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SUMMARY 

Derived herein is the integral representation solution of a Rayleigh-damped Bernoulli-Euler beam subjected to multi-support 
motion, which is free from calculation of a quasi-static solution, and in which the modal participation factor for support 
motion is formulated as a boundary modal reaction, thus making efficient calculation feasible. Three analytical methods, 
including ( 1 ) the quasi-static decomposition method, (2) the integral representation with the Cesaro sum technique, and (3) 
the integral representation in conjunction with Stokes’ transformation, are presented. Two additional numerical methods 
of (4) the large mass FEM simulation technique and (5) large stiffness FEM simulation technique are easily incorporated 
into a commercial program to solve the problem. It is found that the results obtained by using these five methods are 
in good agreement, and that both the Cesiro sum and Stokes’ transformation regularization techniques can extract the 
finite part of the divergent series of the integral representation. In comparison with the Mindlin method and Cesaro sum 
technique, Stokes’ transformation is the best way because it is not only free of calculation of the quasi-static solution, but 
also because it can obtain the convergence rate as rapidly as the mode acceleration method can. 
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1. INTRODUCTION 

Since Loh’ used SMART-1 data, which were obtained in 1982 from a seismograph array in Lotung, Taiwan, 
to analyse the effect of spatial variation of ground motion on structural responses, several investigators have 
studied the problem of multi-support excitation to identify the need of such analysis. In fact, multi-support 
vibration happens frequently, e.g. seismic responses of pipelines and long bridges whose abutments and piers 
are far apart so that the surrounding topography and geology may be different as schematically shown in Figure 
1. Most attention has been paid to the analysis of these systems to obtain design forces during an extreme 
event induced by earthquake ground motion. Following the paper of Mindlin and Goodman: these problems 
have all, to our knowledge, been solved by decomposing the solution into two parts artificially. Clough and 
Penzien3 applied the Mindlin4oodman method to the discrete system of a finite element formulation and 
found that the computational effort for the quasi-static solution was very large. Masri4 used the same method 
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Figure 1 .  A long bridge subjected to seismic ground motion 

to examine the response of a beam to propagating boundary excitation and considered random excitation of 
a shear beam in his paper.' In 1982, Abdel-Ghaffar and Rood6 applied the same method to the analysis of a 
tower of the Golden Gate Bridge. 

Although Mindlin and Goodman2 proposed a quasi-static decomposition method for problems with time- 
dependent boundary conditions, Eringen and Suhubi7 found that obtaining a quasi-static solution is still a 
difficult task. They omitted calculation of the quasi-static solution and merged it into the total solution after 
considering Betti's law between the eigensystem and the quasi-static solution. This procedure reduced the 
solution to that of eigenfunction expansion. Although it is good to eliminate calculation of the quasi-static 
solution, a low convergence rate due to the Gibbs phenomenon8y9 for the primary field and divergence for 
the secondary field have been noted by Strenkowski. lo Nevertheless, the regularization for divergent series 
has not been dealt with previously due to the problem created by omitting the calculation of the quasi-static 
solution. 

In the present paper, we combine the concept of dual integral representation"Yi2 with either the Cesaro sum 
te~hnique '~ . '~  or Stokes' transformati~n,'~ and apply the idea of Eringen and Suhubi to solve the problem of 
a long bridge subjected to multi-support motions. Finally, two numerical methods including large mass and 
large stiffness techniques are employed for comparison with the three analytical solutions. 

2. ANALYTICAL FORMULATION FOR A RAYLEIGH-DAMPED BERNOULLI-EULER BEAM 
SUBJECTED TO SUPPORT MOTIONS 

The seismic response of a Rayleigh-damped Bernoulli-Euler beam subjected to multi-support excitation 
shown in Figure 2 can be described by the following governing equation: 

a4u(x, t )  
pAii(x,t)+ @,r)+EZ- = f ( x , t ) ,  0 < x  < 1 ( ax4 

where a superimposed dot denotes a time derivative, El ,@ and I denote the flexural rigidity, mass per unit 
length and length of the single-span beam of the bridge, respectively, a and p are coefficients of the Rayleigh 
damping, and u is the displacement, which is a function of position x and time t. For simplicity, but without 
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Figure 2. A simple model for a beam subjected to multi-support motions 

loss of generality, the load f ( x , t )  is assumed to be zero during an earthquake. The boundary conditions 
are 

u(0, t )  = a(t) ,  u ( l , t )  = b(t)  ( 2 )  

(3 1 

where a superscript prime stands for a spatial differentiation, and a ( t )  and b(t) are support motions prescribed 
by records of ground motion. In the numerical examples, the inphase and outphase motions for a( t )  and b( t )  
will be considered. 

u"(0, t )  = u"( I, t )  = 0 

Assuming that the motion starts from rest, the initial conditions are 

u(x,O) = 0, li(X,O) = 0. (4) 

2.1. Quasi-static decomposition method 

As shown in Figure 2, the solution can be decomposed into two parts: 
oc 

u(x, t )  = W X ,  t )  + c qn(t)un(x) 
n=l 

where U(x , t )  denotes the quasi-static solution, and the natural modes u,(x) weighted by generalized co- 
ordinates qn(t) are the dynamic contribution due to the inertia effect. The quasi-static part U ( x , t )  must 
satis@ 

= o  a4 u(x, t 
ax4 
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and is subject to non-homogeneous boundary conditions: 

U(0, t )  = a(t) ,  U(Z,t)  = b ( t )  

U”(0, t )  = U”(1,t)  = 0 

By solving the PDE in equation (6) with boundary conditions in equations (7) and (8) directly, we have 
X 

U k t )  = a ( t )  (1 - -) 1 + b ( t )  (5) (9) 

The nth natural mode u,(x) with frequency w, of the eigen-system is 

u,(x) = sin (nnx / l ) ,  n = 1,2,. . . (10) 

and the corresponding natural fiequencies are 

w, = (nn/l)2dG&Zj, n = 1,2 ... 

The orthogonality conditions of the eigenhctions are 

pu,(x)uk(x) dx = &N, n, k = 1,2.. . I’ 
where N = p1/2. Substituting (5) into (l), we obtain 

n= 1 

where the nth damping ratio 5, is defined by 

25,w, ZE 2a + pw,Z (14) 

Multiplying both sides of (13) by u&), integrating over ( 0 , l )  and applying the orthogonality conditions of 
(12), we have qn(t )  satisfying the following relation: 

where 

F,(t)  E - pU(x,t )u, (x)  dx 1’ 
After considering the initial conditions, we have 

N4, (0 )  = - pir(x,O)u,(x) dx = P,(O). (18) 1’ 
It is observed that if U(x, t )  is known, qn(t)  can be determined by equations (15), (17) and (18), and then 
the series solution of equation ( 5 )  can be obtained. 

Here, we apply a technique to calculate Fn(t) without first determining U(x, t ) ;  thus, the domain integration 
of equation (16) is avoided. Now, choosing the quasi-static solution and the eigen-system as two systems, 
Betti’s reciprocal relation or Green’s formulaI6 yields 

E l  
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where R: and Rf, are the modal reaction forces of the nth mode at x = 0 and x = 1, respectively. Equation 
(19)  is remarkable in that the integration over the domain, 0 to 1, is transformed to boundary data on x = 0 
and 1. By the definition of equation ( 1 6 ) ,  ( 1 9 )  can be rewritten as 

w;Ffl(t) = R: a( t )  + RI, b ( t )  ( 2 0 )  

Thus, we can solve for qfl(t)  by using equations (15), ( 1 7 )  and ( 1 8 ) ,  that is 

sin (w:t) + q [ e - t n m n l  sin (wit ) ]  
tfl 

Jm 1 qfl(t) = qfl(0)e-t~mJ 

x[R:a(r )  + Rib(?)  + 2a(R:u(r) + RAd(z))] d.r 

where w: f w n d R  is the nth damped frequency. Eq.(21) can be rewritten in another form: 

x [ R $ z ( z )  + R i b ( ? )  + /?(R:li(z) + RAd(t))] dz ( 2 2 )  

Then, the series solutions for displacement u, slope 0, moment A4 and shear force V can be expressed, 
respectively, as 

r M 

cos (7) 
I- - n2 a2 

M(x,  t )  = EZu”(x, t )  = EZ U”(x, t )  + qfl(t) (7) sin (7 )] I fl=l 

M 

V ( x ,  t )  = EZu“‘(x, t )  = EZ 
qfl(t) ($) cos (7 )] 

where qfl(t)  can be replaced by either equation ( 2 1 )  or (22) .  
In deriving equations (24 ) - (26) ,  the termwise differentiations of equation ( 2 3 )  are permissible due to good 

matching of prescribed data on the boundary. However, this is not permissible in the method described in the 
following subsection since it renders unmatched boundary data. 

2.2. Eigenfunction expansion method 

From equations ( 1 2 )  and (16),  the Fourier series representation for U ( x , t )  is found as follows: 
00 

U ( X , f )  = - c Fm(f)u,(x) 
N 

m= I 

If a more generalized coordinate, qfl(t),  is defined as 

& ( t )  f y - qfl(t)  
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then the solution of u is available upon substituting equations (lo), (22) and (30) into (5) and using (20): 

x [R:a(z) +Rib(?)  + /3(R:u(z) + Rid(z))]  dz sin (nm/ l )  (29) I 
The displacement response in equation (29) has been formulated as an integral representation solution which 
contains both the Duhamel integral in time and the boundary integral in space; in this case, only two boundary 
modal data are concerned due to the one dimensional domain. Therefore, the above equation reveals a new 
point of view that the modal participation factors for support motions u( t )  and b(t)  are simply -R:/N and 
-R!,/N, respectively, under the condition of /3 = 0. 

Without thoughtll consideration, term by term differentiations of (29) yield 

x[R:u(z> +Rib(?)  + /3(R:u(z) + Rid(z))]  dz ( y )  cos ( y )  I 

-n3z3  x[Rza(z )  + Rib(z) + /3(R:u(z) + R;d(z))] dz] ( -7i-) cos ( y )  
In addition to the troublesome equation (29), the three expressions (30)-(32) are worse. Because the support 
motion acts as a double layer potential, which is the terminology of potential theory and the dual integral 
representation,’ ‘ 9  12, the series for displacement is pointwise convergent in the sense that the discontinuity 
across the boundary can be described by a series representation. Therefore, the term by term differentiations 
of the series for displacement to determine slope, moment and shear force will result in a divergent series. 
An appropriate regularization technique is necessary to extract the finite part; for the series forms of equations 
(29)-(32) in this paper, we shall employ the Ceshro sum regularization technique, which plays the same role 
as does the regularization method for the derivative of the double layer potential. 

2.3. Regularization with Cesdro sum technique 

The general (C,  r )  Ceshro sum is defined asI4 
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where C,“ = k! / (r!  (k - r ) ! ) ,  and the partial sum is 
k k 

sk = q n ( t ) U n ( x )  = c an(x, t )  (34)  
n=O n=O 

For efficiency of computation, the si terms are changed to ai terms, and the equation is, thus, changed to the 
conventional Cesiro sum: 

Similarly, the (C, 2) ,  (C, 3)  and (C, 4) Cesaro sum is 

(37) 

Based on this regularization technique, the series representations for displacement, slope, moment and shear 
force are expressed in the sense of the Cesaro sum as follows: 
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The Gibbs phenomenon exhibited in the pointwise convergent series of equation (29) can be avoided by 
using the CesPro regularization technique, and the finite part of the divergent series in equations (30H32) 
can be extracted as shown in (41H43). 

2.4. Regularization with Stokes' transformation 

Although termwise differentiations are not permissible for the pointwise convergent series representation for 
u(x, t )  in the classical sense, the differential operator can still be applied directly as in equations (30H32) of 
Subsection 2.2, and then the posterior treatment of the CesAro sum can be used to ensure the sumability as 
in Subsection 2.3. Here, we introduce a logical way of differentiating the pointwise convergent series, which 
is called Stokes' tran~formation,'~ and use the unmatched boundary data as shown below. 

Consider the displacement function u(x, t )  represented by a Fourier sine series in the open interval 0 < x < 1 
with the given histories a ( t )  and b( t )  at the end points: 

x = o  

Assume 

multiplying both sides of the above expression by c o s ( n m / l )  and integrating over ( O , l ) ,  and considering 
equation (44), we have 

&(t)  = 

and 

Defining 

rn 

we have 

2 
- [ ( - l )"b( t ) -a ( t ) ]+nxc&( t ) / l ,  n = l,2, ... 
1 

-1  
1 &( t )  = - [a( t )  - b(t)] ,  for n = 0 

&(t)  = rn(t)  + nmjfl(t)/l, n 2 O  

(46) 

(47) 

(49) 

It is easily found that direct term by term differentiation of the Fourier sine series in equation (44) loses the 
r,, terms, which can be recovered by Stokes' transformation as shown above or by the posterior regularization 
treatment of the Cesaro sum method as described in the previous subsection. 

In order to improve the rate of convergence for u(x,t) at the points near the boundary as x approaches 0 
or 1, u(x,t) can be calculated by integrating (45) from 0 to x: 
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Comparing equation (50) with (44), the additional three terms result in improvement in the convergence 
rate. Similarly, applying the Stokes’ transformation again, the moment and shear force can be expressed as 
follows: 

where 

q;(t) = --nn&(t)/l, n = 0,1,2,. . . (53) 

(54) q y ( t )  = -n n q , ( t ) /P ,  2 2 - 1  n = 0,1 ,2 . .  . 

It is found that the solution also contains two parts, modal and non-modal parts. However, the solution of 
the non-modal part results from the integration of the secondary field solution in a way different from using 
the quasi-static decomposition method which derives the non-modal part by solving the P.D.E. directly. No 
doubt, the Stokes’ transformation is easier. 

(a) Large mass model (b) large stiffness model 

Figure 3(a). Large mass model, (b) Large stiffness model 
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2.5. Large mass simulation technique 

In this and the next subsections, alternative numerical methods will be explored. In order to satisfy the 
boundary support motion histories, the large mass technique is used here and incorporated into MSCNAST 
RAN. At the left end, x = 0, a large mass 4 is mounted. A should be much larger than A,, which denotes 
the total structural mass. Likewise, at the other end, x = I ,  the large mass A is also assumed. Thus, the 
external agency exerts the forces of .Mu(t) and A & ( t )  at the two ends of the free-free beam, respectively, 
to ensure the enforced acceleration histories u( t )  and &(t)  as shown in Figure 3(a). 

2.6. Large stiffness simulation technique 

Instead of using the large mass simulation technique, the large stiffness simulation can also describe the 
equivalent system. At x = 0, a spring with large stiffness X is introduced. X should be much larger than 
X,,  which denotes the structural stiffness. In the same way, a spring with large stiffness X is also assumed 
at x = 1. Both springs are connected to the ground. The external agency exerts the forces X a ( t )  and X b ( t )  
at the two ends, respectively, to ensure the enforced displacement histories a(t) and b ( t )  for the constrained 
motion as shown in Figure 3(b). 

3. ILLUSTRATIVE EXAMPLES 

In order to see the validity of the three analytical solutions and the two finite element simulation techniques 
for the multi-support seismic response, examples will be furnished and comparisons made between the three 
analytical solutions and finite element outputs using two simulation techniques. 

The input data are as follows: 1 = 60 m, EZ = 2.45 x lo9 Nm2, p A  = 2400 kgm-', a( t )  = SO e-61 sin ( a t )  
H ( t )  and b(t)  = H(t - td)a(t - t d ) ,  SO = 0.01 m, 6 = 0.1, where H ( t )  is the Heaviside function, td is the 
time lag, 6 is the decaying rate of the support motion, So is the magnitude and R is the excitation frequency 
for all of the support motions. 

Case 1: A damped (a  = 0.138 1 s-l, p = 0 s) Bernoulli-Euler beam subjected to in-phase multi-support 
excitations: 

Case 2: A damped (a  = 0.138 1 s-l, p = 0 s) Bernoulli-Euler beam subjected to out-of-phase multi- 
support excitations: 

Case 3: A Rayleigh-damped (a  = 0.11 1 1 s-l, p = 0.0072 s) Bernoulli-Euler beam subjected to in-phase 
multi-support excitations: 

3.1. Quasi-static decomposition method (method ( 1 ) )  

solution: 
Substitution of modal reactions for R,(O) and R n ( l )  into equation (23) yields the explicit form of the 

where '+' and '-' represent the in-phase and out-of-phase motions, respectively, and +L(t) can be easily 
determined as in Reference 12. The displacement histories at x = 15, 30m for case 1 and x = 15 m for case 
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Figure 5. The solutions of in-phase motions at x = 30 using methods ( 1  H5) with five modes and 25 elements 

2 are shown in Figures 4, 5 and 6,  respectively. The displacement, slope, moment and shear force diagrams 
at t = 1 s for cases 1 and 3 are shown in Figures 7-10, respectively. 

3.2. Eigenfunction expansion method 

Substitution of modal reactions for R,(O) and R,(Z) into Eq.(29) yields the general solution 

where '+' and '-' denote the out-of-phase and the in-phase motions, respectively, and &(t)  can be easily 
determined as in Reference 12. Since the Gibbs phenomenon in the displacement response and the divergent 
solutions in the slope, moment and shear force occur, the following two regularization techniques are employed 
to extract the finite values. 
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case 2 when damping is proportional to mass only 

3.3. Regularization with the Cesaro sum (method ( 2 ) )  

Using equations (40)-(43), the numerical results of the displacement, slope, moment and shear force re- 
sponses can be easily calculated as shown in Figures 7-10 for cases 1 and 3. The displacement histories at 
x = 15, 30m for case 1 and at x = 15 m for case 2 are shown in Figures 4-6, respectively. 
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Figure 10. The series solutions for the displacement, slope, moment and shear force at t = 1 s using methods ( 1 H 3 )  with 100 modes 
and method (5)  using 25 elements for case 3 

3.4. Regularization with Stokes’ transformation (method ( 3 ) )  

Substituting the same values as in Subsection 3.2 for 4Jt)  of equations (50), (45), (51) and (52), the 
numerical results of the displacement, slope, moment and shear force responses can be easily calculated and 
are shown in Figures 7 and 8 for case 1 and in Figures 9 and 10 for case 3. 

3.5. Large mass simulation technique (method ( 4 ) )  

Twenty-five CBAR beam elements and 500 time step intervals are used. The large mass ratio is suggested 
as being lo6 in this case. Note that in addition to the original modes, two very low frequency modes due 
to the two large masses should be included in the modal superposition in order to simulate the enforced 
boundary support acceleration. The input data can be prepared easily’9 for the program and is omitted here. 
For the interior points x = 15, 30m for case 1 and at x = 15 m for case 2, the displacement histories are in 
good agreement with analytical solutions as shown in Figures 4-6, respectively. 

3.6. Large stifness simulation technique (method (5 ) )  

The same mesh configuration and time steps as in Subsection 3.5 are used. The large stiffness ratio is 
suggested as being lo6 in this case. In comparison with the original modes, two additional very high frequency 
modes for the deformation of the two large springs should be included in the modal superposition in order 
to simulate the enforced boundary support displacement accurately. If the two largest modes are truncated in 
modal analysis, the boundary displacement will not match the enforced displacement, while the slope, moment 
and shear force distributions will diverge in a way similar to that in the eigenfunction expansion method as 
shown in Figure 11. When the two modes are included, the boundary displacement and slope solutions from 
FEM approximate the analytical solutions, but the boundary layer effect is still obvious for the moment and 
shear force distributions as shown in Figure 10. For the interior points x = 15, 30m for case 1 and at 
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Figure 1 1 .  The series solutions for the displacement, slope, moment and shear force at t = 1 s using the eigenfunction expansion method 
and large stiffness simulation without considering the two largest modes using 10 modes for case 3 

x = 15 m for case 2, the displacement histories are in good agreement with analytical solutions as shown in 
Figures 4-6, respectively. 

4. COMPARISONS AND DISCUSSIONS 

The displacement histories at x = 15, 30m for case 1 and at x = 15 m for case 2 are depicted in Figures 4-6 
using five modes and 25 elements. It can be seen that the results of all five methods are in good agreement. 
The displacement, slope, moment and shear force diagrams of case 1 at t = 1 s using methods (1)-(3) are 
shown in Figures 7 and 8 for mode number = 5 and 100, respectively. Unfortunately, the shear force result 
diverges as shown in Figure 8. For case 3, the displacement, slope, moment and shear force diagrams at 
t = 1 s using methods ( 1 H 3 )  are shown in Figures 9 and 10 for mode number = 5 and 100, respectively. 
Although the shear force response is divergent for case 1 in Figure 8, it is convergent for case 3 using the 
three analytical formulations as shown in Figures 9 and 10, respectively. This motivates us to analyse the 
asymptotic behaviours of q,,(t) and q,,(t)  as the mode number becomes infinite. It is found that the solution 
of displacement in case 2 is governed by O(l/n3) of the q,, terms, as 5, -+ O(l/n2) for p = O .  The asymptotic 
behavior of the displacement, u(x , t ) ,  in case 3 is governed by O(l/n5) of the s,, terms, as 5,  + O(n2) for 
p # 0. In deriving the series solution of the shear force, three-fold differentiation with respect to x causes the 
solution to have O(1) asymptotic behavior after an additional O(n3) multiplication. This is the reason why 
the shear force response of case 2 is divergent. Extending this concept to acceleration, the results for case 2 
are also divergent. 

To summarize: 

1. It must be noted that the general solutions of methods ( l ) ,  (2) and (3)  are formulated as boundary 
integrals or data instead of domain integration. Therefore, a new point of view regarding the modal par- 
ticipation factor has been developed. Recently, two applications of this concept have been successhlly 
applied.”.’ 
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2. The convergent solution can only be used to obtain the displacement, slope and moment, not the shear 
force response when damping is proportional to mass only as shown in Figure 9 for case 2. The results 
can be understood from the order analysis of the solution. It can be seen that the shear force results 
are not available for the same example in Reference 4. 

3. For the large stiffness simulation, the inclusion of the two additional high frequency modes enables 
matching of the boundary support displacements. The two additional modes can be easily found from 
the obtained modes by FEM(NASTRAN in this paper) since the deformation for the two high-frequency 
modes locally concentrates on the spring instead of the beam. If the contribution of the two modes 
is neglected, the results diverge in the same way as with the eigenfunction expansion method as 
shown in Figure 11. Even if the two modes are considered, the boundary layer effect is present in the 
moment and shear force responses as shown in Figure 10. To explain this phenomenon, the free body 
diagram in Figure 3 reveals that the simulation model cannot simulate the end shear equivalently, i.e. 
inconsistency exists between the original problem and the proposed simulation model. By the same 
token, the large mass simulation has a similar boundary layer effect. 

5 .  CONCLUSIONS 

The analytical solutions of a Rayleigh-damped Bernoulli-Euler beam subjected to multi-support motions 
have been derived by means of three different analytical formulations and compared with two numerical 
methods in this paper. The results obtained using the five methods are in good agreement. 

Mindlin and Goodman solutions behave well at the expense of the additional effort involved in determination 
of the quasi-static solution; this effort is substantial in most real-world problems. To avoid calculation, the 
quasi-static solution is expanded in the Fourier series sense; or, interpreted in another way, the problem is 
solved directly in the eigenfunction (generalized Fourier series) expansion sense, thus rendering a pointwise 
convergent series solution for the displacement response, which does not converge to the prescribed support 
motions at the two ends and exhibits the Gibbs phenomenon near the boundary and divergent series solutions 
for the slope, moment and shear responses. It has been shown that the boundary layer effect and divergence 
can be dealt with by using the Ceshro sum technique, which smoothens the oscillating behaviour of the 
displacement and extracts the finite parts of the divergent series solutions. Although it is capable of recovering 
the finite part of the existing response without obtaining the quasi-static solution, the CesAro sum technique 
requires a larger number of modes in calculating the response near the boundary for the boundary layer effects 
described above. In order to improve numerical efficiency, the Stokes’ transformation technique is utilized to 
accelerate convergence since it takes advantage of prescribed data of support motions. This feature can save 
a large amount of computational effort and is highly recommended. An extension to real structures by using 
a discrete system has been successfully applied.18 

After comparing the FEM results with the three analytical results, care should be taken to add boundary 
modes corresponding to the large masses and stiffnesses if the slope response is considered. For the moment 
and shear force responses, the boundary effect is apparent and more research effort on this effect is needed in 
the future. 
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