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Abstract 

In the paper, the degenerate kernels and Fourier series expansions are adopted in the 
null-field integral equation to solve bending problems of a circular beam with circular holes. 
The main gain of using degenerate kernels in integral equations is free of calculating the 
principal values for singular integrals. An adaptive observer system is addressed to fully 
employ the property of degenerate kernels for circular boundaries in the polar coordinate. 
After moving the null-field point to the boundary and matching the boundary conditions, a 
linear algebraic system is obtained without boundary discretization. The present method is 
treated as a “semi-analytical” since analytical expressions as much as possible before 
numerical implementation. Finally, an example, including four holes, is given to demonstrate 
the validity of the proposed method. The present formulation can be extended to handle beam 
problems with arbitrary number and various positions of circular holes. 
Keywords: Null-field integral equation; degenerate kernel; Fourier series; circular holes; 
cantilever beam; stress concentration 

摘要 

本文利用退化核及傅立業級數展開搭配零場積分方程求解圓形斷面梁含圓型孔洞

的彎曲問題。藉由分離核函數的表示式，可免於計算邊界積分中計算主值的困擾。文中

採用自適性觀察座標系統來充分掌握分離核函數的特性。透過零場積分方程將零場點推

向邊界，滿足邊界條件後可以得到線性代數方程式，其中未知的傅立葉係數可輕易地求

得。本法可稱之為“半解析＂法，其主要誤差來源為所截取的傅立葉項數。最後，以一

個包含四個圓孔洞的例子來驗證此方法的正確性，且探討應力集中發生之位置。藉由此

方法可進行任意個數及不同位置之孔洞的彎矩分析。 
關鍵字:零場積分方程；退化核；傅立業級數；圓孔；懸臂梁；應力集中 
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Introduction 

The stress concentration around holes of a beam under bending or torsion plays an 
important role in promoting the design criteria for higher factors of safety. Those problems 
have been visited in a few investigations based on the Saint-Venant theory1, 2. For a simple 
case, an analytical solution may be available. Since the analytical solution for more than two 
holes may encounter difficulty, several numerical approaches have been employed, e.g. 
complex variable boundary element method (CVBEM) by Chou3 and Ang and Kang4. The 
CVBEM was primarily introduced by Hromadka and Lai5 for solving the Laplace problems in 
an infinite domain. In 1997, Chou3 extended the work of Hromadka to multiply-connected 
problems. Recently, Ang and Kang4 developed a general formulation for solving the 
second-order elliptic partial differential equation for a multiply-connected region in a different 
version of CVBEM. The Cauchy integral formulae are offered to solve the boundary value 
problem. By introducing the CVBEM, Chou3 and Ang and Kang4 have revisited the anti-plane 
problems with two circular holes whose centers lie on the x  axis investigated by Honein et 
al.6. In 1991, Naghdi7 employed a special class of basic function, which is the Saint-Venant 
flexure function suitable for the problem of the bending of a circular cylinder with 4N  
( 1,2,3N = ) circular holes in the axial direction. Bird and Steele8 used the Fourier series 
procedure to revisit the antiplane problems in the Honein’s paper6. Also, they solved the 
bending problems which were solved by Naghdi7. In the literature, it is observed that exact 
solutions for boundary value problems are only limited for simple cases. Although Naghdi7 
has proposed a solution for bending problems with holes, it is limited to 4N  ( 1,2,3N = ) 
holes. Therefore, proposing a systematic approach for solving BVP with various numbers of 
circular boundaries and arbitrary positions and radii is our goal in this paper. Following the 
success of anti-plane problems with circular holes9, the null-field integral equation is utilized 
to solve the Saint-Venant bending problem of a beam with circular holes. The mathematical 
formulation is derived by using degenerate kernels for fundamental solutions and Fourier 
series for boundary densities in formulation. Then, it reduces to a linear algebraic equation by 
using collocation approach. After determining the unknown coefficients, series solution for 
the bending function is obtained. The location of maximum stress concentration factor (SCF) 
is addressed. Numerical examples are given to show the validity and efficiency of our 
approach. 

Problem statement 

Consider a beam with a circular section weakened by four circular holes placed on a 
concentric ring of radius a  as show in Fig. 1. The radii of outer circle and inner holes are R  
and b , respectively. The beam is subject to a shear force Q  at the free end, and the 
boundary conditions of outer circle and inner holes are traction free. Following the theory of 
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Saint-Venant bending, we assume the stress to be 

0xx yy xyσ σ σ= = ≡ , ( )zz
y

Q x l z
I

σ = − − , (1) 

where yI  is the moment of inertia of beam cross section for the axisy − . The other two 
stress components are assumed as 

( )
2 21 11

2 1 2 2zx
y

Qy x y
x I x
ϕ ψσ αµ ν ν

ν
⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞= + − + + −⎜ ⎟ ⎜ ⎟⎢ ⎥∂ + ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

, (2) 

( ) ( )2
2 1zy

y

Qx xy
y I y
ϕ ψσ αµ ν

ν
⎛ ⎞ ⎡ ⎤∂ ∂

= + − + +⎜ ⎟ ⎢ ⎥∂ + ∂⎝ ⎠ ⎣ ⎦
, (3) 

where ( ),x yϕ  and ( ),x yψ  are the warping function and bending function of the beam, 
respectively, and αµ  is a constant. Since the ( ),x yϕ  and ( ),x yψ  in the Saint-Venant 
bending problem satisfies the two Laplace equations subject to the Neumann boundary 
condition, we have: 

( )
2 2

2
2 2, 0x y

x y
ϕ ϕϕ ∂ ∂

∇ = + =
∂ ∂

 in D , (4) 

( ) ( )cos , cos ,y n x x n y
n
ϕ∂
= −

∂
 , ix y B∈ , (5) 

and 

( )
2 2

2
2 2, 0x y

x y
ψ ψψ ∂ ∂

∇ = + =
∂ ∂

 in D , (6) 

( ) ( ) ( )2 21 11 cos , 2 cos ,
2 2

x y n x xy n y
n
ψ ν ν ν

⎡ ⎤∂ ⎛ ⎞= − + − − +⎢ ⎥⎜ ⎟∂ ⎝ ⎠⎣ ⎦
 , kx y B∈ , (7) 

where D  is the domain of interest, n  is the outward normal vector of each boundary, and 
kB  is the kth  circular boundary. In Fig. 1, we define the position vector ( ),k kx y  of the 

boundary point on the ith circular boundary as 
cosk k kx b Dxθ= + , 0,1,2,3,4k = , 0 2kθ π< <  (8) 
sink k ky b Dyθ= + , 0,1,2,3,4k = , 0 2kθ π< <  (9) 

where ( ),k kDx Dy  is the coordinate for the center of the kth  eccentric circle, and the 
eccentricity is zero for the outer circle. By substituting Eqs. (8) and (9) into Eq. (7) , the 
boundary condition is specified. 

For the simple case of bending only, we can assume constant αµ  and ( ),x yψ to be zero. 
Following the definition of stress concentration by Naghdi7, we have  

zx ASc
Q

σ
= , (10) 

where A  is the area of the cross-section. The shear stress zxσ  in Eq. (10) is obtained from 
the Eq. (2). Thus, the problem of bending is reduced to find the bending function ( ),x yψ  
which satisfies the Laplace equation of Eq. (6) and the Neumann boundary condition of Eq. (7) 
on each boundary. 
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Dual boundary integral equations and dual null-field integral equations 

Employing the Fourier series expansions to approximate the potential u  and its normal 
derivative t  on the circular boundary 

0
1

(s ) ( cos sin )k k k
k n k n k

n

u a a n b nθ θ
∞

=

= + +∑ , sk kB∈ , 1, 2, ,k N= , (11) 

0
1

(s ) ( cos sin )k k k
k n k n k

n

t p p n q nθ θ
∞

=

= + +∑ , sk kB∈ , 1, 2, ,k N= , (12) 

where s(s ) (s ) / nk kt u=∂ ∂  in which sn  denotes the outward normal vector at the source point 
s , k

na , k
nb , k

np  and k
nq  ( 0,1, 2,n = ) are the Fourier coefficients and kθ  is the polar angle 

for the kth  circular boundary. The integral equation for the domain point can be derived 
from the third Green’s identity10 , as shown below: 

2 (x) (s, x) (s) (s) (s, x) (s) (s), x ,
B B

u T u dB U t dB Dπ = − ∈∫ ∫  (13) 

2 (x) (s, x) (s) (s) (s, x) (s) (s), x ,
B B

t M u dB L t dB Dπ = − ∈∫ ∫  (14) 

where s  and x  are the source and field points, respectively, B  is the boundary, D  is the 
domain of interest, and the kernel function (s, x) lnU r= , ( x sr ≡ − ), is the fundamental 
solution which satisfies 

2 (s, x) 2 (x s)U πδ∇ = − , (15) 
in which (x s)δ −  denotes the Dirac-delta function. The other kernel functions, (s, x)T , 

(s, x)L  and (s, x)M , are defined by 

s

(s, x)(s, x)
n

UT ∂≡
∂

, 
x

(s, x)(s, x)
n

UL ∂≡
∂

, 
2

s x

(s, x)(s, x)
n n
UM ∂≡

∂ ∂
, (16) 

By collocating x  outside the domain ( x cD∈ ), we obtain the dual null-field integral 
equations as shown below 

0 (s, x) (s) (s) (s, x) (s) (s), x ,c

B B
T u dB U t dB D= − ∈∫ ∫  (17) 

0 (s, x) (s) (s) (s, x) (s) (s)
B B

M u dB L t dB= −∫ ∫ , x cD∈ , (18) 

where cD  is the complementary domain. Based on the separable property, the kernel 
function (s, x)U  is expanded into the degenerate form by separating the source point and 
field point in the polar coordinate: 

1
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∑
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where the superscripts “ i ” and “ e ” denote the interior ( R ρ> ) and exterior ( Rρ> ) cases, 
respectively. After taking the normal derivative with respect to Eq. (19), the (s, x)T  kernel 
function yields 

1
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(s, x)

( , ; , ) ( ) cos ( ),
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∑
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and the higher-order kernel functions, (s, x)L  and (s, x)M , are shown below: 
1

1

1
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( , ; , ) ( )cos ( ),
(s, x)

1( , ; , ) ( )cos ( ),
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m
i

m
m

m
e

m
m

mM R m R
R

M
mRM R m R

ρθ ρ φ θ φ ρ

θ ρ φ θ φ ρ
ρ

−∞

+
=

−∞

+
=

⎧⎪⎪ = − ≥⎪⎪⎪⎪=⎨⎪⎪⎪ = − >⎪⎪⎪⎩

∑

∑
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Since the potentials resulted from (s, x)T  and (s, x)L  are discontinuous cross the 
boundary, the potentials of (s, x)T and (s, x)L  for R ρ+→  and R ρ−→  are different. This is 
the reason why R ρ=  is not included in the expression for the degenerate kernels of (s, x)T  
and (s, x)L  in Eqs. (20) and (21). 

Adaptive observer system 

After moving the null-field point of Eq. (17) to the boundary, the boundary integrals 
through all the circular contours are required to be calculated. Since the boundary integral 
equations are frame indifferent due to the energy or work form, namely, objectivity rule, the 
observer system is adaptively to locate the origin at the center of circle under integration. 
Adaptive observer system is chosen to fully employ the property of degenerate kernels. The 
origin of the observer system is located on the center of the corresponding circle under 
integration to entirely utilize the geometry of circular boundary for the expansion of 
degenerate kernels and boundary densities. 

Vector decomposition technique of the potential gradient for the stress calculation in the 
hypersingular formulation 

Equation (12) shows the normal derivative of potential for domain points, special 
treatment is considered here. Not only for calculating the stress but also for degenerate 
scales11 , potential gradient on the boundary using hypersingular formulation is required to 
calculate. For the non-concentric case, special treatment for the normal derivative should be 
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taken care as the source point and field point locate on different circular boundaries. As 
shown in Fig. 2, the normal direction on the boundary (1, 1’) should be superimposed by the 
radial derivative (3, 3’) and angular derivative (4, 4’). We called this treatment “vector 
decomposition technique”. According to the concept of vector decomposition technique, 

(s, x)L  and (s, x)M  in Eqs. (21) and (22) can be rewritten as shown bellow 
1
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, (24) 

where ζ  and ξ  are shown in Fig. 2. For the concentric case, the circles with respect to the 
same origin of observer, the potential gradient is derived free of special treatment since 
ζ ξ= . 

Linear algebraic system 

We need to collocate 2 1M +  null-field point on the boundary to calculate 2 1M +  
unknown Fourier coefficients. By moving the null-field point xk  on the kth  circular 
boundary in the sense of limit for Eq. (17), we have 

1 1

0 (s , x ) (s ) (s) (s , x ) (s ) (s), x ,
C C

k k

N N
c

k j k k k j k kB Bk k

T u dB U t dB D
= =

= − ∈∑ ∑∫ ∫  (25) 

where CN  is the number of circles including the outer boundary and the inner circular holes. 
If the domain is unbounded, the outer boundary 0B  is a null set and CN N= . By moving the 
null-field point on the boundary, a linear algebraic system is obtained 

[ ]{ } [ ]{ }U t T u= , (26) 
where [ ]U  and [ ]T  are the influence matrices with a dimension of (2 1)CN M +  by 

(2 1)CN M + , { }u  and { }t  denote the column vectors of Fourier coefficients with a 
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dimension of (2 1)CN M +  by 1 in which  [ ]U , [ ]T , { }u  and { }t  can be defined as 
follows: 

[ ] [ ]

00 01 0 00 01 0

10 11 1 10 11 1

0 1 0 1

,

N N

N N

N N NN N N NN

U U U T T T
U U U T T T

U T

U U U T T T

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, (27) 
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⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪⎪ ⎪⎪=⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭
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0

1

2

N

t

t

t t

t

=

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

, (28) 

where the vectors { }ku  and { }kt  are in the form of { }0 1 1

Tk k k k k
M Ma a b a b  and 

{ }0 1 1

Tk k k k k
M Mp p q p q , respectively; the first subscript “ j ” ( 0,1, 2, ,j N= ) in jkU⎡ ⎤⎢ ⎥⎣ ⎦  

and jkT⎡ ⎤⎢ ⎥⎣ ⎦  denotes the index of the jth  circle where the collocation point is located and the 
second subscript “ k ” ( 0,1, 2, ,k N= ) denotes the index of the kth  circle where the 
boundary data { }ku  or { }kt  are specified, M  indicates the truncated terms of Fourier 
series. By rearranging the known and unknown sets, the unknown Fourier coefficients are 
determined. Equation (17) can be calculated by employing the orthogonal property of Fourier 
bases in the real computation. Only the finite M  terms are used in the summation of Eqs. 
(11) and (12). After obtaining the unknown Fourier coefficients, the boundary stress and 
interior potential can be easily calculated. 

Illustrative examples and discussions 

Four circular holes7, 8, 12 
In order to check the validity of the present formulation, the Naghdi’s beam problems7 

with four holes symmetrically located with respect to the x  and y  axis were revisited. All 
the numerical results were obtained by using ten terms of Fourier series ( 10M = ). We set the 
value of Poisson’s ratio 0.3ν =  and 1R = . In Figs. 3(a) and 3(b), the values of the stress 
concentration Sc  along AB  and CD  (as Fig. 1) are plotted versus the position 

1 117 /Y Y AB= , and 2 217 /Y Y CD= , respectively. Figure 3(c) shows the stress concentration Sc  
along OT , and the 1 18 OTξ = ×  for the case of 0.5a = , / 4θ π=  and 0.1b = . Figures 3 (a) 
and 3(b) show that the maximum Sc  occurs at B  and C  on the boundaries, respectively. 
For the Sc  along OT  in Figure 3(c), the maximum Sc  occurs at the position near the 
center of the two above holes. Good agreement is made after comparing with the Naghdi’s 
results7. In the literature, Naghdi7 and Bird and Steele8 also calculated the stress concentration 
factor at the point B  for 0.12b =  and different values of a , Bird and Steele7 stated that the 
deviation by the Naghdi’s data is 11%. The grounds for this discrepancy were not identified in 
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their paper. Our numerical results are more agreeable to the Naghdi’s data7 as shown in Figs. 
4, where Fig. 4(c) and 4(f) was not provided by Bird and Steele8. 

Conclusions 

For the bending problem with circular holes, we have proposed a BIEM formulation by 
using degenerate kernels, null-field integral equation and Fourier series in companion with 
adaptive observer systems and vector decomposition. This method is a semi-analytical 
approach since only truncation error in the Fourier series is involved. An advantage of the 
method over Naghdi’s approach7 is that the extension to multiple circular holes of arbitrary 
radii and positions is straightforward. Results obtained by the present approach matched well 
with those of Naghdi’s7 although Bird and Steele’s data8 seems to deviate. Although only four 
holes were tested to compare with the Naghdi’s7 and Bird and Steele’s results8, our 
general-purpose program can solve problems with arbitrary number and various positions of 
circular holes. 
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Figure 1 Cross-section of cantilever beam 
of symmetrical holes. 

Figure 2 Vector decomposition for the 
potential gradient for stress calculation in 

the hypersingular equation. 
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Figure 3 The stress concentration for 0.5a = , / 4θ π=  and 0.1b = . 
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( Present method) 
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Figure 4 The stress concentration versus a  for 0.12b =  of / 8θ π= , 3 / 8θ π=  and 
/ 4θ π= , respectively. 
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