Detection of damaged components in 3-D frame structures via experimental design

Speaker: Masa. TANAKA, Shinshu University

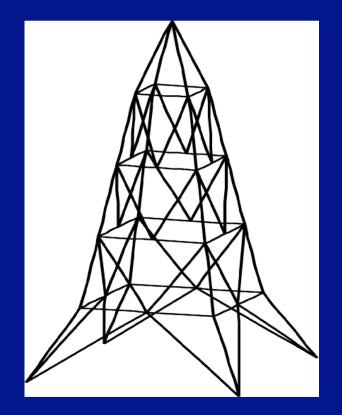
Nagano, Japan

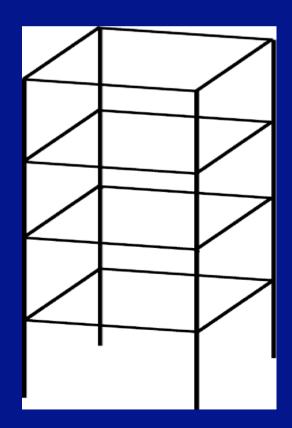
**Co-Author: Tomohiro KOUGO, Tsukuba University** 

# **Outline of Presentation**

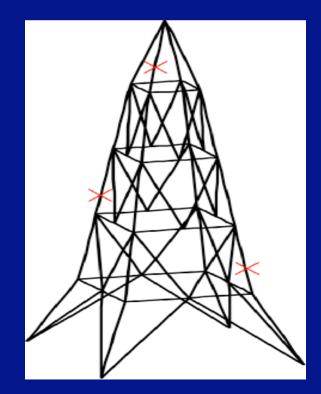
### Background

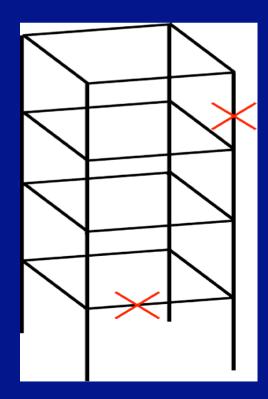



- Experimental Design
- Evaluation Function
- ♦ Flow of Analysis
  - Example Computations
  - **Concluding Remarks**


# There is a wide variety of structures in the world.







Many structures can be modeled as a frame structure.





For health monitoring of the structure, it is important to develop a computer system to identify the damaged components and their damage levels, using the measured data.





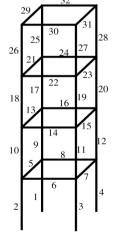
A computational procedure is available for dynamic displacements of a frame structure.

Displacement responses are different if damaged components and their damage levels are different.

Sensitivity-based Optimization Experimental Design Combinational Optimization Using Orthogonal Table

# Assumptions

Each component of the frame structure is straight and has extensional, bending and torsional rigidities.


Damage is interpreted as reduction of Young's modulus.

Damage is implemented as three levels of Young's modulus.

### **Experimental Design**

- Analysis of each factor's influence on evaluation function using the orthogonal table
- Analysis of many factors by a smaller number of computations
  Factor → Component

Example: Analysis of structure composed of 32 components by three levels of damage



Computations for all combinations:  $3^{32} \rightleftharpoons 1.85 \times 10^{15}$ Computations using orthogonal table: 216 to 2268

Level  $\rightarrow$  Damage level

# Evaluation

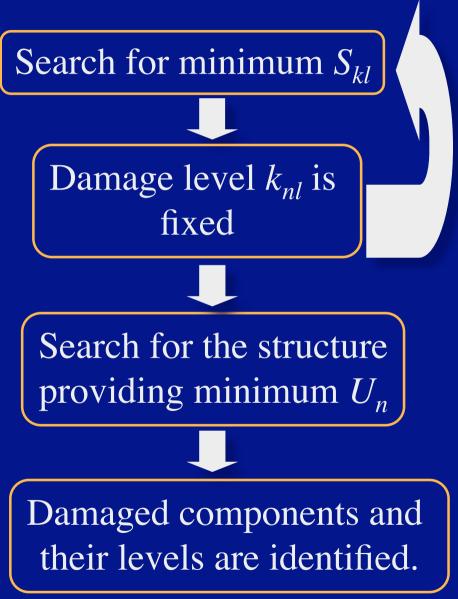
Evaluation function  $U_n$  is defined by

$$U_n = \sum_{i=1}^{I} \sum_{j=1}^{J} \{ (\bar{u}_{ij} - u_{ij})^2 + (\bar{v}_{ij} - v_{ij})^2 + (\bar{w}_{ij} - w_{ij})^2 \}$$

*j*: Node *J*: Number of nodes *i*: Node in time *I*: Number of nodes in time  $\overline{u}_{ij}, \overline{v}_{ij}, \overline{w}_{ij}$ : Measured displacements in *x*,*y*,*z*  $u_{ij}, v_{ij}, w_{ij}$ : Computed displacements in *x*,*y*,*z* 

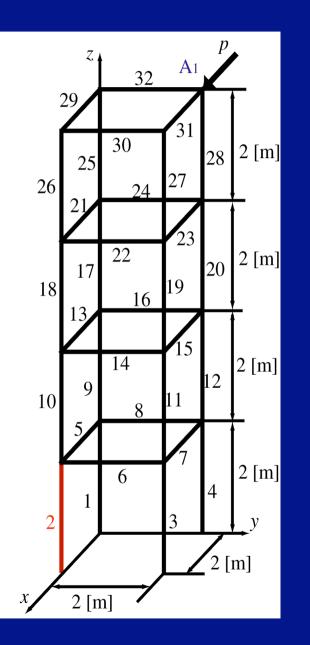


Damaged components and their damage levels are identified.


# Searching Minimal Value of Evaluation Function

|              |          |               | Factors                            |                               |     |                      |       |  |  |
|--------------|----------|---------------|------------------------------------|-------------------------------|-----|----------------------|-------|--|--|
|              |          | 1             | 2 …                                | l                             | ••• | L                    | $U_n$ |  |  |
|              | 1        | $k_{11}$      | $k_{12}$                           | <b>k</b> 11                   | ••• | $k_{1L}$             | $U_1$ |  |  |
| ers          | 2        | $k_{21}$      | <i>k</i> <sup>22</sup> ····        | <b>k</b> 21                   | ••• | $k_{2L}$             | $U_2$ |  |  |
| umb          | :        | •             | :                                  | ÷                             |     | ÷                    | :     |  |  |
| Data numbers | п        | $k_{n1}$      | $k_{n2}$ …                         | knl                           | ••• | <b>k</b> nL          | $U_n$ |  |  |
| Ω            | :        | *<br>*        | :                                  | :                             |     | ÷                    | ÷     |  |  |
|              | Ν        | $k_{N1}$      | $k_{N2}$                           | <b>k</b> Nl                   | ••• | <b>k</b> NL          | $U_N$ |  |  |
|              |          | $S_{11}$      | $S_{12}$                           | <i>S</i> <sub>1<i>l</i></sub> | ••• | $S_{1L}$             |       |  |  |
|              | $S_{kl}$ | :<br>$S_{k1}$ | $:$ $S_{k2}$                       | :<br>S <sub>kl</sub>          | ••• | :<br>S <sub>kL</sub> |       |  |  |
|              |          | :             | :                                  | ÷                             |     | ÷                    |       |  |  |
|              |          | $S_{K1}$      | <i>S</i> <sub><i>K</i>2</sub> ···· | Ski                           | ••• | Skl                  |       |  |  |

 $S_{kl}$ : Sum of  $U_n$  in factor lunder damage level k  $S_{kl} = \sum U_n(k,l)$ Search for minimum  $S_{kl}$ Damaged components and their levels are estimated.

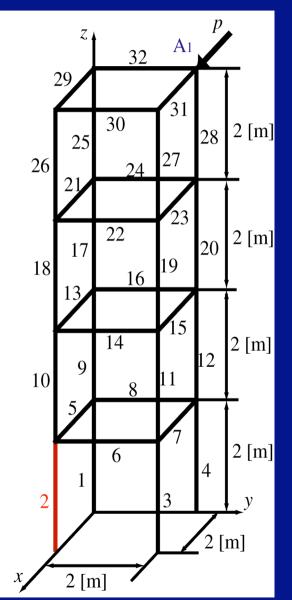

### **Comparison of Evaluation Function**

|              |          |          | Factors                            |             |     |                      |       |  |  |
|--------------|----------|----------|------------------------------------|-------------|-----|----------------------|-------|--|--|
|              |          | 1        | 2 …                                | l           | ••• | L                    | $U_n$ |  |  |
|              | 1        | $k_{11}$ | $k_{12}$                           | <b>k</b> 11 | ••• | $k_{1L}$             | $U_1$ |  |  |
| ers          | 2        | $k_{21}$ | <i>k</i> <sup>22</sup> ····        | <b>k</b> 21 | ••• | $k_{2L}$             | $U_2$ |  |  |
| umb          | :        | •        | :                                  | ÷           |     | ÷                    | ÷     |  |  |
| Data numbers | п        | $k_{n1}$ | $k_{n2}$                           | knl         | ••• | <b>k</b> nL          | $U_n$ |  |  |
| D            | :        | :        | :                                  | :           |     | :                    | ÷     |  |  |
|              | Ν        | $k_{N1}$ | $k_{N2}$                           | <b>k</b> Nl | ••• | <b>k</b> NL          | $U_N$ |  |  |
|              |          | $S_{11}$ | $S_{12}$                           | $S_{1l}$    | ••• | $S_{1L}$             |       |  |  |
|              | $S_{kl}$ | $S_{k1}$ | $\vdots$<br>$S_{k2}$               | :<br>Skl    | ••• | :<br>S <sub>kL</sub> |       |  |  |
|              | Jĸl      |          |                                    |             |     |                      |       |  |  |
|              |          | $S_{K1}$ | <i>S</i> <sub><i>K</i>2</sub> ···· | Ski         | ••• | SKL                  |       |  |  |



# **Flow of Analysis**

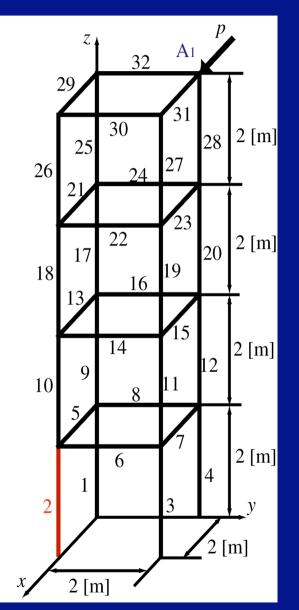
| Step 1 | Determine factors and levels based on a priori information |
|--------|------------------------------------------------------------|
| Step 2 | Input measured data                                        |
| Step 3 | Obtain computed data for damaged models of structure       |
| Step 4 | Compute squared sum of measured and computed results       |
| Step 5 | Estimate the damaged components and their damage levels    |
| Step 6 | Carry out Steps 3 to 5 for all components of the structure |
| Step 7 | Carry out Steps 3 to 5 for doubtful components of damage   |
| Step 8 | Iterate Step 7 until the final estimation is obtained      |
| Step 9 | Output the final results                                   |




#### Member 2 : Young's modulus 50%

#### Structure:

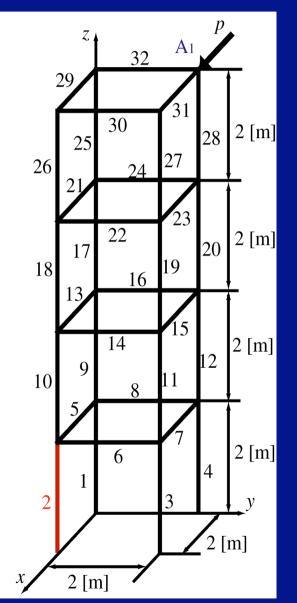
Bottom is clamped to the plane *xy* Each member has the same circular cross-section with radius 0.01[m] Material constants:


Young's modulus E = 210 [GPa] Density  $\rho = 7860$  [kg/m<sup>3</sup>] Poisson's ratio  $\nu = 0.3$ Concentrated load P = 100H(t) [N] is applied to point A<sub>1</sub> along the axis x for 0.5 [s]. The displacements in x and y directions are measured for 2.0[s] at equal 10 steps.



#### Member 2 : Young's modulus 50%

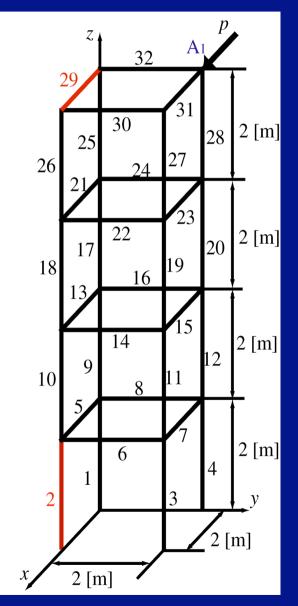
#### Orthogonal Table


|          | Member 1  | Member 2  | Member 3  | Member 4  | $U_n$      |
|----------|-----------|-----------|-----------|-----------|------------|
| No.1     | 100%      | 100%      | 100%      | 100%      | 3.387E-04  |
| No.2     | 100%      | 50%       | 50%       | 50%       | 1.687E-02  |
| No.3     | 100%      | 25%       | 25%       | 25%       | 7.888E-02  |
| No.4     | 50%       | 100%      | 50%       | 25%       | 5.093E-02  |
| No.5     | 50%       | 50%       | 25%       | 100%      | 9.439E- 03 |
| No.6     | 50%       | 25%       | 100%      | 50%       | 4.765E- 03 |
| No.7     | 25%       | 100%      | 25%       | 50%       | 4.926E-02  |
| No.8     | 25%       | 50%       | 100%      | 25%       | 1.943E-02  |
| No.9     | 25%       | 25%       | 50%       | 100%      | 5.910E-03  |
| $S_{1l}$ | 9.608E-02 | 1.005E-01 | 2.454E-02 | 1.569E-02 |            |
| $S_{2l}$ | 6.514E-02 | 4.574E-02 | 7.371E-02 | 7.089E-02 |            |
| $S_{3l}$ | 7.460E-02 | 8.955E-02 | 1.376E-01 | 1.492E-01 |            |



#### Member 2 : Young's modulus 50%

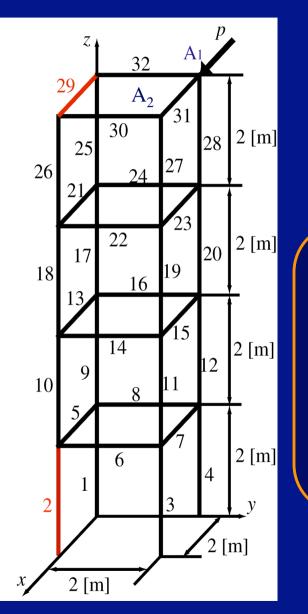
#### Orthogonal Table


|          | Member 1  | Member 2   | Member 3               | Member 4 | Un         |
|----------|-----------|------------|------------------------|----------|------------|
| No.1     | 100%      | 100%       | 100%                   | 100%     | 3.387E- 04 |
| No.2     | 100%      | 50%        | 50%                    | 100%     | 2.620E- 03 |
| No.3     | 100%      | 25%        | 25%                    | 100%     | 9.183E- 03 |
| No.4     | 50%       | 100%       | 50%                    | 100%     | 3.751E- 03 |
| No.5     | 50%       | 50%        | 25%                    | 100%     | 9.439E- 03 |
| No.6     | 50%       | 25%        | 100%                   | 100%     | 8.764E- 04 |
| No.7     | 25%       | 100%       | 25%                    | 100%     | 1.192E- 02 |
| No.8     | 25%       | 50%        | 100%                   | 100%     | 7.720E- 04 |
| No.9     | 25%       | 25%        | 50%                    | 100%     | 5.910E- 03 |
| $S_{1l}$ | 1 214E 02 | 1.601E- 02 | 1 087E 03              |          |            |
| $S_{2l}$ |           | 1.283E- 02 |                        |          |            |
| $S_{3l}$ | 1.861E-02 |            | 1.228E-02<br>3.055E-02 |          |            |



#### Member 2 : Young's modulus 50%

#### Orthogonal Table

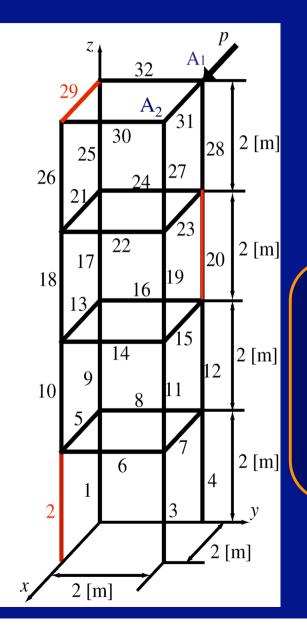

|          | Member 1   | Member 2  | Member 3 | Member 4 | $U_n$      |
|----------|------------|-----------|----------|----------|------------|
| No.1     | 100%       | 100%      | 100%     | 100%     | 3.387E-04  |
| No.2     | 100%       | 50%       | 100%     | 100%     | 7.035E-07  |
| No.3     | 100%       | 25%       | 100%     | 100%     | 2.202E- 04 |
| No.4     | 50%        | 100%      | 100%     | 100%     | 5.234E- 04 |
| No.5     | 50%        | 50%       | 100%     | 100%     | 2.307E-04  |
| No.6     | 50%        | 25%       | 100%     | 100%     | 8.764E- 04 |
| No.7     | 25%        | 100%      | 100%     | 100%     | 8.417E-04  |
| No.8     | 25%        | 50%       | 100%     | 100%     | 7.720E- 04 |
| No.9     | 25%        | 25%       | 100%     | 100%     | 4.872E- 02 |
| $S_{1l}$ | 5.595E- 04 | 1.704E-03 |          |          |            |
| $S_{2l}$ | 1.630E-03  | 1.003E-03 |          |          |            |
| $S_{3l}$ | 3.609E-03  | 3.092E-03 |          |          |            |



| Member | Exact | Analysis |
|--------|-------|----------|
| 1      | 100 % | 25 %     |
| 2      | 50 %  | 25 %     |
| 3      | 100 % | 100 %    |
| 4      | 100 % | 100 %    |
| 5      | 100 % | 50 %     |
| 6      | 100 % | 100 %    |
| 7      | 100 % | 100 %    |
| 8      | 100 % | 100 %    |
| 9      | 100 % | 100 %    |
| 10     | 100 % | 100 %    |
| 11     | 100 % | 100 %    |
| 12     | 100 % | 50 %     |
| 13     | 100 % | 100 %    |
| 14     | 100 % | 100 %    |
| 15     | 100 % | 100 %    |
| 16     | 100 % | 100 %    |

#### Member 2 : Young's modulus 50% Member 29 : Young's modulus 25%

| Member | Exact | Analysis |
|--------|-------|----------|
| 17     | 100 % | 25 %     |
| 18     | 100 % | 100 %    |
| 19     | 100 % | 100 %    |
| 20     | 100 % | 100 %    |
| 21     | 100 % | 50 %     |
| 22     | 100 % | 100 %    |
| 23     | 100 % | 100 %    |
| 24     | 100 % | 100 %    |
| 25     | 100 % | 25 %     |
| 26     | 100 % | 25 %     |
| 27     | 100 % | 100 %    |
| 28     | 100 % | 100 %    |
| 29     | 25 %  | 25 %     |
| 30     | 100 % | 100 %    |
| 31     | 100 % | 100 %    |
| 32     | 100 % | 100 %    |




#### Final results

Member 2 : Young's modulus 50% Member 29 : Young's modulus 25%

Doubtful components are again checked using the orthogonal table. Finally, it is estimated that the components 2 and 29 are damaged as into the assumed levels.

#### Example 3 Structure with damage different from the assumed damage level

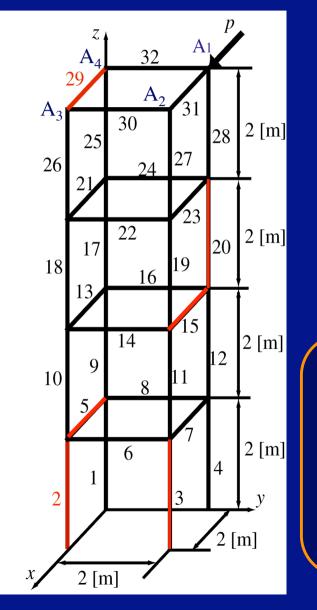


Member 2 : Young's modulus 20% Member 20 : Young's modulus 40% Member 29 : Young's modulus 60%

Experimental design assumes the three levels 25%, 50% and 100%. We want to know what happens in such a case.

Member 2 : Young's modulus 20% Member 20 : Young's modulus 40% Member 29 : Young's modulus 60%

#### 1st trial (Node A<sub>1</sub>):


| Rod | Rigidity | Rod | Rigidity | Rod | Rigidity | Rod | Rigidity |
|-----|----------|-----|----------|-----|----------|-----|----------|
| No. | in %     |
| 1   | 100      | 9   | 100      | 17  | 100      | 25  | 100      |
| 2   | 25       | 10  | 100      | 18  | 100      | 26  | 100      |
| 3   | 100      | 11  | 100      | 19  | 100      | 27  | 100      |
| 4   | 100      | 12  | 100      | 20  | 25       | 28  | 100      |
| 5   | 100      | 13  | 100      | 21  | 100      | 29  | 25       |
| 6   | 100      | 14  | 100      | 22  | 100      | 30  | 100      |
| 7   | 100      | 15  | 100      | 23  | 100      | 31  | 100      |
| 8   | 100      | 16  | 100      | 24  | 100      | 32  | 100      |

Member 2 : Young's modulus 20% Member 20 : Young's modulus 40% Member 29 : Young's modulus 60%

#### 2nd trial (Nodes $A_1$ and $A_2$ ):

| Rod | Rigidity | Rod | Rigidity | Rod | Rigidity | Rod | Rigidity |
|-----|----------|-----|----------|-----|----------|-----|----------|
| No. | in %     |
| 1   | 100      | 9   | 100      | 17  | 100      | 25  | 100      |
| 2   | 25       | 10  | 100      | 18  | 100      | 26  | 100      |
| 3   | 100      | 11  | 100      | 19  | 100      | 27  | 100      |
| 4   | 100      | 12  | 100      | 20  | 50       | 28  | 100      |
| 5   | 100      | 13  | 100      | 21  | 100      | 29  | 50       |
| 6   | 100      | 14  | 100      | 22  | 100      | 30  | 100      |
| 7   | 100      | 15  | 100      | 23  | 100      | 31  | 100      |
| 8   | 100      | 16  | 100      | 24  | 100      | 32  | 100      |

#### Example 4 Structure with several damaged members with different levels from the assumed ones



Member 2 : Young's modulus 50% Member 3 : Young's modulus 25% Member 5 : Young's modulus 55% Member 15 : Young's modulus 35% Member 20 : Young's modulus 20%

Experimental design assumes the three levels 25%, 50% and 100%. We want to know what happens in this case.

Member 2 : Young's modulus 50% Member 3 : Young's modulus 25% Member 5 : Young's modulus 55% Member 15 : Young's modulus 35% Member 20 : Young's modulus 20%

#### 1st trial (Node $A_1$ ):

| Rod | Rigidity | Rod | Rigidity | Rod | Rigidity | Rod | Rigidity |
|-----|----------|-----|----------|-----|----------|-----|----------|
| No. | in%      | No. | in%      | No. | in%      | No. | in%      |
| 1   | 100      | 9   | 100      | 17  | 100      | 25  | 100      |
| 2   | 50       | 10  | 100      | 18  | 100      | 26  | 100      |
| 3   | 50       | 11  | 100      | 19  | 100      | 27  | 100      |
| 4   | 100      | 12  | 100      | 20  | 25       | 28  | 100      |
| 5   | 50       | 13  | 100      | 21  | 100      | 29  | 50       |
| 6   | 100      | 14  | 100      | 22  | 100      | 30  | 100      |
| 7   | 100      | 15  | 25       | 23  | 100      | 31  | 100      |
| 8   | 100      | 16  | 100      | 24  | 100      | 32  | 100      |
|     |          |     |          |     |          |     | 00       |

Member 2 : Young's modulus 50% Member 3 : Young's modulus 25% Member 5 : Young's modulus 55% Member 15 : Young's modulus 35% Member 20 : Young's modulus 20%

2nd trial (Nodes  $A_1$  to  $A_4$ ):

| Rod | Rigidity | Rod | Rigidity | Rod | Rigidity | Rod | Rigidity |
|-----|----------|-----|----------|-----|----------|-----|----------|
| No. | in%      | No. | in %     | No. | in %     | No. | in %     |
| 1   | 100      | 9   | 100      | 17  | 100      | 25  | 100      |
| 2   | 50       | 10  | 100      | 18  | 100      | 26  | 100      |
| 3   | 25       | 11  | 100      | 19  | 100      | 27  | 100      |
| 4   | 100      | 12  | 100      | 20  | 25       | 28  | 100      |
| 5   | 50       | 13  | 100      | 21  | 100      | 29  | 50       |
| 6   | 100      | 14  | 100      | 22  | 100      | 30  | 100      |
| 7   | 100      | 15  | 25       | 23  | 100      | 31  | 100      |
| 8   | 100      | 16  | 100      | 24  | 100      | 32  | 100      |

# **Concluding Remarks**

Experimental design is very tough and robust for damage detection in frame structures.

Damage detection can be done with a fewer number of points for measurement.

• Based on the estimated results by the present method we may improve the solutions via the sensitivity-based inverse analysis.