ∞
yz = σ∞

xz = σ∞ along the ellipse
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Fig. 15 The variation of the elastic strain energy density ratio U/U∞ under the remote loading σ∞
yz �= 0, σ∞

xz = 0 along the
ellipse

Fig. 16 The variation of the elastic strain energy density ratio U/U∞ under the remote loading for four aspect ratios of kx � 1
along the ellipse

Hence, we have the total displacement,

ūz(ξx , ηx ) = S

μ
c
((
sinh ξx + eξ0−ξx cosh ξ0

)
sin ηx cosα + (

cosh ξx + eξ0−ξx sinh ξ0
)
cos ηx sin α

)
. (91)

By substituting Eq. (91) into Eqs. (75) and (83), we have

SCF =
∣
∣
∣
∣
∣
eξ0 cos(α + ηx )

√
2

(cosh (2ξ0) − cos (2ηx ))

∣
∣
∣
∣
∣
, (92)

SCF =
∣
∣
∣
∣
∣

eξ0 cos(ηx + α)
√
sinh2 ξ0 + sin2 ηx

∣
∣
∣
∣
∣
, (93)

respectively. Due to the limited space, we do not report the detailed procedure for the inclined elliptic rigid
inclusion case.We only show its final result in Table 5. The inclined elliptic rigid inclusion under the anti-plane
shear loading σ ∞̄

yz̄ is shown in Fig. 17b. The variation of SCF for the inclined elliptic hole with the inclination
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(a) The inclined elliptic hole (b) The inclined elliptic rigid inclusion  

Fig. 17 The inclined elliptic hole and rigid inclusion in an infinite elastic body under the remote anti-plane loading

Fig. 18 The variation of the SCF with the inclination angle α under the remote loading

angle of αas well as the various values of k is plotted in Fig. 18. It should be noted that the SCF of the circular
cases can be obtained by using either the polar coordinates or the elliptic coordinates by setting k =1 to
approximate to a circle. All figures match well with those of Lubarda [14] although a different approach using
degenerate kernel is employed.

6 Conclusions

In this paper, we employed the degenerate kernel in the BIE instead of analytical function in the complex
variable to revisit the SCF for the infinite plane containing by a circular/elliptic hole and rigid inclusion under
the remote shear. Polar and elliptic coordinates were utilized to represent the degenerate kernel for the circular
and elliptic hole and rigid inclusion, respectively. Parameter study of slender ratio of the ellipse as well as
the orientation was addressed. Besides, the SCF and the change of elastic strain energy along the boundary
due to the hole were investigated to compare with those of Lubarda’s paper. All the results and figures for
SCF were revisited, and agreement was made. The result show that degenerate kernel can be an alternative
tool for solving some BVPs, although complex variable is always employed. Not only the benefits to examine
the occurring mechanism of the degenerate scale for the rigid inclusion, but also the reciprocal relation can
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Table 5 The comparison of the results for the inclined elliptic hole and the rigid inclusion

be understood as the general Cauchy–Riemann formula in terms of the tangent derivative and the normal
derivative along the boundary in the present result without using the complex variables. Once the degenerate
kernel for the closed-form fundamental solution is available, the BIE is nothing more than the linear algebra
and the analytical derivation is possible. Although this application focused on the two-dimensional case, it can
be straightforward extended to 3-D problems which cannot be solved by using the complex variables once the
corresponding degenerate kernel is available. In addition, the result can be extended to solve a crack problem
by setting zero length of minor axis in elliptic coordinates.
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