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a b s t r a c t

In this paper, the two classical elasticity cases, Lamé problem and stress concentration factor (SCF), are

revisited by using the Trefftz method instead of the inverse or semi-inverse approach in the previous

study. First, the Timoshenko and Goodier’s approach is reviewed. Based on the superposition principle

and the concept of taking free body, the problem of stress concentration factor as well as Lamé problem

can be solved without any difficulty in a direct way using the Trefftz method.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

For solving boundary value problems of elasticity, it is usually
difficult to find an analytical solution which satisfies the partial
differential equations and given boundary conditions at the same
time. In some cases, the inverse method or the semi-inverse
method can be used. In the inverse method, a solution is found in
priori such that it satisfies the governing equation and boundary
condition. We can obtain the solution through this way for a luck
cases, but it is not a logical way. For the semi-inverse method,
certain assumptions about the components of displacement
strain are made at the beginning. Then, the solution is confined
by satisfying the equations of equilibrium and the boundary
conditions. In the classical elasticity, the semi-inverse method
was often employed to derive the analytical solution for
simple problems. For example, the Saint-Venant torsion solution
is a typical case which was obtained by using for the semi-inverse
approach.

The Trefftz method was first presented by Trefftz in 1926 [1]. It
can be seen as one kind of boundary-type methods. Until now,
there are many Trefftz methods developed including direct and
indirect formulations. The basic concept of Trefftz method is
superimposing the T-complete functions which satisfy the
governing equation, and the unknown coefficients are determined
by matching the boundary conditions. The T-complete functions
for plane elasticity problems have been already presented by
some researchers [2,3]. The solution procedure is easier than other
boundary-type methods, e.g. the boundary element method.

Moreover, the formulation of the Trefftz method is regular and
singular integrals are not required to calculate. Therefore, many
applications for the Laplace equation [4], the Helmholtz equation
[5], the Navier equation [6] and biharmonic equation [7] were
done. More applications were summarized in Refs. [8–10].
Recently, Chen et al. [11] linked the two methods, Trefftz method
and method of fundamental solutions, through the degenerate
kernel for Laplace and biharmonic equations. They also found
that all the Trefftz bases are imbedded in the degenerate
kernel for the fundamental solution. Later, Schaback [12] also
presented an article to discuss on this issue. Kaw et al. [13]
used the finite element method to study the problem and
compared with the analytical and experiment results. It is very
useful to help students to study and understand the problem.
Chen et al. [14] used the null-field boundary integral method to
revisit the two classical elasticity problems, Lamé problem and
the problem of stress concentration factor (SCF). However, we do
not find that problems have been solved by using the Trefftz
method in the literature to our best knowledge. Moreover,
Timoshenko and Goodier’s directly used cos(2y) in their book.
Maybe the readers do not know the reason why only cos(2y) is
chosen. Based on the Trefftz method, we provided another
viewpoint to derive solutions. Therefore, we will attempt to
revisit the two classical elasticity problems by using the
Trefftz method.

In this paper, we employ the Trefftz method to deal with the
Lamé problem and the problem of stress concentration factor. This
approach is seen as an analytical method and the solution is
derived in a natural and logical way, once the Trefftz base and its
coefficient can be determined. For the two problems, they will be
revisited by using the Trefftz method. Therefore, a direct way of
solution for elasticity problems is our goal.
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2. Methods of solution

2.1. Problem statements

The two classical problems in the Timoshenko and Goodier’s
book [15] are revisited. One is an infinite plate with a circular hole
subject to remote tension (stress concentration factor problem)
and another is an annular cylinder subject to uniform pressures
(Lamé problem), as shown in Figs. 1 and 2, respectively. The
medium is considered as an isotropic, elastic and homogenous
body. The governing equation is

ðlþ GÞrðr � u
�
ðxÞÞ þ Gr2 u

�
ðxÞ ¼ 0; x 2 O, (1)

where u
�
ðxÞ is the displacement, O is the domain of interest, r2 is

the Laplacian operator, and l and G are the Lamé constants for the
isotropic elasticity.

2.2. Review of Timoshenko and Goodier’s solution

2.2.1. Lamé problem

This problem was first solved by Lamé [16]. According to the
axial symmetry property, Timoshenko and Goodier represented as
Ref. [15], and assumed the airy stress function, f, as

fðr; yÞ ¼ A ln r þ Br2 ln r þ Cr2 þ D. (2)

Since f(r, y) is symmetric, it is dependent on angle only in this
case. The stress fields can be yielded as

srr ¼
1

r

@f
@r
þ

1

r2

@2f
@y2
¼

A

r2
þ Bð1þ 2 ln rÞ þ 2C, (3)

syy ¼
@2f
@r2
¼ �

A

r2
þ Bð3þ 2 ln rÞ þ 2C, (4)

sry ¼ �
@

@r

1

r

@f
@y

� �
¼ 0. (5)

In order to ensure that the displacement field is a single-valued
function, the coefficient B must be zero in the general solution.
Eqs. (3) and (4) become

srr ¼
A

r2
þ 2C, (6)

syy ¼ �
A

r2
þ 2C. (7)

Two boundary conditions (srr|r ¼ b ¼ �Po and srr|r ¼ a ¼ �Pi) for
outer and inner boundaries, respectively, are needed to be
satisfied. The two coefficients, A and C, are obtained by

A ¼
a2b2
ðPo � PiÞ

b2
� a2

, (8)

C ¼
1

2

a2Pi � b2Po

b2
� a2

. (9)

After obtaining the coefficients, the Airy stress function is
obtained as

fðr; yÞ ¼
a2b2
ðPo � PiÞ

b2
� a2

ln r þ
1

2

a2Pi � b2Po

b2
� a2

r2 þ D, (10)

where D is a constant which can be interpreted as a rigid body
term. The stresses in Eqs. (3) and (4) are obtained

srr ¼
a2b2
ðPo � PiÞ

b2
� a2

1

r2
þ

a2Pi � b2Po

b2
� a2

, (11)

syy ¼ �
a2b2
ðPo � PiÞ

b2
� a2

1

r2
þ

a2Pi � b2Po

b2
� a2

. (12)

For the special case of zero external pressure (Po ¼ 0), Eqs. (11)
and (12) give

srr ¼
a2Pi

b2
� a2

1�
b2

r2

 !
, (13)

syy ¼
a2Pi

b2
� a2

1þ
b2

r2

 !
. (14)

2.2.2. Stress concentration factor problem

In this case, it can be seen as the extension from the Lamé
problem, when the outer radius b approaches infinity. In the
procedure of solution, the annular case is the considered domain
to analyze the problem. For the far field at infinity, the stresses are

srrjr¼b ¼ S cos2 y ¼
1

2
Sð1þ cos 2yÞ, (15)

syyjr¼b ¼ S sin2 y ¼
1

2
Sð1� cos 2yÞ, (16)

sryjr¼b ¼ �
1

2
S sin 2y. (17)

The traction-free boundary condition is satisfied on the
boundary of the hole. The stresses on the outer boundary can be
decomposed into two parts. One is the constant normal stress
(S/2), and it can be calculated by using Eqs. (11) and (12). The Airy
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Fig. 1. An infinite plate with a circular hole subject to remote tension.

Fig. 2. An annular cylinder subject to uniform pressures.
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stress function of this part is

fðr; yÞ ¼ �
S

2
a2 ln r þ

S

4
r2. (18)

The other part consists of the normal stress (1/2)S cos 2y and
the shear stress �(1/2)S sin 2y . The Airy stress function was
assumed [15]

fðr; yÞ ¼ Ar2 þ Br4 þ C
1

r2
þ D

� �
cos 2y. (19)

The stress components are

srr ¼
1

r

@f
@r
þ

1

r2

@2f
@y2
¼ � 2Aþ

6C

r4
þ

4D

r2

� �
cos 2y. (20)

syy ¼
@2f
@r2
¼ 2Aþ 12Br2 þ

6C

r4

� �
cos 2y (21)

sry ¼ �
@

@r

1

r

@f
@y

� �
¼ 2Aþ 6Br2 �

6C

r4
�

2D

r2

� �
sin 2y. (22)

By employing Eqs. (20)–(22) to satisfy the boundary condition
of Eqs. (15)–(17) and setting a/bE0, we obtain coefficients

A ¼ �
S

4
; B ¼ 0; C ¼ �

a4

4
S; D ¼

a2

2
S, (23)

by using the Mathematica manipulation. The Airy stress function
is obtained.

fðr; yÞ ¼ �
S

4
r2 �

a4S

4

1

r2
þ

a2S

2

� �
cos 2y. (24)

Therefore, we have the total stress function by superimposing
two parts

fðr; yÞ ¼ �
a2S

2
ln r þ

S

4
r2 þ �

S

4
r2 �

a4S

4

1

r2
þ

a2S

2

� �
cos 2y. (25)

The stress components are

srr ¼
S

2
1�

a2

r2

� �
þ

S

2
1þ

3a4

r4
�

4a2

r2

� �
cos 2y, (26)

syy ¼
S

2
1þ

a2

r2

� �
�

S

2
1þ

3a4

r4

� �
cos 2y, (27)

sry ¼ �
S

2
1�

3a4

r4
þ

2a2

r2

� �
sin 2y. (28)

By substituting r ¼ a in Eq. (27), we find the hoop stress

syy ¼ S� 2S cos 2y; srr ¼ sry ¼ 0. (29)

It is noted that the hoop stress (syy) reaches the maximum of 3S

when y ¼ p/2 or y ¼ 3p/2.

2.3. Trefftz formulation—the present approach

In the Trefftz method, the field solution u(x) is

uðxÞ ¼
XNT

j¼1

cjujðxÞ, (30)

where NT is the number of T-complete functions, cj is the jth
unknown coefficient and uj(x) is the jth T-complete function
which satisfies the governing equation. The T-complete functions
of biharmonic problem of the Airy stress function for interior and
exterior cases can be found in Table 1 [11].
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Table 1
T-complete functions of the Trefftz method and degenerate kernels of the MFS for the biharmonic problem.

Method of fundamental solution (MFS) Trefftz method

Fundamental

solution

Degenerate kernel Interior basis Exterior basis

Basis functions and degenerate kernels

1D (1/12)r3

Uðs; xÞ ¼

1

12
ðx3 � 3x2sþ 3xs2 � s3Þ; x4s

1

12
ðs3 � 3s2xþ 3sx2 � x3Þ; xos

8>><
>>:

1, x, x2, x3 1, x, x2, x3

2D r2 ln(r)

Uðs; xÞ ¼

UI
ðs; xÞ ¼ r2ð1þ ln RÞ þ R2 ln R� Rrð1þ 2 ln RÞ cosðy�fÞ

�
P1

m¼1

1

mðmþ 1Þ

rmþ2

Rm cos ½mðy�fÞ�

þ
P1

m¼2

1

mðm� 1Þ

rm

Rm�2
cos½mðy� fÞ�; R4r

UE
ðs; xÞ ¼ R2

ð1þ ln rÞ þ r2 ln r� rRð1þ 2 ln rÞ cosðy�fÞ

�
P1

m¼1

1

mðmþ 1Þ

Rmþ2

rm
cos ½mðy�fÞ�

þ
P1

m¼2

1

mðm� 1Þ

Rm

rm�2
cos½mðy� fÞ�; r4R

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

1, r2, rm cos(mf), rm sin(mf),

rm+2 cos(mf), rm+2 sin(mf)

ln(r), r2 ln(r), r�m cos(mf), r�m sin(mf),

r2�m cos(mf), r2�m sin(mf)

The basis function which satisfy the equation

1D (@U4(x, s)/@x4) ¼ d(x�s) d4u(x)/dx4
¼ 0

2D r4U(x, s) ¼ 8pd(x�s) r4u(r, f) ¼ 0

Where m ¼ 0,1,2,3,y.
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2.3.1. Lamé problem

For the Lamé problem, the Airy stress function is obtained

fðr; yÞ ¼ ā0 þ
XN

m¼1

āmrm cos myþ
XN

m¼1

b̄mrm sin my

þ c̄0r2 þ
XN

m¼1

c̄mrmþ2 cos myþ
XN

m¼1

d̄mrmþ2 sin my

þ a0 ln r þ
XN

m¼1

amr�m cos myþ
XN

m¼1

bmr�m sin my

þ c0r2 ln r þ
XN

m¼1

cmr2�m cos myþ
XN

m¼1

dmr2�m sin my,

(31)

by using the Trefftz base. Since it can be seen as an interior
problem superimposing with an exterior case, both interior and
exterior Trefftz bases are chosen. Based on the relation between
stress and Airy stress function, we have

srr ¼
XN

m¼1

ðm�m2Þāmrm�2 cos myþ
XN

m¼1

ðm�m2Þb̄mrm�2 sin my

þ 2c̄0 þ
XN

m¼1

ðmþ 2�m2Þc̄mrm cos my

þ
XN

m¼1

ðmþ 2�m2Þd̄mrm sin myþ a0
1

r2

�
XN

m¼1

ðmþm2Þamr�ðmþ2Þ cos my

�
XN

m¼1

ðmþm2Þbmrm�2 sin myþ c0ð2 ln r þ 1Þ

þ
XN

m¼1

ð2�m�m2Þcmr�m cos my

þ
XN

m¼1

ð2�m�m2Þdmr�m sin my. (32)

By matching the boundary condition (srr|r ¼ b ¼ �Po) for the
outer boundary, we have

2c̄0 þ a0
1

b2
þ c0ð2 ln bþ 1Þ ¼ �Po. (33)

By matching the inner boundary condition (srr|r ¼ a ¼ �Pi),
we have

2c̄0 þ a0
1

a2
þ c0ð2 ln aþ 1Þ ¼ �Pi. (34)

Since the solution is a single-valued function, c0 must be zero.
From Eqs. (33) and (34), we have

a0 ¼
a2b2

b2
� a2
ðPo � PiÞ, (35)

c̄0 ¼
1

2

a2Pi � b2Po

b2
� a2

. (36)

Therefore, the Airy stress function is

fðr; yÞ ¼
1

2

a2Pi � b2Po

b2
� a2

r2 þ
a2b2
ðPo � PiÞ

b2
� a2

ln r þ ā0, (37)

where ā0 is a constant. Then, the stress components are

srr ¼
a2Pi � b2Po

b2
� a2

þ
a2b2
ðPo � PiÞ

b2
� a2

1

r2
, (38)

syy ¼
a2Pi � b2Po

b2
� a2

�
a2b2
ðPo � PiÞ

b2
� a2

1

r2
. (39)

The results are the same with the Timoshenko and Goodier’s
solution.

2.3.2. Stress concentration factor problem

For the problem of an infinite plate with a circular hole subject
to a uniform tension of magnitude S in the x direction, it can be
decomposed into two parts by using the superposition technique,
as shown in Fig. 3(a) and (b). One is an infinite plate subject to a
uniform tension and the other is an infinite plate with a free-
traction hole. On the boundary of the hole, it needs to satisfy the
boundary conditions of traction free for the superposing total
solution. For the problem of an infinite plate subject to a uniform
tension, it can be seen as a circular plate with an infinite radius.
The Airy stress function is represented as

f1ðr; yÞ ¼ ā0 þ
XN

m¼1

āmrm cos myþ
XN

m¼1

b̄mrm sin my

þ c̄0r2 þ
XN

m¼1

c̄mrmþ2 cos myþ
XN

m¼1

d̄mrmþ2 sin my,

(40)

by choosing the interior Trefftz bases in Table 1. We have the
stress components as follows:

s1rr ¼
XN

m¼1

ðm�m2Þāmrm�2 cos myþ
XN

m¼1

ðm�m2Þb̄mrm�2 sin my

þ 2c̄0 þ
XN

m¼1

ðmþ 2�m2Þc̄mrm cos my

þ
XN

m¼1

ðmþ 2�m2Þd̄mrm sin my, (41)

s1ry ¼
XN

m¼1

mðm� 1Þāmrm�2 sin my�
XN

m¼1

mðm� 1Þb̄mrm�2 cos my

þ
XN

m¼1

mðmþ 1Þc̄mrm sin my�
XN

m¼1

mðmþ 1Þd̄mrm cos my,

(42)
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Fig. 3. (a) An infinite plate subject to a uniform tension (fN field) and (b) an

infinite plate with a hole (fh field).
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s1yy ¼
XN

m¼1

mðm� 1Þāmrm�2 cos myþ
XN

m¼1

mðm� 1Þb̄mrm�2 sin my

þ 2c̄0 þ
XN

m¼1

ðmþ 2Þðmþ 1Þc̄mrm cos my

þ
XN

m¼1

ðmþ 2Þðmþ 1Þd̄mrm sin my. (43)

When r approaches infinity, the boundary conditions, s1rr ¼

ðS=2Þð1þ cos 2yÞ;s1ry ¼�ð1=2ÞS sin 2yÞand s1yy ¼ ðS=2Þð1� cos 2yÞ;
are needed to be satisfied. After comparing with the coefficient,
we have

ā2 ¼ �
1

4
S; c̄0 ¼

1

4
S; ā0 ¼ arbitrary (44)

and all other coefficients are equal to zero. The Airy stress function
for the problem is obtained

f1ðr; yÞ ¼
S

4
r2 �

S

4
r2 cos 2yþ ā0. (45)

For the other part of the problem, an infinite plate with a hole,
we choose the exterior Trefftz base for the Airy stress function as

fh
ðr; yÞ ¼ a0 ln r þ

XN

m¼1

amr�m cos myþ
XN

m¼1

bmr�m sin my

þ c0r2 ln r þ
XN

m¼1

cmr2�m cos myþ
XN

m¼1

dmr2�m sin my.

(46)

The stress components are

sh
rr ¼

a0

r2
�
XN

m¼1

ðm2 þmÞamr�ðmþ2Þ cos my

�
XN

m¼1

ðm2 þmÞbmr�ðmþ2Þ sin myþ c0ð2 ln r þ 1Þ

þ
XN

m¼1

ð2�m�m2Þcmr�m cos my

þ
XN

m¼1

ð2�m�m2Þdmr�m sin my, (47)

sh
ry ¼ �

XN

m¼1

mðmþ 1Þamr�ðmþ2Þ sin my

þ
XN

m¼1

mðmþ 1Þbmr�ðmþ2Þ cos myþ
XN

m¼1

mð1�mÞcmr�m sin my

�
XN

m¼1

mð1�mÞdmr�m cos my, (48)

sh
yy ¼ �

a0

r2
þ
XN

m¼1

mðmþ 1Þamr�ðmþ2Þ cos my

þ
XN

m¼1

mðmþ 1Þbmr�ðmþ2Þ sin myþ c0ð2 ln r þ 3Þ

þ
XN

m¼1

ð2�mÞð1�mÞcmr�m cos my

þ
XN

m¼1

dmð2�mÞð1�mÞr�m sin my. (49)

We have

a0 ¼ �
S

2
a2; a2 ¼ �

S

4
a4; c2 ¼

S

2
a2; c0 ¼ arbitrary: (50)

Since the solution is a single-valued function in physics, c0 must
be zero. The Airy stress function of this part is

fh
ðr; yÞ ¼ �

S

2
a2 ln r �

S

4

a4

r2
cos 2yþ

S

2
a2 cos 2y. (51)

Then, the total Airy stress function is

f ¼ f1 þfh

¼
S

4
ðr2 � 2a2 ln rÞ �

S

4
ðr2 þ

a4

r2
� 2a2Þ cos 2yþ ā0. (52)

After obtaining the Airy stress function, we can obtain the
corresponding stress components

srr ¼
S

2
1�

a2

r2

� �
þ

S

2
1þ

3a4

r4
�

4a2

r2

� �
cos 2y, (53)

syy ¼
S

2
1þ

a2

r2

� �
�

S

2
1þ

3a4

r4

� �
cos 2y, (54)

sry ¼ �
S

2
1�

3a4

r4
þ

2a2

r2

� �
sin 2y. (55)

On the circular boundary (r ¼ a) of the hole, the hoop stress is

syy ¼ S� 2S cos 2y. (56)

When y approaches p/2 or 3p/2, syy reaches the maximum 3S. The
result is the same with the Timoshenko and Goodier’s solution.
Fig. 4 shows the contour of hoop stress along the hole boundary in
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Fig. 4. The contour of hoop stress of the infinity plate.

Table 2
Comparison of the present method and Timoshenko and Goodier’s approach for

the SCF problem.

Present method Timoshenko and Goodier

Coordinate Polar coordinates Polar coordinates

Superposition Stress (on boundary) Stress (at infinity)

Geometry Interior case+exterior case Two annular domains

Base function T-complete function Assumption

Method Direct Semi-inverse

J.T. Chen et al. / Engineering Analysis with Boundary Elements 33 (2009) 890–895894
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the infinite plate. Good agreement is made. The comparison
between the present method and the Timoshenko and Goodier’s
approach is summarized in Table 2.

3. Concluding remarks

For the two classical elasticity problems, we have revisited the
analytical solution by using the Trefftz method. Instead of using
inverse or semi-inverse approach in the textbook, this paper has
derived the solution in a direct, logical and natural way. The stress
concentration factor problem and the Lamé problem were
demonstrated to see the validity of the Trefftz formulation. Good
agreements were made after comparing the exact solutions with
those of Timoshenko and Goodier’s textbook.
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