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Abstract 
In this paper, the method of fundamental solutions (MFS) for solving the 

eigenfrequencies of multiply-connected plates is proposed. The coefficients of 
influence matrices are easily determined when the fundamental solution is known. 
True and spurious eigensolutions appear at the same time. It is found that the 
spurious eigensolution using the MFS depends on the location of the inner boundary 
where the fictitious sources are distributed. To verify this finding, mathematical 
analysis for the appearance of spurious eigenequations using degenerate kernels and 
circulants is done by demonstrating an annular plate with a discrete model. In order 
to obtain the true eigensolution, the Burton & Miller method is utilized to filter out 
the spurious eigensolutions. One example is demonstrated analytically and 
numerically to see the validity of the present method. 
 
Keywords: Method of fundamental solutions; Biharmonic equation; Circulant; 
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Introduction 

The method of fundamental solutions (MFS) is a numerical approach as well as 
finite difference method (FDM), finite element method (FEM) and boundary 
element method (BEM). This method was attributed to Kupradze in 1964. The MFS 
was applied to many problems (Fairweather and Karageorghis, 1998; Chen et al., 
1998; Karageorghis, 2001), and can be regarded as one kind of meshless method. It 
has several advantages over boundary element method, e.g., no boundary integrals, 
no singularity and mesh-free model. Although MFS has been applied to solve many 
engineering problems, most of them are for cases of simply-connected domains. 
Chen et al. have tried to solve the eigenproblem of multiply-connected membrane 
and found that spurious eigenvalues also appear (Chen et al., 2004) as well as BEM 
(Chen et al., 2003). We may wonder whether spurious solutions also occur for the 
plate case rather than membrane. 

In this paper, the MFS for solving the eigenfrequencies of annular plate is 
proposed. The occurring mechanism of the spurious eigensolution of an annular 
plate is studied analytically. The degenerate kernels and circulants are employed to 
determine the spurious eigensolution. In order to filter out the spurious eigenvalues, 
singular value decomposition updating technique and Burton & Miller method are 
utilized. An annular case is demonstrated analytically to see the validity of the 
present method. 
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Analytical derivation of free vibration for annular plate using the method of 
fundamental solutions 

The governing equation for an annular plate vibration in Fig.1 is the 
biharmonic equation as follows: 

Ω∈=∇ xxuxu ),()( 44 λ , (1)
where  is the biharmonic operator, u is the lateral displacement, 

, 

4∇
h0ρ D/24 ωλ = λ  is the frequency parameter, ω  is the angular frequency, 0ρ  

is the surface density, D is the flexural rigidity expressed as  in 
terms of Young’s modulus E, the Poisson ratio 

)1(12/ 23 ν−= EhD
ν  and the plate thickness h,  is 

the domain of the thin plate. The fundamental solution is chosen as 
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where , , || xsr −≡ 12 −=i )(0 rJ λ  and Y )(0 rλ  are the first kind and second kind 
zeroth-order Bessel functions, respectively, )r(0I λ  and )(0 rK λ  are the first and 
second kind zeroth-order modified Bessel functions, respectively. Based on the MFS, 
we can represent the displacement field of plate vibration by 
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where 2N is the number of fictitious source nodes. jφ  and jϕ  are the known 
densities with respect to P and Q. The two kernels (P and Q) are obtained from 
either the two of the kernel  and the other three kernels, ),( xsU ),( xsΘ ,  
and  (Chen et al., 2004). The slope (

),( xsM
),( xsV θ ), normal moment (m) and effective 

shear force (v), are also obtained as reference (Chen et al., 2004). In order to derive 
the exact eigensolution, degenerate kernel and circulant are considered for an 
annular plate. The field and source points are distributed as shown in Fig.2. Here, we 
consider the clamped case (u=0 and 0=θ ) by using U and  kernels. We 
distributed 2N field points on the real boundary, and the same 2N sources are 
distributed on the fictitious boundary. By matching the boundary condition, we 
obtain 
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where }1{φ , }2{φ , }1{ϕ  and { }2ϕ  are the generalized coefficients for B1 and B2 
with a dimension of , the matrices , 12 ×N ][ ijU ][ ijΘ ,  and [  mean 
the influence matrices of U, 

][ θijU ]θijΘ
Θ ,  and θU θΘ  kernels which are obtained by 

collocating the field and source points on Bi and jB′  with a dimension of , 
respectively. For the existence of nontrivial solution, the determinant of the matrix 
versus the eigenvlaue must be zero, i.e.,  
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It is noted that the matrix  denotes the matrix of true eigenequation for the 
C-C case and the matrix  denotes the matrix of spurious eignequation in the 
U-Θ  formulation after comparing with the analytical solution for the annular plate 
(Leissa, 1969). The matrix in Eq.(7) can be further decomposed into 
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Since the latter part of Eq.(8) is never zero, the spurious eigenequation depends on 
. It is noted that the spurious eigensolution happens to be true eigensolution of the 

clamped circular plate with a radius 
a′

a′ . Therefore, the positions of spurious 
eigenvalues for the annular problem depend on the location of inner fictitious 
boundary  where the sources are distributed. a′
 
A numerical example 

An annular plate with the inner radius of 0.5 meter and the outer radius of 1 
meter are considered, respectively. The source points are distributed at  
meter and  meter. Forty-six nodes are uniformly distributed on the inner and 
outer fictitious boundaries. Fig.3 shows the determinant versus frequency parameter 
by using the U-  formulation. The drop location indicates the possible eigenvalues. 
Fig.4 shows the determinant versus frequency parameter by using the Burton & 
Miller method for the annular plate. It is found that the appearance of spurious 
eigenvalues is suppressed. After comparing the result with the analytical solution, 
good agreement is made. 
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Conclusions 

The mathematical analysis has shown that spurious eigenvalues occur by using 
degenerate kernels and circulants when the method of fundamental solutions is used 
to solve the eigenvalue of annular plates. The positions of spurious eigenvalues for 
the annular problem depend on the location of inner fictitious boundary where the 
sources are distributed. The spurious eigenvalues in the annular problem are found 
to be the true eigenvalues of the associated simply-connected problem bounded by 
the inner sources. We have employed the Burton & Miller method to filter out the 
spurious eigenvalues successfully. 
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Fig.1 An annular problem Fig.2 Figure sketch for source distribution 
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Fig.3 The determinant versus frequency 
parameter by using the U-  formulationΘ

Fig.4 The determinant versus frequency 
parameter by using the U-Θ  formulation 

in conjunction with Burton & Miller 
method 
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