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Abstract 
This paper describes a numerical procedure for solving the Laplace problems of 
infinite plane with multiple circular holes by using the null-field integral equation, 
Fourier series and degenerate kernels. The unknown boundary potential and flux are 
approximated by using the truncated Fourier series. Degenerate kernels are utilized in 
the null-field integral equation. A linear algebraic system is obtained without 
boundary discretization. The present method is verified through one example with the 
exact solution derived by Lebedev et al. 
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Introduction 
A number of problems in engineering involving infinite and half-plane domains, e.g. 
the soil-structure interaction, tunnel and concrete pipe design, have been studied by 
using finite element method (FEM), boundary element method (BEM), method of 
fundamental solution (MFS) and the Trefftz method. As we know, FEM is a very 
efficient method in solving finite-domain problems, but it is not convenient to deal 
with infinite-domain problems. In this aspect, BEM is an efficient alternative which 
has been extensively used for solving infinite and half-plane problems (Chen and 
Hong, 1992; Brebbia and Dominguez, 1989; Brebbia et al., 1984). 
To tackle the exterior problems containing circular holes by using FEM, special 
treatment should be addressed for truncating the unbounded domain. Due to this 
reason, BEM is a more efficient method to solve an infinite or half-plane problem (E. 
Pan et al., 1998a; L. Pan et al., 1998b; Schenck, 1968). 
In this paper, the boundary integral equation method (BIEM) is utilized to solve 
infinite-plane problems with multiple circular holes. The unknown boundary potential 
and flux are approximated by using the truncated Fourier series (Mogilevskaya and 
Crouch, 2001; Caulk, 1984). The Fourier coefficients can be determined by 
substituting the degenerate kernels in the null-field integral equation. Numerical 
results of the Dirichlet problem is given to illustrate the validity of the present 
approach. The accuracy and efficiency for the present method are also examined. 
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Problem statement and integral formulation 
Consider an infinite plane containing N  randomly distributed circular holes 
centered at position vector jc ( j =1, 2, ..., N ) as shown in Fig 1. Let ja  and jB  
denote the radius and boundary of the jth  hole. We use the truncated Fourier series 
expansions to approximate the potential u  and its normal flux t  on the boundary 
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where the coefficients 0 ja , nja  and njb  are specified once ( )jf θ  is given, 0 jp , 
njp  and njq  are the undetermined coefficients for the Dirichlet problem, jθ  is the 

polar angle centered at jc . Based on the boundary integral formulation of the domain 
point for potential problems (Chen and Hong, 1999), we have 
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where s  and x  are the source and field points, respectively, D  is the domain of 
interest, B  is the boundary and ( , ) lnU s x r=  is the fundamental solution which 
satisfies 
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in which, ( )x sδ −  denotes the Dirac-delta function. ( , )T s x  is defined by 
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where sn  denotes the outward normal vector at the source point s . By collocating 
x  outside the domain ( ex D∈ ), we obtain the null-field integral equation as shown 
below 
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Based on the separable property, the U  kernel function can be expanded into 
degenerate form as shown below 
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where α  is the angle between js c−  and jx c− , the superscripts i  and e  
denote the interior and exterior cases, respectively. After taking the normal derivative, 
the ( , )T s x  kernel can be derived as 

1
1

1

1

1 ( )cos ,

( , )

( )cos ,

m

ji
j jm

mj j

m

je
j jm

m j

x c
T m s c x c

s c s c
T s x

s c
T m x c s c

x c

α

α

∞

+
=

−
∞

=

⎧⎪ −⎪⎪ = + − > −⎪⎪ −⎪ −⎪⎪= ⎨⎪⎪ −⎪⎪ =− − > −⎪⎪ −⎪⎪⎩

∑

∑
. (8)



The International Conference on Computational Methods 
December 15-17, 2004, Singapore 

 3

By collocating the null-field point k k kx c a−− =  on the kth  circular boundary for 
Eq. (6), we have 
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= =
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For the jB  integral of the circular boundary, the kernels of ( , )U s x  and ( , )T s x  
are respectively expressed in terms of degenerate kernels of Eqs. (7) and (8), and 

( )u s  and ( )t s  are respectively substituted by using Fourier series of Eqs. (1) and 
(2), respectively. It is worth noting that k k kx c a−− =  must be transformed to the 
new coordinate of the coordinate system of origin jc  in the jB  integration as 
shown in Fig. 1. We obtain a linear algebraic system 

[ ]{ } [ ]{ }A x B y= , (10)

where [ ]A  and [ ]B  are the influence matrices, { }x  and { }y  denote the unknown 
and specified vectors of Fourier coefficient, respectively. After obtaining the 
unknown Fourier coefficients, we also need to transform the new coordinate as shown 
in Fig. 2 to obtain the interior potential by employing Eq. (3). 
 
Numerical example 
In this section, we consider an exterior Dirichlet problem containing two circular 
holes in an infinite plane as shown in Fig. 3 (Lebedev et al., 1979). As shown in Fig. 
4, numerical results show good agreement after comparing the exact solution by 
Lebedev et al. 

 
Fig. 1 Boundary integral in the null-field 
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Fig. 2 Boundary integral for the BIE of 
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Exact solution：
0

u α
α

=  

(bipolar coordinate ,α β ) 

Fig. 3 Problem statement (Lebedev et al., 1979) 
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(a) Exact solution (b) Present method 

Fig. 4 Contour of potential for the infinite plane with two circular holes 
 
Conclusions 
A novel method by using degenerate kernels, null-field integral equation and Fourier 
series was proposed to solve infinite-plane problems with multiple circular holes. The 
method shows great generality and versatility for the problems of multiple circular 
holes with arbitrary sizes and positions in an infinite plane. The Fourier series give 
very accurate representations of boundary densities and numerical errors come from 
truncation. Numerical results agree very well with the exact solution of Lebedev et al. 
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