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Abstract 
 

In the thesis, boundary value problems with circular boundaries are formulated in a 
unified manner by using null-field integral equation in conjunction with degenerate 
kernels and Fourier series expansions. Laplace problems of circular holes as well as 
Helmholtz problem of SH-wave impinging on circular cavities and/or inclusions were 
studied. The fundamental solution is expanded to degenerate form by separating the 
source point and field point in the polar coordinate. The main gain of using degenerate 
kernels for interior and exterior expansions is free of calculating the principal values. In 
order to fully describe the circular boundary, the present method employs the Fourier 
series to approximate the boundary potential. By collocating the null-field points on the 
real boundary with the same number of Fourier coefficients, the unknown coefficients in 
the algebraic system can be easily determined. The present method is treated as a 
“semi-analytical” solution since error only attributes to the truncation of Fourier series. 
Four advantages, well-posed model, principal value free, elimination of boundary-layer 
effect and exponential convergence, are achieved. Besides, the null-field approach in 
conjunction with degenerate kernels and Fourier series expansions is also employed to 
derive the Green’s function for boundary value problems stated for annular problems of 
Laplace equations and the generalized Poisson integral formula is obtained. Finally, 
several examples involving torsion, bending, and infinite domain with cavity and 
half-plane with alluvial valleys and inclusions problem were given to demonstrate the 
validity of the proposed method. Also, the numerical results agree well after comparing 
with available solutions in the literature. A general-purpose program for multiple 
circular cavities and/or inclusions of various radii and arbitrary positions was 
developed. 
 
Keywords: degenerate kernel, Fourier series, null-field integral equation, Laplace and 
Helmholtz problem, Green’s function, inclusion. 



 XIV

中文摘要 
 

本文係使用零場積分方程搭配分離核函數與傅立葉級數求解含圓形邊界之問題。

文中，不僅將求解含圓孔洞之拉普拉斯問題，SH 波入射圓洞和/或置入物之赫姆茲

問題也將一併探討。在此，基本解將以場、源點分離的概念展開為分離（退化）

的型式，而邊界物理量則使用傅立葉級數展開。藉由分離核函數的內域與外域表

示式，可解析計算所有的邊界積分而免於計算主值的困擾。均勻分佈與傅立葉係

數相同個數之觀察點於真實邊界上，因此，未知傅立葉係數即可輕易地求得。由

於誤差僅來自於擷取有限項的傅立葉級數，故本方法可視為“半解析法＂。此方

法具(1) 良態模式； (2) 無需主值計算；(3) 無邊界層效應；(4) 指數收歛，等

四大優勢。此外，此法亦被利用推導同心圓環之格林函數的拉普拉斯問題並推導

廣義 Poisson 積分方程。最後，為了驗證此方法的可行性與正確性，對於扭轉、

彎矩，含圓孔之全平面與含沉積土或置入物之半平面問題均予以測試，所得的數

值結果也與文獻中之結果進行比較，均能得到不錯的結果。我們開發一套系統性

求解含任意數目、不同大小與位置的圓孔洞和/或置入物分析拉普拉斯與赫姆茲問

題的程式。 

 

關鍵字：分離核函數、傅立葉級數、零場積分方程、拉普拉斯與赫姆茲問題、格

林函數、置入物。 
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Chapter 1 Introduction 
 

1.1 Motivation of the research 
 
Engineering problems with circular holes are often encountered, e.g, missiles, aircraft, 

naval architecture, etc., either to reduce the weight of the whole structure or to 

increase the range of inspection as well as piping purposes. An analytical approach 

using the bi-polar coordinate [49] was developed for two-holes problems. Complex 

variable techniques were also employed for the annular case using technique of 

conformal mapping. For a problem with several holes, various numerical methods, e.g. 

finite difference method (FDM), finite element method (FEM), boundary element 

method (BEM) and meshfree method, etc. are always resorted to solve. Among 

diverse numerical approaches, FEM and BEM have become popular research tools for 

engineers. In the past decade, FEM has been widely applied to carry out many 

engineering problems, but one disadvantage is that discretizations on the domain are 

time-consuming to set up the mesh models. Regarding to the benefit of using BEM, 

only discretizations on boundaries are required and the boundary conditions at infinity 

are automatically satisfied. Although BEM has been involved as an alternative method 

for solving engineering problems, four critical issues are of concern.  

(1) It is well-know that improper integrals (weak, strong and hypersingular) should be 

handled particularly when BEM is used. Hong and Chen [101] have developed the 

theory of dual boundary integral equation (BIE) and dual BEM containing 

hypersingular kernels. In the dual BIEM/BEM formulation, the singular and 

hypersingular integrals need special care on the sense of the Cauchy and Hadamard 

principal values, respectively. How to determine accurately the free terms has 

received more attentions in the past decade and a large amount of papers can be found.  

In the past, many researchers proposed several regularization techniques to deal with 

the singularity and hypersingularity. Two conventional approaches were employed to 

regularize the singular and hypersingular integrals. First, Guiggiani [42] has derived 

the free terms for Laplace and Navier equations using differential geometry and bump 

contour approach. Second, Gray and Manne [40] have employed a limiting process to 
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ensure a finite value from an interior point to boundary by using symbolic software. 

Two alternatives, fictitious BEM and null-field approach (off boundary approach), can 

avoid the singularity since the source and field points never coincide in the boundary 

integration. However, they result in an ill-posed matrix which will be elaborated on 

later. This indicates that direct problem instead of inverse one is solved by an 

ill-posed model. How to extract principle values of singularity and hypersingularity 

using the well-posed model is one of our objects in this thesis.  

(2) On the other hand, many researchers tried to regularize the approach to regular 

formulation. In order to avoid directly calculating the singular and hypersingular 

integrals, null-field approach or fictitious BEM yields an ill-condition system which 

needs regularization. Achenbach et al. [1] employed the off-boundary approach in 

order to overcome the fictitious frequencies free of singularity. Null field integral 

equation approach is used widely for obtaining the numerical solutions of engineering 

problems. Various names, e.g, T-matrix method [83] and extended boundary condition 

method (EBCM) [37] have been coined. A crucial advantage of this method consists 

in the fact that the influence matrix can be computed easily. Although many works for 

acoustic and water wave problems have been done, we focus on the solid mechanics 

here. By moving the null-field points to the real boundary or adjusting the fictitious 

boundary to the real boundary, the system can be changed to be well-posed. However, 

CPV and HPV need to be calculated. To construct a well-posed mathematical 

formulation free of singularity and hypersingularity as well as no need of 

regularization technique is not trivial. In the thesis, we may wonder whether it is 

possible to push the null-field point on the real boundary but free of calculating 

singularity and hypersingularity. The answer is yes. Instead of determining the 

singular (hypersingular) integrals using the definition of CPV (HPV), the kernel 

function is described in an analytical form from each side (interior and exterior) by 

employing the separable technique since the double-layer potential is discontinuous 

across the boundary. Therefore, degenerate kernel, namely separable kernel, is 

employed to represent the potential of the perforated domain which satisfies the 

governing equation. 

(3) Boundary-layer effect is inherent in BEM. In real applications, data near boundary 
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can be artificially smoothened Laplace field satisfies maximum and minimum 

principles; nevertheless, it also deserves study to know how to manipulate the nearly 

singular integrals. Chen and Hong [23] regularized the boundary-layer effect by 

subtracting the boundary density with the constant and linear terms. Chen et al. [18] 

in China independently also using the similar idea. Zhou [94] proposed an analytical 

approach to calculate the nearly singular integrals and could avoid the appearance of 

boundary-layer effect. We may wonder whether it is possible to develop a BIEM 

formulation which is free of boundaries-layer effect. Readers can find the answer in 

this thesis.  

(4) Convergence rate is the main concern of BEM. It is no doubt that dual BEM is 

very versatile for boundary value problems (BVPs) with general geometries including 

circular holes, ellipse, square and crack boundaries as shown in Figure 1-1. Regarding 

to constant, linear and quadratic elements, the discretization scheme does not take the 

geometry into consideration. For problems with special geometries, one can propose 

the special function to approximate the geometry. Legendre and Chebyshev 

polynomials are suited to approximate the boundary densities on the regular and 

degenerate boundaries, respectively. Fourier series is specially tailored to problems 

with circular geometries. Bird and Steele [6-8] presented a Fourier series procedure to 

solve circular plate problems containing multiple circular holes in a similar way of 

Trefftz method by adopting the interior and exterior T-complete sets. The Fourier 

procedure is an extension of their earlier work for the Laplace equation [8]. The 

lateral displacement, slope, bending moment and shear force of plates subject to 

different boundary conditions (essential and natural boundary condition and so on) 

can be obtained by using the Bird and Steele’s formulation [8]. Either the interior or 

exterior bases in the Trefftz method are embedded in degenerate kernels [32]. The 

relation between the Trefftz method and the method of fundamental solutions (MFS) 

was constructed by using the degenerate kernels by Chen’s Group [32]. The main 

advantage by using Fourier series to expand the boundary function on circular 

boundaries is that no mesh generation is required. Caulk and Barone [12-15] have 

solved the Laplace problem in two-dimensional region with circular holes by using 

the special boundary integral equations. In their approach, the boundary potential and 
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its normal derivative were both approximated by using Fourier series on each hole. 

Crouch and Mogilevskaya [36] utilized Somigliana's formula and Fourier series for 

elasticity problems with circular boundaries. Mogilevskaya and Crouch [65] have 

solved the problem of an infinite plane containing arbitrary number of circular 

inclusions based on the complex singular integral equation. In their analysis procedure, 

the unknown tractions are approximated by using complex Fourier series. However, 

for calculating an integral over a circular boundary, they didn’t express the 

fundamental solution using the local polar coordinate. Another disadvantage is that 

the cavity can not be treated as a limiting case of inclusion [65]. Kress [48] has 

proved that expansion of degenerate kernel and Fourier series yield the exponential 

convergence instead of linear algebraic convergence using BEM. This thesis will take 

advantage of this expansion to deal with problems containing circular boundary using 

Fourier series in conjunction with degenerate kernel. 

Since the fundamental solutions can be expanded into separable forms in the polar 

coordinate to avoid the singularity and hypersingularity, we focus on the problems 

with circular boundaries in this thesis. Once the fundamental solution can be 

separated in the other coordinate, e.g. Cartesian or elliptic coordinate; the same idea 

can be applied to solve for problems with different shapes of boundaries by 

considering corresponding special function to approximate the geometry without any 

difficulty. Recently, Chen’s group [16,17,20,22,27-30,33,46,72,73] applied the 

null-field integral formulation, Fourier series and degenerate kernels to solve Laplace, 

Helmholtz and biharmonic problems with circular holes. Following the success of 

their idea, a semi-analytical approach is extended to solve the stress concentration for 

Laplace and Helmholtz equations with multiple circular holes and/or inclusions 

subject to the SH-wave in this thesis. Half-plane problems containing alluvial valleys, 

inclusions and cavities are our concern. 

In this thesis, the stress concentration around holes of a beam under torsion or 

bending is one of our concerns. Chen and Weng [34] have introduced conformal 

mapping with a Laurent series expansion to analyze the Saint-Venant torsion problem. 

They determined the torsional rigidity of an eccentric bar containing different 

materials with an imperfect interface under torque. Because the conformal mapping is 
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limited to the doubly connected region, an increasing number of researchers have paid 

more attentions on special solutions. Recently, Honein et al. [44] have investigated 

the antiplane problem by using the Möbius transformation for two-holes problems. 

The effect of stress concentration due to different orientations was also conducted. 

Analytical solutions for the flexure of circular cylindrical beams with one eccentric 

circular cylindrical hole, according to the Saint-Venant theory [75,78], have been 

obtained in a few investigations. In 1991, Naghdi [68] has employed a special class of 

basis functions to solve the bending problem of a circular cylinder with 

4 ( 1,2,3,...)N N =  circular cylindrical cavities in the axial direction. Bird and Steele 

[8] have revisited the bending problem with an arbitrary number and various location 

by using the Fourier series method. Comparing with the results of Naghdi [68] and 

those of Bird and Steele [8], the two approaches disagree by over ten percents. The 

grounds for the discrepancy have not yet been identified. However, the extension of 

above special solution to multiple circular holes may encounter difficulty. To develop 

a systematic method for solving the bending problems with circular boundaries is not 

trivial. According to the foregoing reasons, this thesis focuses on a systematic 

approach for problems containing multiple circular holes as well as inclusions. 

Not only the Laplace problems, but also the Helmholtz problems with circular 

boundaries are our focus to solve by using the null-field integral equation approach in 

conjunction with degenerate kernels, Fourier series, vector decomposition and the 

adaptive observer frame. Half-plane problems with cavities, alluvial valleys, and 

inclusions subject to the SH-wave problems are solved by using our approach since 

they both satisfy the Helmholtz equation. Simple cases were solved in many studies, 

i.e. half-plane problem with cavities or the inclusions [50-56, 58-62, 79-81, 85-93, 

95-98, 103, 104]. In order to verify the present formulation, problems containing 

multiple circular boundaries, cavities, alluvial valleys, canyons, and inclusions are 

tested in this thesis. According to the degenerate kernels, null-field integral 

formulation and Fourier series for problems with circular boundaries, a linear 

algebraic system is constructed by matching the interface conditions at the collocation 

points. The displacement and slope for the problems with circular boundaries can be 

obtained by using the boundary integral equations for the domain point. In the polar 
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coordinate system, the calculation of potential gradients in the normal and tangential 

directions for the stress components must be specially taken care. It is interesting that 

basin geography subject to the incident wave can also be solved by using the present 

method. Alluvial valley subject to the incident wave is decomposed into two parts, 

incident plane wave field and radiation field. The radiation boundary condition is the 

minus quantity of incident wave function for matching the boundary condition of total 

wave for cavity. The effect of harder and softer inclusions on the site response subject 

to the incident wave is discussed. Also, half-plane problems with a semi-circular 

canyon subject to the SH wave is solved and it can be seen as a limiting case of 

semi-circular alluvial problems by setting zero shear modulus. Previous results, e.g. 

the Trifunac’s [80] analytical solution and other numerical data, are compared with. 

Finally, several examples including two inclusions, successive canyons and alluvial 

valleys, are presented to show the validity of the present method and some 

conclusions are made. The analytical solution of the Green’s function [41] of annular 

case can also be derived using our approach. Since analytical solutions are not 

available for eccentric case, our semi-analytical method may provide a datum for 

other researcher’s references. 

 

1.2 Organization of the thesis 
 
In this thesis, the null-field integral equations in conjunction with degenerate kernels 

and Fourier series are utilized to solve the torsion, bending, radiation and scattering 

problems with circular boundaries. We coined it the null-filed integral equation 

approach. The comparison of conventional BEM and the present method is shown in 

Table 1-1. The organization of each chapter is summarized below. 

In the chapter 2, we derive the unified formulation of null-field integral equation 

approach for boundary value problems. The degenerate kernels and Fourier series 

expansions are adopted in the null-field integral equation to solve boundary value 

problems with circular boundaries. The present method is treated as a 

“semi-analytical” solution since error only attributes to the truncation of Fourier series. 

Four gains of well-posed model, singularity free, boundary-layer effect free and 
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exponential convergence are our goals to achieve. 

In the chapter 3, the application to the Laplace equation of torsion and bending 

problems with circular holes are considered. We emphasize on determining the 

torsional rigidity for torsion problems and the stress concentration for bending 

problems. For the torsion problem, the torsional rigidity is compared with the Caulk’s 

[14] and Ling’s data [57]. The result of torsion rigidity is improved over Ling’s data. 

On the other hand, the discrepancy between Bird and Steele [6,8] and Naghdi [68] 

results in the bending problem is examined by using the present approach. It is found 

that the present method is more versatile to calculate the bending problem with 

arbitrary number of holes. 

In the chapter 4, we focus on the applications to the exterior radiation and scattering 

problems with circular boundaries. Not only the cavities but also inclusions are 

considered. The stress concentration factor of the cavity under the half-plane is 

investigated. Besides, the surface amplitudes are considered for inclusion problems. 

Image concept and technique of decomposition are utilized for half-plane problems.  

Numerical examples were given to test our programs. The validity of the 

semi-analytical method is verified.  

In the chapter 5, null-field approach is employed to derive the Green’s function for 

annular problems subject to homogeneous Dirichlet boundary conditions. The kernel 

function and boundary density are expanded by using the degenerate kernel and 

Fourier series, respectively. A series-form Green’s function is derived and plotted. 

The Poisson integral formula is extended to an annular case from a circle in the text 

book. Finally, we draw out some conclusions item by item and reveal some further 

topics in the chapter 6. 
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Chapter 2 Null-field integral equation formulation 
 
Summary 
 

In the thesis, the degenerate kernels and Fourier series expansions are adopted in the 

null-field integral equation to solve boundary value problems with circular boundaries. 

Bending problems of a circular beam with circular holes as well as the SH-wave 

impinging on the circular inclusions were studied. The main gain of using degenerate 

kernels in integral equations is free of calculating the principal values for singular 

integrals. An adaptive observer system is addressed to fully employ the property of 

degenerate kernels for circular boundaries in the polar coordinate. After moving the 

null-field point to the boundary and matching the boundary conditions, a linear 

algebraic system is obtained without boundary discretization. The unknown 

coefficients in the algebraic system can be easily determined. The present method is 

treated as a “semi-analytical” solution since error only attributes to the truncation of 

Fourier series. Three gains of singularity free, boundary-layer effect free and 

exponential convergence are achieved. It is more friendlily for readers to understand 

in mathematics and to compute in numerical aspect. The Laplace problem of torsion 

and bending and Helmholtz problem of alluvial and inclusion subject to the incident 

SH-wave are studied in the following chapters. Extension to multiple alluvial and 

inclusions subject to SH-wave is also done. In this chapter, we focus on introducing 

the formulation of null-field integer equation in conjunction with degenerate kernels 

and Fourier series.  

 
2.1 Dual boundary integral formulation for domain point  
 
Consider the problem with N  randomly distributed circular cavities and/or 

inclusions bounded in the domain Ω  and enclosed with the boundaries, kB  

( 0,1, 2, ,k N= ) as shown in Figure 2-1. We define 

0

N

k
k

B B
=

=∪ . (2-1) 



 - 9 -

Suppose the materials of matrix and inclusions are elastic, isotropic and homogenous. 

Based on the mathematical physics, many engineering problems can be described by 

the equation as shown below: 

{ }(x) 0u =£ , x ∈Ω , (2-2) 

where (x)u  is the potential function, Ω  is the domain of interest and £  is the 

operator of Laplace or Helmholtz and problem as shown below 

2

2 2

:Laplace probelm   
:Helmholtz problemk

⎧⎪ ∇⎪= ⎨⎪∇ +⎪⎩
£ , (2-2) 

Based on the dual boundary integral formulation for the domain point can be derived 

from the third Green’s identity [101], we have 

2 (x) (s, x) (s) (s) (s, x) (s) (s)
B B

u T u dB U t dBπ = −∫ ∫ , x ∈Ω , (2-3) 

x

(x)2 (s,x) (s) (s) (s,x) (s) (s)
n B B

u M u dB L t dBπ ∂ = −
∂ ∫ ∫ , x ∈Ω , (2-4) 

where s  and x  are the source and field points, respectively, B  is the boundary, 

xn  denotes the outward normal vector at field point x  and the kernel function 

(x,s)U  is the fundamental solution which satisfies 

{ }(x,s) 2 (x s)U πδ= −£ , (2-5) 

in which (x s)δ −  denotes the Dirac-delta function. The other kernel functions, 

(s, x)T , (s, x)L  and (s, x)M , are defined by 

s

(s,x)(s,x)
n

UT ∂≡
∂

, 
x

(s, x)(s,x)
n

UL ∂≡
∂

, 
2

s x

(s, x)(s,x)
n n
UM ∂≡

∂ ∂
, (2-6) 

where sn  is the outward normal vector at the source point s . The null-field integral 

equations can be derived by collocating x  outside the domain ( x c∈Ω ) as follows: 

0 (s, x) (s) (s) (s, x) (s) (s)
B B
T u dB U t dB= −∫ ∫ , x c∈Ω , (2-9) 

0 (s, x) (s) (s) (s, x) (s) (s)
B B

M u dB L t dB= −∫ ∫ , x c∈Ω , (2-10)

where cΩ  is the complementary domain. Note that the null-field integral equations 

are not singular since s  and x  never coincide. No matter the problem of Laplace or 

Helmholtz is employed to solve the problem. For simplicity, Eq. (2-9) is used to 
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analyze to solve the problem in the thesis although Eq. (2-10) also plays an important 

role in computational mechanics. In the real implementation, the collocation point in 

the null-field integral equation is located exactly on the boundary from cΩ  such that 

the kernel functions can be expressed in term of interior and exterior appropriate form 

of degenerate kernels. All the singular integrals disappear in the present formulation 

since that the potential across the boundary can be explicitly determined in both sides 

by using degenerate kernels.  

 

2.2 Expansions of fundamental solution and boundary density 
 

2.2.1 Degenerate kernels for the fundamental solution 

 

By employing the separation technique for source point and field point, the kernel 

function ( , )U s x  can be expanded in terms of degenerate kernel in a series form as 

shown below: 

0

0

(s,x) (s) (x),  x s
(s,x)

(s,x) (x) (s),  x s

i
j j

j

e
j j

j

U A B
U

U A B

∞

=

∞

=

⎧⎪⎪ = <⎪⎪⎪⎪= ⎨⎪⎪ = >⎪⎪⎪⎪⎩

∑

∑
, (2-11)

where the superscripts “ i ” and “ e ” denote the interior and exterior cases of ( , )U s x  

kernel depending on the geometry as shown in Figure 2-2 for one, two and three 

dimensional cases. The other kernels in the boundary integral equations can be 

obtained by utilizing the operators of Eq. (2-6) with respect to the ( , )U s x  kernel. 

Then, the kernel function with the superscript “ i ” is chosen while the field point is 

inside the circular region; otherwise, the kernels with the superscript “e ” is chosen. 

The details of the degenerate kernels are shown in Section 3.2 and 4.2 for Laplace and 

Helmholtz equations, respectively. 

 
2.2.2 Fourier series expansion for the boundary density 

 

In order to fully describe the circular boundary, the present method employs the 

Fourier series to approximate the boundary potential and the normal derivative as 



 - 11 -

shown in 

0
1

(s) ( cos sin ), sn n
n

u a a n b n Bθ θ
∞

=

= + + ∈∑  (2-12)

0
1

(s) ( cos sin ), sn n
n

t p p n q n Bθ θ
∞

=

= + + ∈∑  (2-13)

where 0a , na , nb , 0p , np  and nq  are the Fourier coefficients and θ  is the polar 

angle which is equally discretized. In the real computation, the integrations can be 

easily calculated by employing the orthogonal property of Fourier series, and only the 

finite L  terms are used in the summation. The present method is treated as a 

“semi-analytical” solution since error only attributes to the truncation of Fourier 

series. 

 

2.3 Adaptive observer system 
 

Consider a BVP with circular boundaries of arbitrary locations as shown in Figure 2-1. 

The rule of objectivity is obeyed since the boundary integral equations are frame 

indifferent. An adaptive observer system is addressed to fully employ the property of 

degenerate kernels for circular boundaries in the polar coordinate as shown in Figures 

2-3 (a) and (b). For the integration, the origin of the observer system can be 

adaptively located on the center of the corresponding boundary contour. The dummy 

variable in the circular boundary integration is the angle ( )θ  instead of radial 

coordinate ( )R . By using the adaptive system, all the integrations can be easy to 

calculate. 

 
2.4 Vector decomposition technique for the potential gradient in the 

hypersingular equation 
 

The hypersingular integral equation in Eq. (2-4) is defined as the normal derivative of 

potential for the domain points ( x ), special treatment is considered here. For the 

stress concentration problem, potential gradient is utilized to calculate. Consider the 

nonconcentric case as shown in Figure 2-4, the true normal direction (1 ) with respect 

to the collocation point x  on the iB  boundary can be superimposed by using the 
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radial direction ( 3 ) and angular direction ( 4 ) on the jB  boundary. According to the 

concept of decomposition technique, the degenerate kernels for the higher-order 

singular equation as Eq. (2-10) are changed as : 

( , ; , )( , ; , ) cos( )

1 ( , ; , ) cos( ),
2

(s,x)
( , ; , )( , ; , ) cos( )

1 ( , ; , ) cos( ),
2

i
i

i

e
e

e

U RL R

U R R
L

U RL R

U R R

θ ρ φθ ρ φ ζ ξ
ρ

θ ρ φ π ζ ξ ρ
ρ φ

θ ρ φθ ρ φ ζ ξ
ρ
θ ρ φ π ζ ξ ρ

ρ φ

⎧⎪ ∂⎪ = −⎪⎪ ∂⎪⎪⎪⎪ ∂⎪ + − + >⎪⎪ ∂⎪⎪⎪= ⎨⎪ ∂⎪⎪ = −⎪ ∂⎪⎪⎪⎪ ∂⎪⎪ + − + >⎪ ∂⎪⎪⎩⎪

 (2-14)

( , ; , )( , ; , ) cos( )

1 ( , ; , ) cos( ),
2

(s,x)
( , ; , )( , ; , ) cos( )

1 ( , ; , ) cos( ),
2

i
i

i

e
e

e

T RM R

T R R
M

T RM R

T R R

θ ρ φθ ρ φ ζ ξ
ρ
θ ρ φ π ζ ξ ρ

ρ φ
θ ρ φθ ρ φ ζ ξ
ρ
θ ρ φ π ζ ξ ρ

ρ φ

⎧⎪ ∂⎪ = −⎪⎪ ∂⎪⎪⎪⎪ ∂⎪ + − + >⎪⎪ ∂⎪⎪⎪= ⎨⎪ ∂⎪⎪ = −⎪ ∂⎪⎪⎪⎪ ∂⎪⎪ + − + >⎪ ∂⎪⎪⎩⎪

 (2-15)

where ζ  and ξ  are shown in Figure 2-4. For the special annular problem, the 
decomposition technique is free of special treatment. 

 

2.5 Linear algebraic equation 
 

In order to calculate the Fourier coefficients, 2 1L +  boundary nodes are needed. By 

moving the null-field point to the jth  circular boundary for Eq. (2-9) and (2-10), we 

have 

0 0

0 (s,x) (s) (s) (s,x) (s) (s), x
j j

N N
c

B Bj j

T u dB U t dB
= =

= − ∈Ω∑ ∑∫ ∫ , (2-16)

0 0

0 (s,x) (s) (s) (s,x) (s) (s), x
j j

N N
c

B Bj j

M u dB L t dB
= =

= − ∈Ω∑ ∑∫ ∫ . (2-17)

It is noted that the integration path is anticlockwise for the outer circle. Otherwise, it 

is clockwise. For the jB  integral of the circular boundary, the kernel of (s,x)U  is 

expressed in terms of degenerate kernel of Eq. (2-11), and (s,x)T , (s,x)L  and 
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(s,x)M are respectively obtained by applying the differential operators defined in Eq. 

(2-6). The boundary densities (s)u  and (s)t  are substituted by using the Fourier 

series of Eqs. (2-12) and (2-13), respectively. In the jB  integration, we set the origin 

of the observer system to collocate at the center jc  to fully utilize the degenerate 

kernel and Fourier series. By moving the null-field point to jB , a linear algebraic 

system is obtained 

[ ]{ } [ ]{ }U t = T u , (2-18)

[ ]U  and [ ]T  are the influence matrices with a dimension of ( )1 (2 1)N L+ × +  by 

( )1 (2 1)N L+ × + , { }u  and { }t  denote the column vectors of Fourier coefficients 

with a dimension of ( )1 (2 1)N L+ × +  by 1 in which those can be defined as 

follows: 

[ ]

00 01 0

10 11 1

0 1

N

N

N N NN

U U U
U U U

U

U U U

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

, [ ]

00 01 0

10 11 1

0 1

N

N

N N NN

T T T
T T T

T

T T T

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 (2-19)

{ }

0

1

2

N

u
u

u u

u

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

, { }

0

1

2

N

t
t

t t

t

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

 (2-20)

where the vectors { }u  and { }t  are the Fourier coefficients and the first index “ j ” 

( 0,1, 2, ,j N= ) in jkU⎡ ⎤⎢ ⎥⎣ ⎦  and jkT⎡ ⎤⎢ ⎥⎣ ⎦  denotes the jth  circle where the collocation 

point is located and the second index “ k ” ( 0,1, 2, ,k N= ) denotes the kth  circle 

with boundary data { }ku  and { }kt , L  indicates the truncated terms of Fourier 

series. The coefficient matrix of the linear algebraic system is partitioned into blocks, 

and each off-diagonal block corresponds to the influence matrices between two 

different circular boundaries. The diagonal blocks are the influence matrices due to 

themselves in each individual circle. After uniformly collocating the points along the 

kth  circular boundary, the submatrix can be written as 
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0 1 1
1 1 1 1 1

0 1 1
2 2 2 2 2

0 1 1
3 3 3 3 3

0 1 1
2 2 2 2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

c c s Lc Ls
jk jk jk jk jk
c c s Lc Ls

jk jk jk jk jk
c c s Mc Ls

jk jk jk jk jk
jk

c c s Lc Ls
jk L jk L jk L jk L jk

U U U U U
U U U U U
U U U U U

U U U U U

U

φ φ φ φ φ
φ φ φ φ φ
φ φ φ φ φ

φ φ φ φ

⎡ ⎤ =⎢ ⎥⎣ ⎦

2
0 1 1

2 1 2 1 2 1 2 1 2 1

( )
( ) ( ) ( ) ( ) ( )

L
c c s Lc Ls

jk L jk L jk L jk L jk LU U U U U
φ

φ φ φ φ φ+ + + + +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

, (2-21)

0 1 1
1 1 1 1 1

0 1 1
2 2 2 2 2

0 1 1
3 3 3 3 3

0 1 1
2 2 2 2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

c c s Lc Ls
jk jk jk jk jk

c c s Lc Ls
jk jk jk jk jk

c c s Lc Ls
jk jk jk jk jk

jk

c c s Lc Ls
jk L jk L jk L jk L jk

T T T T T
T T T T T
T T T T T

T T T T T

T

φ φ φ φ φ
φ φ φ φ φ
φ φ φ φ φ

φ φ φ φ

⎡ ⎤ =⎢ ⎥⎣ ⎦

2
0 1 1

2 1 2 1 2 1 2 1 2 1

( )
( ) ( ) ( ) ( ) ( )

L
c c s Lc Ls

jk L jk L jk L jk L jk LT T T T T
φ

φ φ φ φ φ+ + + + +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

, (2-22)

where jφ , 1, 2, , 2 1j L= + , are the angles of collocation along the circular 

boundary. Although both the matrices in Eqs. (2-21) and (2-22) are not sparse, it is 

found that the higher order harmonics is considered, the lower influence coefficients 

in numerical experiments is obtained. It is noted that the superscript “ 0s ” in Eqs. 

(2-21) and (2-22) disappears since ( )sin 0 0θ⋅ = . The element of jkU⎡ ⎤⎢ ⎥⎣ ⎦  and jkT⎡ ⎤⎢ ⎥⎣ ⎦  

are defined respectively as 
( ) (s , x ) cos( )

k

nc
jk m k m k k kB

U U n R dφ θ θ= ∫ , 0,1, 2, ,n L= , 1, 2, , 2 1m L= + , (2-23)

( ) (s , x ) sin( )
k

ns
jk m k m k k kB

U U n R dφ θ θ= ∫ , 1, 2, ,n L= , 1, 2, , 2 1m L= + , (2-24)

( ) (s , x ) cos( )
k

ns
jk m k m k k kB

T T n R dφ θ θ= ∫ , 0,1, 2, ,n L= , 1, 2, , 2 1m L= + , (2-25)

( ) (s , x ) sin( )
k

ns
jk m k m k k kB

T T n R dφ θ θ= ∫ , 1, 2, ,n L= , 1, 2, , 2 1m L= + , (2-26)

where k  is no sum, s ( , )k k kR θ= , and mφ  is the polar angle of the collocation 

point xm . The analytical evaluation of the integrals for each element in the influence 

matrix is listed in the Appendixes Ⅰ and Ⅱ and they are all non-singular. Besides, 

the limiting case to the boundary is also addressed. The continuous and jump behavior 

across the boundary is also described. The direction of contour integration should be 

taken care, i.e., counterclockwise and clockwise directions are for the interior and 

exterior problems, respectively. By rearranging the known and unknown sets, the 

Fourier coefficients can be obtained. 
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2.6 Matching of interface conditions for problems of cavities and 
inclusions 

 

Cavity problems 

In order to match the traction free condition on the cavity boundary after 

decomposition of the original problem as shown below 

0 M f M
tt t t= = + , (2-27)

where the “ M
tt ” denotes the total field of matrix. The superscript “ f ” represents the 

external force where f it t=  for the full-plane plane and f i rt t +=  for the half-plane 

plane. The superscript “ i ” and “ r ” are the incident and reflected waves and “ Mt ” 

denotes the radiation problem of matrix and needed to be solved. All the relations are 

shown in Appendix Ⅲ, and Eq. (2-18) can be rewritten as 
[ ]{ } [ ]{ }i r MU t = T u+− , (2-28)

Only the Fourier coefficients of boundary density { }Mu  are unknown. By 

collocating 2 1L +  null-field points on each boundary, all the coefficients can be 

obtained. After obtaining the unknown Fourier coefficients, the field displacement can 

be obtain by employing Eq. (2-3). 

 

Inclusion problems 

According to the linear algebraic system, the two systems of matrix and inclusion 

yield 

{ } { }M M M MU t = T u⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ . (2-29)

{ } { }I I I IU t = T u⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  (2-30)

where the superscripts “ M ” and “ I ” denote the systems of matrix and  inclusion, 

respectively. By the image concept and the decomposition of superposition as the 

Section 4.3, the Eq. (2-29) can be rewritten as  

{ } { }M M i r M M i r
t tU t t = T u u+ +⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ . (2-31)

where the “{ }M
tt ” denotes the “total” displacement field of “matrix” as shown in 

Appendix Ⅳ , After decomposition of the original problem, we have the two 

constraints of the continuity of displacement and equilibrium of traction along the 
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jth  interface ( jB ). We will employ the two constrains into the formulation as shown 

below: 

{ } { }M I
tu = u  on kB , (2-32)

  { } { }M M I I
tµ t = - µ t⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  on kB , (2-33)

where Mµ⎡ ⎤⎢ ⎥⎣ ⎦  and Iµ⎡ ⎤⎢ ⎥⎣ ⎦  can be defined as follows: 
0 0

0 0

0 0

M

M
M

M

µ

µ
µ

µ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ =⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

, 

0 0
0 0

0 0

I

I
I

I

µ

µ
µ

µ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ =⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

 (2-34)

where Mµ  and Iµ  denote the shear modulus of the matrix and the kth  inclusion, 

respectively. By assembling the matrices in Eqs. (2-30), (2-31), (2-32) and (2-33), we 

have 
M M M i r

t
I I M

t
I

M I I

T -U 0 0 u u(x)
0 0 T -U t 0

=
I 0 -I 0 u 0
0 µ 0 µ t 0

+⎡ ⎤⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

, (2-35)

where [ ]I  is the identity matrix, and { }i r+u(x)  as shown below 

{ }
i r

i r M M
i r

u u
u(x) T -U

t t
+

⎧ ⎫⎪ ⎪+⎪ ⎪= ⎨ ⎬⎪ ⎪+⎪ ⎪⎩ ⎭
. (2-36)

After obtaining the unknown Fourier coefficients, the origin of observer system is set 

to jc  in the jB  integration as shown in Figure 2-3 (b) to obtain the potential by 

employing Eq. (2-3). The flow chart of the present method is shown in Figure 2-5. 

 

2.7 Concluding remarks 
 
For the BVPs with circular boundaries, we have proposed a systematic null-field 

BIEM by using the null-field integral equation, degenerate kernels and Fourier series 

in an adaptive observer system. The method shows great generality and versatility for 

the problems for Laplace and Helmholtz with multiple circular holes or inclusions of 

arbitrary radii and positions. Several engineering problems with circular boundaries 

are solved by using the proposed approach will be elaborated on later in the following 

chapters. 
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Chapter 3 Application to Laplace problems 
 
Summary 
 
In this chapter, the application to torsion and bending problems with circular holes are 

considered. Both problems can be modeled by the Laplace equation. We emphasize 

on the torsional rigidity for torsion problem and the stress concentration for bending 

problem. For the torsion problem, the torsional rigidity is compared with the Caulk 

[14] and Ling’s data [57]. On the other hand, the discrepancy between the data of Bird 

and Steele [8] and Naghdi’s [68] results in the bending problem is examined by using 

the present approach. It is found that the present method is more general for 

calculating the torsion and bending problems with arbitrary number of holes and 

various radii and positions than other approach. 

 
3.1 Introduction 
 
The stress concentration around holes of a beam under torsion or bending plays an 

important role in promoting the design criteria for higher factors of safety. Those 

problems have been visited in a few investigations based on the Saint-Venant theory 

[75,78]. For a simple case, an analytical solution may be available. Since the 

analytical solution for more than two holes may encounter difficulty. In the past, 

multiply-connected problems have been carried out either by conformal mapping or 

by special technique approach. Muskhelishvili [67] has formulated the solution of 

composite torsion bar in the form of integral equation. He solved the problem of a 

circular bar reinforced by an eccentric inclusion by using conformal mapping. Chen 

and Weng [34] have also introduced conformal mapping with a Laurent series 

expansion to analyze the Saint-Venant torsion problem. They concerned with an 

eccentric bar of different materials with an imperfect interface under torque. Because 

the conformal mapping is limited to the doubly-connected region, an increasing 

number of researchers have paid more attentions on special techniques. However, the 

extension of above special techniques to multiple circular holes may encounter 
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difficulty. It is not trivial to develop a systematic method for solving the torsion 

problems with several holes. Several numerical approaches have been employed, e.g. 

complex variable boundary element method (CVBEM) by Chou [35] and Ang and 

Kang [3]. The CVBEM was primarily introduced by Hromadka and Lai [45] for 

solving the Laplace problems in an infinite domain. In 1997, Chou extended the work 

of Hromadka to problems with the multiply-connected domain. Recently, Ang and 

Kang [3] developed a general formulation for solving the second-order elliptic partial 

differential equation for a multiply-connected region in a different version of CVBEM. 

The Cauchy integral formulae are offered to solve the boundary value problem. By 

introducing the CVBEM, Chou [35] and Ang and Kang [3] have revisited the 

anti-plane problems with two circular holes whose centers lie on the x  axis 

investigated by Honein et al. [44]. In 1991, Naghdi [68] employed a special class of 

basic function, which is a Saint-Venant flexure function suitable for the problem of 

the bending of a circular cylinder with 4N  ( 1,2,3N = ) circular holes in the axial 

direction. Bird and Steele [8] used a Fourier series procedure to revisit the antiplane 

problems in the Honein’s paper [44]. Also, they solved the bending problems which 

were solved by Naghdi [68]. According to the literature review, it is observed that 

exact solutions for boundary value problems are only limited for simple cases. 

Although Naghdi [68] has proposed a solution for bending problems with holes, it is 

limited for 4N  ( 1,2,3N = ) holes. Therefore, proposing a systematic approach for 

solving BVP with various numbers of circular boundaries and arbitrary positions and 

radii is our goal in this chapter.  

Following the success of anti-plane problems with circular holes [27], the null-field 

integral equation is utilized to solve both of the Saint-Venant torsion and bending 

problems with circular holes. The mathematical formulation is derived by using 

degenerate kernels for fundamental solutions and Fourier series for boundary densities. 

Then, it reduces to a linear algebraic equation by using collocation approach. 

Mogilevskaya and Crouch [65] have used the Galerkin method instead of collocation 

approach. Our approach can be extended to the Galerkin formulation only for the 

circular and annular cases. However, it may encounter difficulty for the eccentric 

example. Two requirements are needed: degenerate kernel expansion must be 
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available and distinction of interior and exterior expression must be separated. 

Therefore, the collocation angle of φ  is not in the range 0  to 2π  in our adaptive 

observer system. This is the reason why we can not formulate in terms of Galerkin 

formulation using orthogonal properties twice. Free of worrying about how to choose 

the collocation points, uniform collocation along the circular boundary yields a 

well-posed matrix. After determining the unknown Fourier coefficients, series 

solution for the torsion and bending functions are obtained. For the torsion problem, 

torsional rigidity is our main concern. For the bending problem, the location of 

maximum stress concentration factor (SCF) and the boundary-layer effect are 

addressed. Numerical examples are given to show the validity and efficiency of our 

approach.  

 
3.2 Degenerate kernels of BIE formulation for Laplace problems 
 

Both torsion and bending problems can be modeled by using the Laplace equation, 

2 (x) 0, xu∇ = ∈Ω  (3-1)

where 2∇  and Ω  are the Laplacian operator and the domain of interest, 

respectively. Based on the dual boundary integral formulation of the domain point 

[27], we have 

2 (x) (s, x) (s) (s) (s, x) (s) (s)
B B

u T u dB U t dBπ = −∫ ∫ , x ∈Ω , (3-2)

x

(x)2 (s,x) (s) (s) (s,x) (s) (s)
n B B

u M u dB L t dBπ ∂ = −
∂ ∫ ∫ , x ∈Ω , (3-3)

where s  and x  are the source and field points, respectively, (s)t  is the directional 

derivative of (s)u  along the outer normal direction at s , and xn  is the outward 

normal vector at the field point x . The four kernel functions, (s,x)U , (s,x)T , 

(s,x)L  and (s,x)M , will be elaborated on later by using the degenerate kernel 

expansion. The kernel function, (s, x)U , is the fundamental solution which satisfies 
2 (x,s) 2 (x s)U πδ∇ = − , (3-4) 

where (x s)δ −  denotes the Dirac-delta function. Then, we can obtain the 

fundamental solution as follows 
(s, x) lnU r= , (3-5) 
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where r  is the distance between s  and x  ( x sr ≡ − ). The other kernel functions, 

(s, x)T , (s, x)L  and (s, x)M , are defined by 

s

(s,x)(s,x)
n

UT ∂≡
∂

, 
x

(s,x)(s,x)
n

UL ∂≡
∂

, 
2

s x

(s,x)(s,x)
n n
UM ∂≡

∂ ∂
, (3-6) 

where sn  denotes the outward normal vector at the source point s . Comparison of 

formulation between the present method and conventional BEM is shown in Table 3-1. 

In the present method, we adopt the mathematical tools, degenerate kernels and 

Fourier series, for the purpose of analytical study. The combination of degenerate 

kernels and Fourier series plays the major role in handling problems with circular 

boundaries. 

Based on the separable property, the kernel function (s, x)U  can be expanded into 

separable form by dividing the source point ( s ( , )R θ= ) and field point ( x ( , )ρ φ= ) in 

the polar coordinate 

1

1

1(s,x) ln ( ) cos ( ),
(s,x)

1(s,x) ln ( ) cos ( ),

i m

m

e m

m

U R m R
m R

U
RU m R

m

ρ θ φ ρ

ρ θ φ ρ
ρ

∞

=
∞

=

⎧⎪⎪ = − − ≥⎪⎪⎪⎪= ⎨⎪⎪ = − − >⎪⎪⎪⎪⎩

∑

∑
, (3-7) 

where the superscripts “ i ” and “ e ” denote the interior ( R ρ> ) and exterior ( Rρ> ) 
cases, respectively. It is found that the leading term and the numerator term contain 
the larger argument such that log singularity and series convergence can be confirmed. 
After taking the normal derivative ( / R∂ ∂ ) with respect to Eq. (3-7), the (s,x)T  
kernel function yields 

1
1

1

1

1(s,x) ( )cos ( ),
(s,x)

(s,x) ( )cos ( ),

m
i

m
m

m
e

m
m

T m R
R R

T
RT m R

ρ θ φ ρ

θ φ ρ
ρ

∞

+
=

−∞

=

⎧⎪⎪ = + − >⎪⎪⎪⎪= ⎨⎪⎪ =− − >⎪⎪⎪⎪⎩

∑

∑
, (3-8) 

and the higher-order kernel functions, (s,x)L  and (s,x)M , are shown below: 

1

1

1
1

(s, x) ( )cos ( ),
(s, x)

1(s,x) ( )cos ( ),

m
i

m
m

m
e

m
m

L m R
R

L
RL m R

ρ θ φ ρ

θ φ ρ
ρ ρ

−∞

=

∞

+
=

⎧⎪⎪ =− − >⎪⎪⎪⎪= ⎨⎪⎪ = + − >⎪⎪⎪⎪⎩

∑

∑
, (3-9) 
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1

1
1

1

1
1

(s, x) ( )cos ( ),
(s, x)

(s,x) ( )cos ( ),

m
i

m
m

m
e

m
m

mM m R
R

M
mRM m R

ρ θ φ ρ

θ φ ρ
ρ

−∞

+
=

−∞

+
=

⎧⎪⎪ = − ≥⎪⎪⎪⎪= ⎨⎪⎪ = − >⎪⎪⎪⎪⎩

∑

∑
. (3-10)

Since the potentials resulted from (s,x)T  and (s,x)L  are discontinuous cross the 

boundary, the potentials of (s,x)T  and (s,x)L  for R ρ+→  and R ρ−→  are 

different. This is the reason why R ρ=  is not included in the expression for the 

degenerate kernels of (s,x)T  and (s,x)L  in Eqs. (3-8) and (3-9). The analytical 

evaluation of the integrals for each element in the influence matrix is listed in the 

Appendix Ⅰ and they are all non-singular. Besides, the limiting case to the boundary 

is also addressed. The continuous and jump behavior across the boundary is also 

described. After using the Wronskian property of two bases for (s,x)T  ( mR  and 
mR− ) 

( ), 2m mW R R mR− = , (3-11) 

the jump behavior is captured by  

( ) ( ) ( )
2

0
(s, x) (s,x) cos 2 cosi eT T m Rd m

π
θ θ π θ− =∫ , x B∈ , (3-12)

( ) ( ) ( )
2

0
(s,x) (s,x) sin 2 sini eT T m Rd m

π
θ θ π θ− =∫ , x B∈ . (3-13)

Jump behavior is well captured by Wronskian in similar way of two bases for 1-D rod 

case. 

 
3.3 Torsion problem for a bar 
 
3.3.1 Problem statements 

 

What is given in Figure 3-1 is a circular bar weakened by N  circular holes placed 

on a concentric ring of radius b . The radii of the outer circle and the inner holes are 

R  and a , respectively. The circular bar twisted by couples applied at the ends is 

taken into consideration. Following the theory of Saint-Venant torsion [75,78,99], we 

assume the displacement field to be 
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u yzα=− , v xzα= , ( , )w x yαϕ= , (3-14) 

where α  is the angle of twist per unit length along the z  direction and ϕ  is the 

warping function. According to the displacement field in Eq. (3-14), the strain 

components are 
0x y z xyε ε ε γ= = = = , (3-15) 

( )xz
w u y
x z x

ϕγ α∂ ∂ ∂= + = −
∂ ∂ ∂

,  (3-16) 

( )yz
w v x
y z y

ϕγ α∂ ∂ ∂= + = +
∂ ∂ ∂

, (3-17) 

and their corresponding components of stress are 
0x y z xyσ σ σ σ= = = = , (3-18) 

( )xz y
x
ϕσ µα ∂= −

∂
, ( )yz x

y
ϕσ µα ∂= +

∂
, (3-19) 

where µ  is the shear modulus. There is no distortion in the planes of cross sections 

since 0x y z xyε ε ε γ= = = = . We have the state of pure shear at each point defined 

by the stress components xzσ  and yzσ . The warping function ϕ  must satisfy the 

equilibrium equation 
2 2

2 2 0
x y
ϕ ϕ∂ ∂+ =

∂ ∂
 in Ω , (3-20) 

where the body force is neglected and Ω  is the domain. Since there are no external 

forces on the cylindrical surface, we have 0x y zt t t= = = . By substituting the normal 

vector, the only zero zt  becomes 
n n 0z xz x yz yt σ σ= + =  on B . (3-21) 

where B  is the boundary. By substituting (3-11) into (3-13) and rearranging the 

terms, the boundary condition is 

n n n n n
nx y x yy x

x y
ϕ ϕ ϕϕ∂ ∂ ∂+ = − =∇ ⋅ =

∂ ∂ ∂
 on B , (3-22) 

In Figure 3-1, we introduce the expressions for the position vector ( ,k kx y ) of the 

boundary point on the kth  circular hole 
2cos cos( )k k

kx a b
N
πθ= + , 1, 2, ,k N= , 0 2kθ π< < , (3-23) 

2sin sin( )k k
ky a b

N
πθ= + , 1, 2, ,k N= , 0 2kθ π< < , (3-24) 

and the unit outward normal vector n (n ,n ) ( cos , sin )x y θ θ= = − −  for the inner 
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circular boundaries, we have 
2 2cos( )sin sin( ) cos

n k k
k kb b

N N
ϕ π πθ θ∂ = −

∂
 on kB , (3-25) 

where kB  ( 1, 2, ,k N= ) is the kth  boundary of the inner hole, kθ  is the polar 

angle with respect to the origin of the kth  hole. For the outer boundary, the 

traction-free condition is specified. Thus, the problem of torsion is reduced to find the 

warping function ϕ  which satisfies the Laplace equation of Eq. (3-20) and the 

Neumann boundary conditions of Eq. (3-25) for the inner boundary and zero traction 

on the outer boundary. 

 

3.3.2 Illustrative examples and discussions 

 

Based on the formulation described in Chapter 2, we demonstrate its validity in 

solving torsion problems. In this section, we deal with the torsion problems which 

have been solved by Caulk in 1983 [14]. The torsional rigidity of each example is 

calculated after obtaining the unknown Fourier coefficients. 

 

Case 1: A circular bar with an eccentric hole 

A circular bar of radius R  with an eccentric circular holes removed is under torque 

T  at the end. The torsional rigidity G  of cross section can be expressed by 

( )2 2

1 nk

N

kA Bk

G x y dA dBϕϕ
µ =

∂= + −
∂∑∫ ∫ , (3-26) 

The exact solution derived by Muskhelishvili [67] is shown below 

( )
( )

2 2 2 2
2 2 1 2 1 22 21 1

2
1

k

kk
G I I l r l

a

αµ µ π µ π ρ
ρ α

∞

=

′= − − −
−

∑ , (3-27) 

where all of notations in Eq. (3-27) follows the reference [67], and they aren’t the 

same with the thesis. Our results are better than those of Caulk obtained by BIE when 

the hole is closely spaced as shown in Table 3-2. 

 

Case 2: A circular bar with multiple circular holes of equal angles 

Consider a circular bar weakened by N  circular holes placed on a concentric ring of 

radius b  under torque T  at the end. The radii of the outer circle and the inner holes 
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are R  and a , respectively. The boundary curve of kth  inner hole is described by 

using the parametric form of ( ,k kx y ) in Eqs. (3-23) and (3-24). What is brought out is 

the problem subject to zero traction on the outer boundary and Neumann boundary 

condition defined in Eq. (3-25) on all the inner circles. Twenty-one collocating points 

are selected on all the circular boundaries in the numerical implementation. Results 

obtained by using the present method for the problem of two, three and four holes are 

listed in Table 3-3. After comparison, our results agree well with Caulk’s datas 

obtained by using special BIE formulation. 

 

Case 3: Ling’s examples [57] 

Table 3-4 shows a comparison of the torsional rigidities of three cases with different 

geometries of circular holes computed from the present method, BIE formulation [14] 

and the first-order approach [14]. We have not only calculated the torsional rigidity 

but also tested the rate of convergence of Fourier terms of the case with seven holes as 

shown in Figure 3-2. The present solutions show improvement over Ling’s results in 

every case. The large difference in the second example in Table 3-4 may ascribe to the 

Ling’s lengthy calculation in error as pointed out by Caulk [14]. 

 

3.4 Bending problem for a cantilever beam 
 
3.4.1 Problem statements 

 

Consider a beam with a circular section weakened by four circular holes placed on a 

concentric ring of radius b  as show in Figure 3-3. The radii of outer circle and inner 

holes are R  and a , respectively. The beam is subject to a shear force Q  at the free 

end, and the boundary conditions of outer circle and inner holes are traction free. 

Following the theory of Saint-Venant bending [99], we assume the stress to be 

0xx yy xyσ σ σ= = ≡ , ( )zz
y

Q x l z
I

σ = − − , (3-28)

where yI  is the moment of inertia of cross section for the axisy − . The other two 

stress components are assumed as 
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( )
2 21 11

2 1 2 2zx
y

Qy x y
x I x
ϕ ψσ αµ ν ν

ν
⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞= + − + + −⎜ ⎟ ⎜ ⎟⎢ ⎥∂ + ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

, (3-29)

( ) ( )2
2 1zy

y

Qx xy
y I y
ϕ ψσ αµ ν

ν
⎛ ⎞ ⎡ ⎤∂ ∂

= + − + +⎜ ⎟ ⎢ ⎥∂ + ∂⎝ ⎠ ⎣ ⎦
, (3-30)

where ( ),x yϕ  and ( ),x yψ  are the warping function and bending function of the 

beam, respectively, α  is the angle of twist per unit length, and µ  is the shear 

modulus. Since the ( ),x yϕ  and ( ),x yψ  in the Saint-Venant bending problem 

satisfies the two Laplace equations subject to the Neumann boundary condition, we 

have: 

( )
2 2

2
2 2, 0x y

x y
ϕ ϕϕ ∂ ∂

∇ = + =
∂ ∂

 in Ω , (3-31)

( ) ( )cos n, cos n,y x x y
n
ϕ∂
= −

∂
, , kx y B∈ , (3-32)

and 

( )
2 2

2
2 2, 0x y

x y
ψ ψψ ∂ ∂

∇ = + =
∂ ∂

 in Ω , (3-33)

( ) ( ) ( )2 21 11 cos n, 2 cos n,
n 2 2

x y x xy yψ ν ν ν⎡ ⎤∂ ⎛ ⎞= − + − − +⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦
, , kx y B∈ , (3-34)

where Ω  is the domain of interest, n  is the outward normal vector of each 

boundary, and kB  is the kth  circular boundary. In Figure 3-3, we define the 

position vector ( ),k kx y  of the boundary point on the ith circular boundary as 
sink k k kx R xθ= + , 0,1,2,3,4k = , 0 2kθ π< <  (3-35)
cosk k k ky R yθ= − + , 0,1,2,3,4k = , 0 2kθ π< <  (3-36)

where 
0R R=  and jR a= , 1,2,3,4j =  (3-37)

and kθ  is the polar angle with respect to the origin of the kth  hole. The coordinate 

of ( ),k kx y  is for the center of the kth  eccentric circle, and the eccentricity is zero 

for the outer circle. By substituting Eqs. (3-35) and (3-36) into Eq. (3-24), the 

boundary condition is specified. To find ( ),x yϕ  function for torsion problems was 

solved in the previous sections. For the simple case of bending only, we can assume 

constant αµ  and ( ),x yψ to be zero. Following the definition of stress concentration 

by Naghdi [68], we have  
zx ASc
Q

σ
= , (3-38)

where A  is the cross-section area of the beam. The shear stress zxσ  in Eq. (3-38) is 
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obtained from Eq. (3-29). Thus, the bending problem is reduced to find the bending 

function ( ),x yψ  which satisfies the Laplace equation of Eq. (3-33) and the 

Neumann boundary condition of Eq. (3-34) on each boundary. 

 

3.4.2 Illustrative examples and discussions 

 

Based on the formulation described in Chapter 2, we demonstrate its validity in 

solving bending problems. In the section, we deal with the bending problems with 

4N  circular holes which have been solved by Naghdi in 1991 [68] and two holes 

with various distances which have been solved by Bird and Steele [8]. 

 

Case 1: Four circular holes [8,68] 

In order to check the validity of the present formulation, the beam problems [68] with 

four holes symmetrically located with respect to the x  and y  axis were revisited. 

All the numerical results were obtained by using ten terms of Fourier series ( 10L= ). 

We set the value of Poisson’s ratio 0.3ν =  and 1R = . In Figures 3-4 (a), (b), (d) and 

(e), the values of the stress concentration Sc  along AB  and CD  (as Figure 3-1) 

are plotted versus the position 1 117 /Y Y AB= , and 2 217 /Y Y CD= , respectively. 

Figures 3-4 (c) and (f) show the stress concentration Sc  along OT , and the 

1 18 OTξ = ×  for the case of 0.5b = , / 4θ π=  and 0.1a = . Our numerical results 

are well compared with those of Naghdi’s data [68]. In order to find the stress 

concentration, we plot the stress around the hole where these numerical results 

indicate that Sc  reaches maximum near point B  as shown in Figure 3-5. Figures 

3-4 (a) and (b) show the maximum value of Sc  occurs at the point B  and the point 

C  respectively, where are on the boundaries of inner holes. For the Sc  distribution 

along OT , the maximum value of Sc  occurs at the position near the center of the 

two upper holes. Good agreement is made after comparing with Naghdi’s results [68]. 

In the literature, Naghdi [68] and Bird and Steele [8] also calculated the stress 

concentration factor at the point B  for 0.12a =  with various values of b . Bird 

and Steele [8] stated that the deviation by Naghdi’s data is 11%. The grounds for this 

discrepancy were not identified in their paper. Our numerical results are more 
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agreeable to the Naghdi’s data as shown in Figures 3-6 and 3-7, where Figure 3-7 was 

not provided by Bird and Steele [8]. In order to examine the boundary-layer effect at 

the present formulation, Figure 3-8 shows the Sc  distribution close to the boundary. 

According to the convergence test in Figure 3-9, only eight terms ( 8L = ) is sufficient 

in real implementation. In Figure 3-10, contour plots are shown for 0.4b =  and 

0.12a =  with various orientations of /8θ π= , / 4θ π=  and 3 /8θ π=  and it is 

anti-symmetric with respect to the horizontal axis. 

 

Case 2: Two circular holes [6,8] 

Consider a circular beam with two circular holes under bending as shown in Figure 

3-11. One of the holes is concentric, and the other lies on the x axis− . In order to 

compare with the Bird and Steele’s result, we assume 16R =  and 1a = , 

respectively. All the numerical results are also obtained by using ten terms of Fourier 

series ( 10L= ). The stress concentration at the point P versus / 2D a  ( D  is the 

neatest distance between the two holes) is shown in Figure 3-12. The stress 

concentration is expected to approach the case of a single hole in the center of beam 

cross section when / 2D a  becomes large. The contour of stress concentration for the 

case of  / 2 0.0625D a =  is shown in Figure 3-13. Our numerical results are well 

compared with the Bird and Steele’s data. 

 
3.5 Concluding remarks 
 

The torsion problems of circular shaft weakened by several holes have been 

successfully solved by using the present formulation. Our solutions match well with 

the exact solution and other BIE solutions for the three Caulk’s cases [14]. Only 

forty-one collocation points were uniformly distributed on each boundary to obtain 

more accurate results of torsional rigidity with error less than 1%  after comparing 

with the known exact solution. Regardless of the number of circles, the proposed 

method shows great accuracy and generality. Through the demonstration of several 

examples, our method was successfully applied to cases of multiple holes.  

For the bending problems with circular holes, an advantage of the present method 
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over the Naghdi’s approach [68] is that the extension to multiple circular holes of 

arbitrary radii and positions is flexible and straightforward. Results obtained by using 

the present approach matched well with those of Naghdi’s although Bird and Steele’s 

data seems to deviate. Other gain of the present method over BEM is free of 

boundary-layer effect and exponential convergence. Although only two and four holes 

were tested to compare with Naghdi’s [68] and Bird and Steele’s results [8], our 

general-purpose program can solve problems with circular holes of arbitrary number 

and various positions of holes. Furthermore, our method presented here can be used to 

solve engineering problems which satisfy the Laplace operator. 
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Chapter 4 Application to exterior Helmholtz 
problems 

 
Summary 
 

In this chapter, we extend the unified formulation to the exterior Helmholtz problems 

with circular boundaries. Earthquake analysis for the site response of alluvial valley 

or canyon subject to the incident SH-wave is the main concern. Not only the cavities 

but also inclusions are considered. Stress concentration factor of the cavity under the 

ground surface is studied. Besides, the surface amplitudes are examined for the 

inclusion problems. Image concept and technique of decomposition are utilized for 

half-plane problems. Numerical examples are given to test our program. The validity 

of the semi-analytical method is verified. Our advantages, well-posed model, 

principal value free, elimination of boundary layer effect and exponential convergence, 

by using the present method are achieved. 

 

4.1 Introduction 
 
One of the major concerns of engineering seismology is to understand and explain 

vibrational response of the soil excited by earthquakes. The problem of the scattering 

and diffraction of SH-waves by a two-dimensional arbitrary number and location of 

cavities and inclusions in full and half-planes is revisited in this chapter by using our 

unified formulation. In 1971, Trifunac [79] has solved the problem of a single 

semi-circular alluvial valley subject to SH-wave. Later, Pao and Mao [70] have 

published a book on the stress concentration in 1972. In 1973, Trifunac [80] has also 

derived the closed-form solution of a single semi-circular canyon subject to the 

SH-wave. The earliest reference to a closed-form solution of the scattering and 

diffraction of the incident SH-wave by an underground inclusion exists in an article 

concerning an underground circular tunnel by Lee and Trifunac [55]. In order to 

extend to arbitrary shape inclusion problems, Lee and Manoogian [53] have used the 

weighted residual method to revisit the problem of scattering and diffraction of 
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SH-wave with respect to an underground cavity of arbitrary shape in a 

two-dimensional elastic half-plane. In the following years, they extended to the 

half-plane problem with a inclusion of arbitrary shape [61,62]. According to the 

literature review, it is observed that exact solutions for boundary value problems are 

only limited for simple cases, e.g. half-plane with a semi-circular canyon, a cavity 

under half-plane, an inclusion under half-plane. Therefore, proposing a systematic 

approach for solving exterior Helmholtz problems with circular boundaries of various 

numbers, positions and radii is our goal in this chapter. Our approach can deal with a 

cavity problem as a limiting case of an inclusion problem with zero shear modulus. 

In this chapter, the boundary integral equation method (BIEM) is utilized to solve the 

half-plane radiation and scattering problems with circular boundaries. To fully utilize 

the geometry of circular boundary, not only Fourier series for boundary densities as 

previously used by many researchers but also the degenerate kernel for fundamental 

solutions in the present formulation is incorporated into the null-field integral 

equation. The key idea is that we can push the null-field point exactly on the real 

boundary by using appropriate degenerates kernel in real computation. All the 

improper boundary integrals are free of calculating the principal values (Cauchy and 

Hadamard) in place of series sum. In integrating each circular boundary for the 

null-field equation, the adaptive observer system of polar coordinate is considered to 

fully employ the property of degenerate kernel. For the hypersingular equation, vector 

decomposition for the radial and tangential gradients is carefully considered, 

especially in the nonfocal case. A scattering problem subject to the incident wave is 

decomposed into two parts, incident plane wave field and radiation field. The 

radiation boundary condition is the minus quantity of incident wave function for 

matching the boundary condition of total wave for cavity. Not only the stress 

concentration of the cavity is addressed, but also the surface displacements of alluvial 

valley and inclusion problems are solved in this chapter. 

 
4.2 Degenerate kernels of BIE formulation for the Helmholtz 
problem 
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The governing equation of the incident SH-wave problem is the Helmholtz 

equation as shown below 
2 2( ) (x) 0, xk u∇ + = ∈Ω  (4-1)

where 2∇ , k  and Ω  are the Laplacian operator, the wave number, and the domain 

of interest, respectively. Based on the dual boundary integral formulation of the 

domain point [101], we have 

2 (x) (s, x) (s) (s) (s, x) (s) (s)
B B

u T u dB U t dBπ = −∫ ∫ , x ∈Ω , (4-2)

x

(x)2 (s,x) (s) (s) (s,x) (s) (s)
n B B

u M u dB L t dBπ ∂ = −
∂ ∫ ∫ , x ∈Ω , (4-3)

where s  and x  are the source and field points, respectively, (s)t  is the directional 

derivative of (s)u  along the outer normal direction at s , and xn  is the outward 

normal vector at the field point x . The (s,x)U , (s,x)T , (s,x)L  and (s,x)M  

represent the four kernel functions which will be elaborated on later by using the 

degenerate kernel expansion. The kernel function, (s, x)U , is the fundamental 

solution which satisfies 
2 2( ) (x,s) 2 (x s)k U πδ∇ + = − , (4-4) 

where (x s)δ −  denotes the Dirac-delta function. Then, we can obtain the 

fundamental solution as follows 
(1)
0 ( )( , )
2

i H krU s x π−
= , (4-5)

s

( , )( , )
n

U s xT s x ∂
=

∂
, 

x

( , )( , )
n

U s xL s x ∂
=

∂
, 

2

x s

( , )( , )
n n
U s xM s x ∂

=
∂ ∂

, (4-6)

where (1) ( )nH kr  is the nth  order Hankel function of the first kind, s-xr ≡ , sn  

denotes the outward normal vector at the source point s . In the present method, we 

adopt the mathematical tools, degenerate kernels, for the purpose of analytical study. 

The combination of degenerate kernels and Fourier series plays the major role in 

handling problems with circular boundaries. Based on the separable property, the 

kernel function (s, x)U , (s,x)T , (s,x)L  and (s,x)M  can be expanded into 

separable form by dividing the source point ( s ( , )R θ= ) and field point ( x ( , )ρ φ= ) in 

the polar coordinate [25]. 
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0
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, (4-10) 

where 2 1,i =− the superscripts “ i ” and “ e ” denote the interior and exterior cases 

for the expressions of kernel, respectively, and mε  is the Neumann factor 
1, 0         
2, 1,2,...m

m
m

ε
=⎧

= ⎨ = ∞⎩
. (4-11) 

It is noted that the larger argument is imbedded in the complex Hankel function ( H ) 

instead of real Bessel function ( J ) to ensure the ( )0H kr  singularity and series 

convergence. Since the potential resulted from (s, x)T  and (s, x)L  kernels are 

discontinuous cross the boundary, the potentials of (s, x)T  for R ρ+→  and 

R ρ−→  are different. This is the reason why R ρ=  is not included in expressional 

degenerate kernels of (s, x)T  and (s, x)L  in Eqs. (4-8) and (4-9). The analytical 

evaluation of the integrals for each element in the influence matrix is listed in the 

Appendix Ⅱ and they are all non-singular. Besides, the limiting case to the boundary 

is also addressed. The continuous and jump behavior across the boundary is also 

described. After using the Wronskian property of mJ  and mY  
( ) ( )( ) ( ) ( ) ( ) ( ),

2
m m m m m mW J kR Y kR Y kR J kR Y kR J kR

kRπ

′ ′= −

=
, (4-12) 

the jump behavior is well captured by  
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( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

2

0

2

2

(s,x) (s,x) sin

sin

sin

2 sin ,

i e

n n n

n n n

T T n Rd

kR J kR Y kR iJ kR n

kR J kR Y kR iJ kR n

n

π
θ θ

π φ

π φ

π φ

−

′ ′⎡ ⎤= −⎣ ⎦
′ ⎡ ⎤− −⎣ ⎦

=

∫

 (4-14)

The above equation is similar to the Wronskian of two bases for 1-D rod case. 

 
4.3 Image technique for solving scattering problems of half-plane 
 
Image concept for half-plane problems 

For the half-plane problem with a circular cavity and/or inclusion as shown in 

Appendixes Ⅲ and Ⅳ, we extend the problem into a full plane with the scatter by 

using image concept such that our formulation can be applied. By applying the 

concept of even function, the symmetry condition is utilized to satisfy the traction free 

( 0t = ) condition on the ground surface. We merge the half-plane domain into the 

full-plane problem by adding with the reflective wave. To solve the problem, the 

decomposition technique is employed by introducing two plane waves, one is incident 

and the other is reflective, instead of only one incident wave. After taking the free 

body of full-plane problem through the ground surface, we obtain the desired solution 

which satisfies the Helmholtz equation and all the boundary conditions in the 

half-plane domain. 

 
Decomposition of scattering problem into incident wave field and radiation problems 

For the scattering problem subject to the incident wave, this problem can be 

decomposed into two parts. One is the incident wave field and another is the radiation 

field as shown in Appendixes Ⅲ and Ⅳ. The relations between two parts are shown 
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below 

M i r M
tu u u u= + + , (4-15) 

M i r M
tt t t t= + + , (4-16) 

where the “ M
tt ” denotes the total field of matrix including radiation and scattering. 

The subscripts “ i ” and “ r ” are the incident and reflected waves and the “ Mt ” denotes 

the radiation part of matrix and needs to be solved. To match the boundary condition 

for the cavity case, the total traction is defined as 0M
tt = . For the inclusion case, we 

have the two constraints of the continuity of displacement and equilibrium of traction 

along the kth  interface ( , 1, ,kB k N= ) as shown below: 

M I
tu u=  on kB , (4-17)

  M M I I
tt tµ µ=−  on kB . (4-18)

The radiation parts of matrix ( Mu  and Mt ) and inclusion ( Iu  and It ) can be solved 

by employing our method. 

 

4.4 Half-plane problems with a cavity subject to the incident 
SH-wave 
 

4.4.1 Problem statement 

 

The anti-plane motion model to be analyzed is shown in Figure 4-1. Consider a 

half-plane problem with a circular cavity of radius a . The governing equation of the 

incident SH-wave problem is the Helmholtz equation 

2 2( ) ( ) 0,k w x x∇ + = ∈Ω , (4-19) 

where 2∇ , k  and Ω  are the Laplacian operator, the wave number, and the domain 

of interest, respectively. The displacement field of the SH-wave is defined as 
0u v= = , ( , )w w x y= , (4-20) 

where w  is the only nonvanishing component of displacement with respect to the 

Cartesian coordinate which is a function of x  and y . For a linear elastic body, the 
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stress components are [99] 

13 31
w
x

σ σ µ∂= =
∂

, (4-21) 

23 32
w
y

σ σ µ∂= =
∂

, (4-22) 

where µ  is the shear modulus. The incident excitation of the half-plane problem, iw , 

is defined as a steady-state plane SH-wave, and motion in the z  direction. It may be 

expressed as follows 

( sin cos )
0

i ik x yw W e γ γ+= , (4-23) 

where 0W  is the constant amplitude. By using the image concept and the 

decomposition of superposition as shown in Appendix Ⅲ, the total stress field in the 

medium is decomposed into 

31 31 31 31
t M i rσ σ σ σ= + + , (4-24) 

32 32 32 32
t M i rσ σ σ σ= + + , (4-25) 

and the total displacement can be given as 
t M i rw w w w= + + , (4-26) 

where iw , rw  and Mw  are the displacements due to the incident, reflected and 

radiation field of matrix. Only the radiation displacement “ Mw ” need to be solved 

after decomposition. In order to satisfy the traction free condition on the cavity, the 

traction is in equilibrium as shown below 

0 M i rt t t= + + , (4-27) 

Therefore, the scattering problem is reduced to find the displacement Mw  which 

satisfies the Helmholtz equation and the boundary conditions. The shear stress 

components, rzσ  and zθσ , can be superimposed by using 31σ  and 32σ  as shown 

below: 

nrz
wσ µ∂=

∂
, (4-28) 

tz
w

θσ µ ∂=
∂

, (4-29) 

where n  and t  are the normal and tangent directions, respectively. Before 

determining rzσ  and zθσ  of the interior point, we calculate 31σ  and 32σ  by 
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implementing the hypersingular equation in the real computation. For calculating 

shear stress zθσ  on the boundary, the same procedure of vector decomposition is 

required, and the nondimensional stress *
zθσ  is defined as: 

*

0

z
z

θ
θ

σσ
σ

= , (4-30) 

where 0 0kWσ µ=  is the amplitude of incident wave. 

 

4.4.2 Illustrative examples and discussions 

 

In order to check the validity of the present formulation, the limiting case of 

incident SH-wave reduces to the static case of Honein et al. [44] is conducted. For the 

incident SH-wave problem, one cavity in the infinite plane subject to SH-wave is 

solved and is compared with the Pao and Mow’s analytical solution [70]. Lin and 

Liu’s half-plane problems with a cavity are also revisited [57]. All the numerical 

results are given below by using ten terms of Fourier series ( 10L= ). 

 

Case1: Two circular cavities lie on the y-axis 

Figures 2 (a) and (b) shows the geometry of the two circles whose radii are 1 1a =  

and 2 2a = . For the static case, the displacement field of the anti-plane deformation 

is defined as: 
yw τ
µ

∞
∞ = . (4-31) 

In the dynamic case with traction free condition on the circular boundaries, we 

assume an incident SH-wave with amplitude of linear function in the y  direction as: 

i ikxyw eτ
µ

∞

= . (4-32) 

When k  approaches zero, the problem is reduced to a static case where Honei et 

al.’s solution can be compared with for 2,  0.1D =  and 0.01 . Figures 2 (e) and (f) 

show the graph of the stress zθσ  around the boundary of smaller circle for various 

distances, D , between the two circles. Our numerical results are well compared with 

the data of Honein et al.’s data [44] when k  approaches zero ( 0.001k = ) by using 
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ten Fourier terms ( 10L = ). 

 

Case2: A circular cylinder cavity in an infinite plane 

Consider a circular cylinder with a radius “ a ” as shown in Figure 4-3 (a). An incident 

SH-wave is defined by  

00, 0, ikx
x y zu u u W e= = = , (4-33) 

Figures 4-3 (b) and (c) show the graph of the  zθσ  along the circular boundary for 

various wave numbers 0.1ka= , 1.0  and 2.0 . It is worth noting that our data agree 

well with the analytical solution of Pao and Mow’s data [70]. 

 

Case3: Half-plane problems with a circular cavity 

Consider the scattering problem of SH-wave around a circular cavity in half-plane as 

shown in Figure 4-1. The boundary conditions are traction free on the circular 

boundary and ground surface. Figures 4-4 (e) to (h) are the Lin and Liu’s data [89] 

which show the graph of the *
zθσ  around the circular cavity. In the case of / 4γ π=  

and / 1.5h R= , the maximum value of *
zθσ  is 3.75 on 90θ= , while the maximum 

value of *
zθσ  is 2.16 on 0θ=  and 180  for the case of / 4γ π=  and / 12h R= . 

Before solving the half-plane problem, an image method is employed to extend the 

half-plane to full-plane with two holes by using the symmetry condition as shown in 

Appendix Ⅲ. Therefore, the developed program of our formulation can be easily 

incorporated to obtain the solution. Our numerical results are compared with the data 

of Lin and Liu’s data [89], good agreement is obtained. By setting 0 , / 100h aγ = =  

for the half-plane problem, the limiting case of a single cavity in the full plane is 

obtained due to the far distance between the ground surface and circle. After 

comparing the Figure 4-4 (i) with Figure 4-3 (c), good agreement is also obtained. 

 
4.5 Half-plane problems with inclusions subject to the incident 
SH-wave  
 
4.5.1 Problem statement 
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Half-plane problems with alluvial or inclusions to be analyzed is shown in 

Figures 4-5, 20, 25 and 31. The matrix and alluvial are assumed to be elastic, isotropic 

and homogenous, and the interface between the alluvial and matrix is assumed to be 

perfect. The governing equation of the anti-plane SH-wave harmonic motion is 
2 2(x) (x) 0w wµ ρω∇ + = , x∈Ω  (4-34) 

where µ , ρ  and ω  are the material properties of shear modulus, the density and 

the frequency, 2∇  and Ω  are the Laplacian operator and the domain of interest, 

respectively. The anti-plane displacement field of the anti-plane is defined as 
0u v= = , ( , )w w x y= , (4-35) 

where w  is the only nonvanishing component of displacement with respect to the 

Cartesian coordinate which is a function of x  and y . The traction free boundary 

condition at the ground surface of the half-plane is defined as follows 

0yz
w
y

τ µ∂= =
∂

, 0y = , (4-36) 

or can be represented in the polar coordinate as 

0w
rθ
µτ

θ
∂= =
∂

, 0 and θ π= . (4-37) 

The incident excitation of the half-plane, iw , is defined as a steady-state plane 

SH-wave, and motion in the z  direction. It is expressed as shown below: 

( sin cos )
0

i ik x yw W e γ γ+= , (4-38) 

where 0W  is the constant amplitude. By using the image concept and the 

decomposition of superposition as shown in Appendix Ⅳ, the problem can be 

extended to a full-plane problem with two inclusions. In order to satisfy the traction 

free condition on the surface, the reflective wave is chosen to satisfy the symmetry 

condition as  

( sin cos )
0

r ik x yw W e γ γ−= . (4-39) 

Assuming the perfect bounding between the matrix and inclusion, the continuity of 

displacement in the interface is given by 
0i r M Iw w w w+ + − = , (4-40) 

and the equilibrium of traction is shown below 
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M M M M
r θ r θ

I I
r θ

1 1n n n n

1n n 0

i r i r M M
M

I I
I

w w w w
r r r r

w w
r r

µ
θ θ

µ
θ

+ +⎡ ⎤∂ ∂ ∂ ∂⎢ ⎥+ + +⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
⎡ ⎤∂ ∂⎢ ⎥+ + =⎢ ⎥∂ ∂⎣ ⎦

, (4-41) 

where iw , rw , Mw  and Iw  are the displacements due to the incident, reflecting, 

radiation of the matrix and inclusion, respectively. The unit normal vectors of 
M M
r r θ θ=n e +n eMn  and I I

r r θ θ=n e +n eIn  are the outward vectors for the boundaries of the 

matrix and the inclusion, respectively. Therefore, the incident SH-wave problem is 

reduced to find the displacement Mw  and Iw  which satisfies the Helmholtz 

equation and the two interface conditions. The total displacement field of matrix can 

be obtained by 

M i r M
tw w w w= + + , (4-42) 

where the displacement field within the inclusion is defined as Iw . Assuming perfect 

bounding between the matrix and inclusion, the continuity of displacement 

( ( ) ( )M I
tw x w x= ) and traction equilibrium ( ( ) ( )M M I I

tt x t xµ µ= − ) are satisfied on the 

interface boundary. In order to check the validity of the formulation, the Manoogian 

[61] and Trifunac’s [79] problem with an alluvial valley is revisited. We follow the 

same parameter, η , for comparison purpose. The dimensionless frequency η  is 

defined as shown below: 
2 M

M
a k a a

c
ωη

λ π π
= = = , (4-43) 

where a  is the half-width of the alluvial valley, ω  is the angular frequency, Mk  

and Mc  are the shear wave number and the velocity of shear wave for the matrix 

wedium, and the shear wave number k  is defined as 

k
c
ω

= . (4-44) 

Substituting Eq. (4-43) into Eq. (4-44), the wave number of matrix field is rewritten 

as 

Mk
a
πη

= , (4-45) 

and the shear wave number for the inclusion field is obtained by 
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1/ 2I M M I

M I I M
k c
k c

µ ρ
µ ρ

⎛ ⎞
= = ⋅⎜ ⎟

⎝ ⎠
. (4-46) 

Equation (4-46) indicates that various mediums yield different wave numbers. The 

surface amplitude is an important index for the earthquake engineering. If the 

amplitude of incident plane SH-wave is one, the responses at different locations 

represent amplifications of the incident wave. The resultant motion is defined by the 

modulus 

( ) ( )2 2Re ImAmplitude w w= + , (4-47) 

where ( )Re w  and ( )Im w  are the real and imaginary parts of total displacement, 

respectively. For both the alluvial valley and inclusion under the ground surface, 

observation points are located on the free surface in the range of 1 / 1x a− < < . 

Therefore, the observation point locates on the matrix for inclusion under the ground 

surface, while the observation is on the inclusion for the alluvial valley problem. 

 

4.5.2 Illustrative examples and discussions 

 

In the section, we revisit the same problems of Lee and Manoogian [62], Trifunac [79] 

and Tsaur et al. [103] for the alluvial problem. The half-plane medium subject to 

SH-wave with an inclusion under the ground surface as previously solved by Lee and 

Manoogian and Tsaur et al. are also revisited. In order to check the accuracy of the 

present method, the limiting case is conducted. All the numerical results are given 

below by using ten terms of Fourier series. 

 

Case 1: Half-plane problem with an alluvial valley subject to the SH-wave 

In the following examples, we choose the same parameters / 1.0, / 1/ 6I Mh a µ µ= =  

and / 2 /3I Mρ ρ =  which were previously adopted in the Ph. D dissertation of 

Manoogian [61]. Figures 4-6 to 4-9 show the surface amplitudes for various 

paramaters of η . In each figure, four various incident angles ( 0γ = , 30 , 60  and 

90 ) are considered. The figures show the displacement amplitude on the ground 

surface only. Displacements are plotted with respect to the dimensionless distance 
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/x a  for a specified parameter η . In order to verify the limiting case of the general 

program, we set 8/ 10I Mµ µ −=  to reduce to four canyon cases of η  (0.5, 1.0, 1.5 

and 2.0). In Figures 4-10 to 4-13, good agreements are obtained after comparing with 

Lee and Manoogian’s results [53] for various frequency parameters of η  for the 

semi-circular canyon case. Another limiting case of the rigid alluvial is also of interest 

in the foundation engineering. For example, rigid footing is a popular model in 

geotechnical engineering. By setting /I Mµ µ  to be infinity, the limiting case of rigid 

inclusion can be obtained. Figure 4-14 plots the surface displacement by setting 
4/ 10I Mµ µ =  and 2η =  in the real computation. In the range of / 1x a = −  to 1, 

the amplification is a constant as expected, because it is undeformed due to the rigid 

alluvial. 

Figures 4-15 to 4-17 show the surface displacement for 0.25, ,2.50η = , for various 

values of /I Mρ ρ  and /I Mc c  , subject to the vertically incident SH-wave ( 0γ = ) 

whose amplitude is one. The point / 1x a =  corresponds to the edge of the alluvial 

valley, and the position of / 0x a = , shows the center of alluvial valley. Since all 

displacement amplitudes are symmetric about the center, for the vertically incident 

SH-wave, only the positive /x a  axis is illustrated. In Figures 4-15 and 4-16, they 

show the effect of /I Mc c  on the surface amplitudes. The soft-basin effect of high 

amplitude is observed in this study. Figure 4-17 is an example of harder material in 

the alluvial valley and softer matrix. It is found that the surface amplitude is two as 

expected when η  is small. For the far field response, the surface amplitude is found 

to be two since the perturbation due to the alluvial/inclusion is small. Figure 4-18 

compares the surface displacement amplitude for the vertical and horizontal incidence 

wave versus the dimensionless frequency η  at / 0.8x a = , while Figure 4-19 shows 

the same comparison for / 0.8x a = − . Good agreement is made after comparing with 

Trifunac’s [79] results. 

 

Case 2: Half-plane problem with two alluvial valleys subject to the SH-wave 

Two semi-circular alluvial valleys subject to the incident SH-wave of γ  angle are 

shown in Figure 4-20. Figures 4-21 and 4-22 show the surface displacements versus 

/x a  for various incident angles with / 1/ 6I Mµ µ =  and / 2 /3I Mρ ρ =  subject to 
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four cases of η  (0.5, 1.0, 1.5 and 2.0). By setting 8/ 10I Mµ µ −= , the limiting case 

of successive canyons is obtained as shown in Figures 4-23 and 4-24. Tsaur et al. [103] 

and Fang [93] have both calculated the problem of two semi-cylindrical alluvial 

valleys for the incident SH-wave. Tsaur et al. [103] pointed out that the deviation by 

Fang [93] is that Fang improperly used the orthogonal property. Good agreement is 

made after comparing with the results of Tsaur et al. [103]. For the incident angle of 

zero-degree, the surface displacement amplitude is symmetric. By increasing the 

incident angle, the displacement amplitude is gradually smaller in the back side of the 

alluvial valley or canyon due to the shield effect of two alluvial valleys or canyons. 

As the incident angle approaches ninety-degrees, the surface displacement amplitudes 

are all smaller than the “free field” in the back of the second alluvial. It indicates that 

two alluvial valleys can be the wave trap for the incident wave. 

 

Case 3: An inclusion under the ground surface subject to the SH-wave 

A circular inclusion under the ground surface subject to the incident SH-wave of 

incident angle of γ  is shown in Figure 4-25. The surface displacement amplitude of 

Eq. (4-42) versus /x a  is plotted in Figures 4-26 and 4-27 for various incident angles 

with / 1/ 6, / 2 /3I M I Mµ µ ρ ρ= = . Figure 4-26 shows the comparison with the 

Tsaur’s data [102] and Manoogian and Lee’s [62] result for the nondimensional 

frequency 2η = . The surface displacements of the present method match well with 

the Tsaur’s data, but it deviates to Lee and Manoogian and Lee’s [62] result. The 

discrepancy was explained by Manoogian [60] due to the precision limit in the 

FORTRAN code ten years ago. In order to verify the limiting case of the general 

program, we set 8/ 10I Mµ µ −=  for four cavities cases of η  (0.5, 1.0, 1.5 and 2.0). 

Good agreement is made after comparing with the results of the cavity cases of Lee 

and Manoogian [53,61]. The comparisons are shown in Figures 4-28 and 4-29 for 

different distances ( h ) from the cavity to the ground surface of the half-plane. 

Another limiting case of the rigid inclusion is of interest for the foundation 

engineering. By setting /I Mµ µ  to infinity, the limiting case of rigid inclusion can be 

obtained. Figure 4-30 shows the surface displacement when we set 4/ 10I Mµ µ =  

and 2η =  in the real computation. 
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Case 4: Half-plane problem with two inclusions subject to the SH-wave 

In order to verify that the present approach can be extended to handle arbitrary 

number and various positions of circular inclusions, we consider the problem with 

two inclusions under the ground surface subject to SH-wave as shown in Figure 4-31. 

Figure 4-32 shows the surface amplitude of the two-inclusions problem with 

/ 1/ 6, / 2 /3I M I Mµ µ ρ ρ= =  for four cases of η  (0.1, 0.25, 0.75 and 1.25). For the 

limiting case, the two inclusions problem reduces to two cavities problem when we 

set 8/ 10I Mµ µ −= . Good agreements are obtained after comparing with the results of 

two- cavities problem of Jiang et al. [95] as shown in Figure 4-33.  

All the figures show that amplitude profiles are relatively simple for the lower 

frequency incident waves and become complicated with higher peak amplitudes for 

the higher one. Surface responses are symmetrical for vertically incident SH-wave as 

the angle of incidence increases towards ninety degrees. Amplitudes tend to be 

somewhat larger and profiles are more complicated for the place in front of the first 

inclusion ( / 1x a < − ). This is due to the interference of incident, reflected, and 

scattering waves near the inclusion.  

Consequently, we have high confidence in the results of the present method after 

testing the program through several examples. 

 

4.6  Concluding remarks 
 
The first attempt to employ degenerate kernel in BIEM for problems with circular 

boundaries subject to the SH-wave was achieved. Not only cavity but also inclusion 

problems were treated. We have proposed a BIEM formulation by using degenerate 

kernels, null-field integral equation and Fourier series in companion with adaptive 

observer systems and vector decomposition. This method is a semi-analytical 

approach for problems with circular boundaries since only truncation error in the 

Fourier series is involved. Good agreements are obtained after comparing with 

previous results. The stress concentration factor of cavity case and the surface motion 

of half-plane problem with inclusions were determined. Parameter study on the 
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surface amplitudes was also addressed. Successive canyons and/or alluvial valleys as 

well as several inclusions beneath the ground surface were considered. The analysis 

of amplification and interference effects for valley and inclusions subject to 

SH-waves may explain the ground motion either observed or recorded during 

earthquake. The method shows great generality and versatility for the problems with 

multiple circular cavities and inclusions of arbitrary radii and positions. 
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Chapter 5 Derivation of Green’s function and Poisson 
integral formula for annular Laplace problems 

 
Summary 
 
Null-field approach is employed to derive the Green’s function for annular Dirichlet 

problems of the Laplace equation. Kernel functions and boundary densities are 

expanded by using the degenerate kernel and Fourier series, respectively. Series-form 

Green’s function is derived and plotted. The Poisson integral formula is extended to 

an annular case from a circle. The Green’s function of an exterior problem bounded 

by a circle is found to be the limiting case of the present solution. 

 

5.1 Introduction 
 
Green’s function has been studied and applied in many fields by mathematicians as 

well as engineers [47,63]. According to the superposition principle, it can solve 

problems with distributed loading. The main difference between the fundamental 

solution (free-space Green’s function) and Green’s function is that it not only satisfies 

the governing equation with a concentrated source but also matches the boundary 

condition of the bounded domain. Poisson integral formula was constructed after the 

special Green’s function is obtained. It is well known that the kernel function in the 

Poisson integral formula is the normal derivative of the Green’s function for the 

Dirichlet problem of a circle. In deriving the Green’s function, Thompson [77] 

proposed the concept of reciprocal radii to find the image source to satisfy the 

homogeneous Dirichlet boundary condition. Sommerfeld [74] and Greenberg [41] 

both utilized the concept of reciprocal radii of Thompson [77] to drive the Poisson 

integral formula. On the other hand, Chen and Wu [31] proposed an alternative way to 

find the location of image through the degenerate kernel. For problems with a 

complicated domain, a closed-form Green’s function as well as series form is not easy 

to obtain. Analytical Green’s functions have been presented for only a few 

configurations in two-dimensional problems using the theory of complex variable. 

Numerical Green’s functions have received attention from BEM researchers by Telles 

et al. [76]. Melnikov [64] used the method of modified potential (MMP) to calculate 
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the Green’s function of eccentric ring and half-plane problems with a circular 

boundary. Boley [9] analytically constructed the Green’s function by using successive 

approximation. Adewale [2] proposed an analytical solution for an annular plate 

subjected to a concentrated load which also belongs to one kind of Green’s function 

for the biharmonic operator. 

In this chapter, we focus on the null-field approach to determine the Green’s function 

for the annular Laplace problem. Based on the obtained Green’s function, the 

extended Poisson formula for the annular problem subject to Dirichlet boundary 

conditions can be constructed. 
 
5.2 Derivation of the Green’s function for annular Laplace problems 
 
5.2.1 Problem statement and null-field approach to construct the Green’s 

function 

 
For two-dimensional annular problems as shown in Figure 5-1, the Green’s function 

satisfies 
2 (x, ) (x )G ξ δ ξ∇ = − , x∈Ω , (5-1) 

where Ω  is the domain and (x )δ ξ−  denotes the Dirac-delta function for the 

source at ξ . For simplicity, this Green’s function is subject to the Dirichlet boundary 

condition 

(x, ) 0G ξ = , x B∈ , (5-2) 

where B  is the boundary. In order to employ the Green’s third identity as follows 
2 2 ( ) ( )( ) ( ) ( ) ( ) ( ) [( ( ) ( ) ] ( )

n nD B

v x u xu x v x v x u x dD x u x v x dB x∂ ∂⎡ ⎤∇ − ∇ = −⎣ ⎦ ∂ ∂∫∫ ∫ . (5-3) 

we need two systems, ( )u x  and ( )v x . By choosing ( )u x  as (x, )G ξ  and setting 

( )v x  as the fundamental solution (x,s)U  such that 
2 (x,s) 2 (x s)U πδ∇ = − , x∈Ω , (5-4) 

we can obtain the fundamental solution as follows 
(s, x) lnU r= , (5-5) 

where r  is the distance between s  and x  ( x sr ≡ − ). After exchanging with the 
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variables x  and s , we have 

s

(s, )2 (x, ) (s,x) (s, ) (s) (s,x) (s) ( ,x)
nB B

GG T G dB U dB Uξπ ξ ξ ξ∂
= − +

∂∫ ∫ , (5-6) 

where (s, x)T , is defined by 

s

(s, x)(s, x)
n

UT ∂≡
∂

, (5-7) 

in which sn  denotes the outward normal vector at the source point s . To solve the 

above equation, we utilize the null-field integral equation to analytically derive the 

Green’s function. To solve the unknown boundary density t  for the annular Dirchlet 

problems, the field point x  is located outside the domain to yield the null-field 

integral equation as shown below: 

s

(s, )0 (s,x) (s, ) (s) (s,x) (s) ( ,x)
nB B

GT G dB U dB Uξξ ξ∂= − +
∂∫ ∫ , x c∈Ω , (5-8) 

where cΩ  is the complementary domain. By using the degenerate kernels, the BIE 

for the “boundary point” can be easily derived through the null-field integral equation 

by exactly collocating x  on B  in Eq. (5-8) [28]. 

 

5.2.2 Expansions of kernel and boundary density 

 

Based on the separable property, the kernel function (s, x)U  can be expanded into 

series form by separating the field point ( , )ρ φ  and source point ( , )R θ  in the polar 

coordinate: 

( )
( )

( )

1

1

1( , ; , ) ln cos ,   
,

1( , ; , ) ln cos ,   >R

m
i

m

m
e

m

U R R m R
m R

U s x
RU R m

m

ρθ ρ φ θ φ ρ

θ ρ φ ρ θ φ ρ
ρ

∞

=

∞

=

⎧ ⎛ ⎞= − − ≥⎪ ⎜ ⎟
⎝ ⎠⎪= ⎨
⎛ ⎞⎪ = − −⎜ ⎟⎪ ⎝ ⎠⎩

∑

∑
, (5-9) 

It is noted that the leading term and the numerator in the above expansion involve the 

larger argument to ensure the log singularity and the series convergence, respectively. 

According to the definition of (s, x)T , we have  
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, (5-10)

The boundary densities for the annular Dirichlet problem can be represented by using 

the Fourier series as shown below: 
(s, ) 0G ξ = , 1 2s  and B B∈ , (5-11)

0 1
1

s
0 2

1

( cos sin ),  s
(s, )

( cos sin ),  s

m m
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m m
m

p p m q m B
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n
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∞

=

∞

=

⎧
+ + ∈⎪∂ ⎪= ⎨∂ ⎪ + + ∈

⎪⎩

∑

∑
, (5-12)

where 1B  and 2B  denoted the inner and outer boundary of circles, respectively. 

 

5.3 Series representation for the Green’s function of an annular case 
 
For the annular case subject to the Dirichlet boundary condition, the unknown Fourier 

series can be analytically derived. By collocating x  on ( , )b φ+  and ( , )a φ−  in Eq 

(5-8), the null-field equations yield  

( )0 0

1

0 1 2 2 ln

1 cos cos sin sin
m mm m

m m m m
m

bp ap b

R Ra ab p a p m m b q a q m m
m b b b b

ξ ξ
ξ ξ

π π

π π θ φ π π θ φ
∞

=

= − −

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥ ⎢ ⎥− + + + + +⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
∑

, ( , )x b φ+→ ,
(5-13)

( )0 0

1

0 ln 2 ln 2 ln  

1 cos cos sin sin
m mm m

m m m m
m

R b bp a a p

a a a ab p a p m m b q a q m m
m b R b R

ξ

ξ ξ
ξ ξ

π π

π π θ φ π π θ φ
∞

=

= − −

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥ ⎢ ⎥− + + + + +⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎩ ⎭
∑

, ( , )x a φ−→ .
(5-14)

The unknown Fourier series coefficient can be obtained as 
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By substituting all the boundary densities into the integral representation for the 

domain point, we have the series-form Green’s function as shown below: 
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If we also expand the ln  function and collect the terms, we have 
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Two limiting cases are our concern. One is the interior case of a  to be zero and the 

other is the exterior case of b  to be infinity. Our results are shown in Table 5-2 to 

compare with previous results by Chen and Wu [31] as shown in Table 5-1. By taking 

limit of b  to infinity and replacing Rξ  to R , Eqs. (5-21) and (5-22) are reduced to 

the exterior case [31] as shown in Table 5-1. The detailed proof is shown in Appendix 

Ⅴ. Equations (5-21) and (5-22) can not be reduced to the interior case [31] due to the 

inconsistency of potential at the center for the limiting case of a  to be near zero. For 

clarity, we perform two experiments by setting ( 71, 10 , 20, (1.25,0 )a b L ξ= = = = ) 

and ( 0.001, 1, 20, (0.8,0 )a b L ξ= = = = ). Both figures agree our analytical prediction 

after comparing with those of Chen and Wu [31] as shown in Figure 5-2.  

Now we move to solve the solution (x)w  as shown in Figure 5-1(b) for the 

following partial differential equation, 
2 (x) 0w∇ = , x∈Ω , (5-21)

subject to the following Dirichlet boundary condition 
(x) ( )w f θ= , 1x B∈ , (5-22)
(x) ( )w g θ= , 2x B∈ , (5-23)

To extend the Poisson integral formula to an annular case for Eq. (5-21) subject to 

BCs of Eqs. (5-22) and (5-23), we have  

1 2 s

(s, x)2 (x) (s) (s)
nB B

Gw w dBπ
+

∂
=

∂∫ , (5-24)

where (s,x)G  is the derived Green’s function of Eq. (5-18). Equation (5-24) 

indicates the representation for the solution in terms of extended Poisson integral 

formula. Although the series-form Green’s function for an annular case is derived 

analytically in the section, general Green’s functions can be solved by a 

semi-analytically approach as shown in the chapter 2 except the addition of (x, )U ξ  

term, a semi-analytical solution is shown in Figure 5-3 (b). It must be noted that 

s/ n∂ ∂  is / R∂ ∂  and / R−∂ ∂  for exterior and interior circles, respectively. 

 

5.4 An illustrative example and discussions 
 

Annular case (analytical solution and semi-analytical solution) 

To avoid the degenerate scale [26], we design the radii of inner and outer boundaries 
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are 4 and 10. The source of the Green’s function is located on (0,7.5)ξ= . For the 

annular Green’s function, both the analytical solution and the semi-analytical results 

are shown in Figure 5-3. The analytical solution is obtained by truncating Fourier 

series of fifty terms in real implementation. By collocating null-field points along the 

inner and outer boundaries with the same number of Fourier coefficients, the 

semi-analytical solution of Chapter 2 can be obtained. Good agreement is made to 

verify the validity of the program since it matches well with the analytical solution. 

 

5.5 Concluding remarks 
 

For the annular problem, we have proposed an analytical solution to construct the 

Green’s function by using degenerate kernels and Fourier series. The series-form 

Green’s function for the annular Dirichlet problem was derived which can extend the 

Poisson integral formula from a circle to an annular case. It is interesting to find that 

the Green’s function of exterior problem bounded by a circle can be treated as a 

limiting case of our solution. We also proposed a semi-analytical solution for 

comparison purpose. The semi-analytical method can be extended to construct the 

Green’s function of eccentric case. Since analytical solutions are not available, our 

semi-analytical results may provide a datum for other researchers’ references. 
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Chapter 6 Conclusions and further research 
 

6.1 Conclusions 
 

The thesis is concerned with the semi-analytical solution of Laplace and Helmholtz 

equations in planar domain that are bounded by a finite number of circular holes 

and/or inclusions. The approach is via the null-field integral equations emphasizing on 

the two issues of avoiding the need of CPV and HPV and illuminating the 

boundary-layer effect. The key idea is to approximate the unknowns via truncated 

Fourier series on the circular boundaries and the kernels of the integral operators, that 

is, the fundamental solution by truncating the addition theorem to have the degenerate 

kernels. Based on the proposed formulation for solving the problems involving 

circular boundaries in different branches of engineering applications, some 

concluding remarks are itemized as follows: 

 

1. A systematic way to solve the Laplace and Helmholtz problems with circular 

boundaries was proposed successfully in this thesis by using the null-field 

integral equation in conjunction with degenerate kernels and Fourier series. 

Problems involving infinite, semi-infinite and bounded domains with circular 

boundaries were examined to check the accuracy of the present formulation 

 

2. Boundary integrals along the circular contour are performed analytically. The 

present method is seen as a “semi-analytical” approach since error purely 

ascribes to the truncated Fourier series. Convergence study using different 

numbers of Fourier series was also done. 

 

3. In calculating the potential gradient using hypersingular formulation, adaptive 

observer system and vector decomposition technique were employed to 

efficiently solve the problems. 

 

4. A torsion bar with multiple cavities was studied by using the present formulation. 
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Our solutions match well with the exact solution and other solutions by using the 

boundary integral equation for the Caulk and Ling’s cases. For the bending 

problem, we also consider a cantilever beam with multiple cavities. The 

discrepancy between Naghdi’s solution and Bird and Steele’s data was examined. 

Our results agree the Naghdi’s data better than Bird and Steele’s results.  

 

5. In the exterior Helmholtz problem, the stress concentration factor of the cavity 

was solved. Not only the infinite plane cases but also half-plane problems subject 

an incident SH-wave was considered. Image concept and technique of 

decomposition are utilized to transform half-plane problems to full-plane cases 

such that our formulation can solve. Numerical results are obtained and 

compared well with previous results by others. 

 

6. We extended the cavity problem to inclusion problem. Basin problem is also our 

concern. The effect of softer and harder material of alluvial, on the amplification 

of amplitude for alluvial valleys was also studied. The results of the inclusion 

case show the superiority of our method over the Manoogian’s data after 

comparing with the limiting cases and Tsaur’s results. 

 

7. When the wave number k approaches zero, the Helmholtz problem can be 

reduced to the Laplace problem. Laplace problem can be treated as a special case 

of the Helmholtz problem. 

 

8. Our approach can deal with the cavity problem as a limiting of inclusion problem 

with zero shear modulus. On the hand, rigid footing can also be considered using 

higher values of shear modulus. 

 

9. A general-purpose program for solving engineering problems involving the 

Laplace and Helmholtz problems with multiple circular cavities or inclusions of 

various radii and arbitrary positions was developed. Its possible applications in 

engineering are very broad, and are not limited by the tropic in the thesis. 
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6.2 Further research 
 

In this thesis, our formulation has been applied to solve the problem with circular 

boundaries by using the separate form of fundamental solutions and Fourier series 

expansions for boundary densities in the null-field integral equation. However, there 

are several researches which can be conducted. 

 

1. In the thesis, the degenerate kernels are expanded in the polar coordinate and 

only problems with circular boundaries can be solved. For the general boundary, 

e.g. elliptical hole, it is obvious that our method can be directly applied once the 

kernel functions can be expanded to separate form in the elliptical coordinate. 

 

2. Following the success of applications in two-dimensional problems, it is 

straightforward to extend this concept to 3-D problems with spherical inclusions 

and/or cavities using the corresponding 3-D degenerate kernel functions for 

fundamental solutions and spherical harmonic expansions for boundary densities. 

 

3. The fundamental solution was expanded to degenerate kernels with respect to the 

single center by separable technique. Hence, an adaptive observer system was 

required to fully capture the geometry of each circle. The bi-observer expansion 

technique for the two point function of source and field systems may be suitable 

for the eccentric case in a more straightforward way free of adaptive observer 

system. 

 
4. For problems with straight boundaries, our method can also be applied by 

changing the dummy variable θ  into R , and Legendre and Chebyshev 
polynomials are suited to approximate the boundary densities on the regular and 
degenerate straight boundaries, respectively, to employ the orthogonal property 
of integration. How toe keep the orthogonal property is the main challenge. 

 

5. The present method has determined the torsional rigidity of a bar with circular 

holes. Following the success of this thesis, extending to the problem of torsional 
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rigidity of a bar with inclusions can be considered as a forum in the future. 

 

6. The extension to hill scattering can be studied by using the present approach in 

conjunction with the multi-domain technique by decomposing the original 

problem into one interior problem of circular domain and a half-plane problem 

with a semi-circular canyon. 

 

7. Although annular Green’s functions were solved analytically and numerically in 

this thesis, the semi-analytical solution for the Green’s function of eccentric case, 

mixed BC and multi-medium can be easily solved using our approach. Our 

semi-analytical results may provide a datum for other researcher’s references. 
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Appendix Ⅰ Analytical evaluation of the integrals for Laplace kernels and their limit 
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Appendix Ⅱ Analytical evaluation of the integrals for Helmholtz kernels and their limit 
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∞

=

⎡ ⎤⎡ ⎤ ⎡ ⎤− − ⋅ = − <⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤⎡ ⎤− − ⋅ = <⎢ ⎥⎣ ⎦⎣ ⎦

∫

∑∫

∑
2

0

π

⎧
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪⎩
∫

 

for 0n ≠  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2 2

0
0

2 2

0
0

cos cos( ) cos ,     
2

cos sin( ) sin ,       
2

2

m m m m n n n
m

m m m m n n n
m

m m m m

J k Y kR iJ kR m n Rd R J k Y kR iJ kR n R

J k Y kR iJ kR m n Rd R J k Y kR iJ kR n R

J kR Y k iJ k

π

π

π ε ρ θ φ θ θ π ρ φ ρ

π ε ρ θ φ θ θ π ρ φ ρ

π ε ρ ρ

∞

=

∞

=

⎡ ⎤⎡ ⎤ ⎡ ⎤− − = − ≥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡ ⎤− − = − ≥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ −⎣

∑∫

∑∫

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

2 2

0
0

2 2

0
0

cos cos( ) cos ,     

cos sin( ) sin ,       
2

n n n
m

m m m m n n n
m

m n Rd R J kR Y k iJ k n R

J kR Y k iJ k m n Rd R J kR Y k iJ k n R

π

π

θ φ θ θ π ρ ρ φ ρ

π ε ρ ρ θ φ θ θ π ρ ρ φ ρ

∞

=

∞

=

⎧
⎪
⎪
⎪
⎪
⎪⎪
⎨

⎡ ⎤⎪ ⎤ ⎡ ⎤− = − <⎢ ⎥⎦ ⎣ ⎦⎪ ⎣ ⎦⎪
⎪ ⎡ ⎤⎡ ⎤ ⎡ ⎤− − = − <⎪ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎣ ⎦⎩

∑∫

∑∫
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Limit Rρ →  for 0n =  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2
0 0 0 0 0 0

2 2
0 0 0 0 0 0

lim ,     

lim ,     

R

R

R J k Y kR iJ kR R J kR Y kR iJ kR R

R J kR Y k iJ k R J kR Y kR iJ kR R

ρ

ρ

π ρ π ρ

π ρ ρ π ρ

→

→

⎧ ⎡ ⎤⎡ ⎤ ⎡ ⎤− = − ≥⎣ ⎦ ⎣ ⎦⎣ ⎦⎪
⎨

⎡ ⎤⎡ ⎤ ⎡ ⎤− = − <⎪ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎩

 

for 0n ≠  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2

2 2

2 2

lim cos cos ,     

lim sin sin ,     

lim cos

n n n n n nR

n n n n n nR

n n n n n nR

R J k Y kR iJ kR n R J kR Y kR iJ kR n R

R J k Y kR iJ kR n R J kR Y kR iJ kR n R

R J kR Y k iJ k n R J kR Y kR iJ kR

ρ

ρ

ρ

π ρ φ π φ ρ

π ρ φ π φ ρ

π ρ ρ φ π

→

→

→

⎡ ⎤⎡ ⎤ ⎡ ⎤− = − ≥⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤− = − ≥⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤− = −⎣ ⎦ ⎣ ⎦⎣ ⎦ ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2

cos ,     

lim sin sin ,     n n n n n nR

n R

R J kR Y k iJ k n R J kR Y kR iJ kR n R
ρ

φ ρ

π ρ ρ φ π φ ρ
→

⎧
⎪
⎪
⎪⎪
⎨

<⎪
⎪
⎪ ⎡ ⎤⎡ ⎤ ⎡ ⎤− = − <⎣ ⎦ ⎣ ⎦⎣ ⎦⎪⎩

 

(Continuous for R Rρ− +< < ) 
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 ( ) ( ) ( )

B

(s,x) and s,x s sT T u dB∫  

Degenerate kernel 
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
0

0

, ; , cos ,
2

(s,x)

, ; , cos ,
2

i
m m m m

m

e
m m m

m

T R k J k Y kR iJ kR m R

T

T R k J kR Y k iJm k m R

πθ ρ φ ε ρ θ φ ρ

πθ ρ φ ε ρ ρ θ φ ρ

∞

=
∞

=

⎧
′ ′⎡ ⎤= − − >⎪ ⎣ ⎦

⎪
= ⎨
⎪ ′ ⎡ ⎤= − − <⎪ ⎣ ⎦
⎩

∑

∑
 

Orthogonal process for 0n =  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

2 2
0 0 00

0

0

cos cos(0 ) ,      
2

cos sin(0 ) 0,                                                    
2

m m m m
m

m m m m
m

k J k Y kR iJ kR m Rd kR J k Y kR iJ kR R

k J k Y kR iJ kR m Rd

π π ε ρ θ φ θ θ π ρ ρ

π ε ρ θ φ θ θ

∞

=

∞

=

⎡ ⎤′ ′ ′ ′⎡ ⎤ ⎡ ⎤− − ⋅ = − >⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤′ ′⎡ ⎤− − ⋅ =⎢ ⎥⎣ ⎦⎣ ⎦

∑∫

∑

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

2

0

2 2
0 0 00

0

0

        

cos cos(0 ) ,     
2

cos sin(0 ) 0,                                         
2

m m m
m

m m m
m

R

k J kR Y k iJm k m Rd kR J kR Y k iJ k R

k J kR Y k iJm k m Rd

π

π

ρ

π ε ρ ρ θ φ θ θ π ρ ρ ρ

π ε ρ ρ θ φ θ θ

∞

=

∞

=

>

⎡ ⎤′ ′⎡ ⎤ ⎡ ⎤− − ⋅ = − <⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤′ ⎡ ⎤− − ⋅ =⎢ ⎥⎣ ⎦⎣ ⎦

∫

∑∫

∑
2

0
                  R

π
ρ

⎧
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪

<⎪
⎪⎩
∫

 

for 0n ≠  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

2 2

0
0

2 2

0
0

cos cos( ) cos ,     
2

cos sin( ) sin ,        
2

2

m m m m n n n
m

m m m m n n n
m

k J k Y kR iJ kR m n Rd kR J k Y kR iJ kR n R

k J k Y kR iJ kR m n Rd kR J k Y kR iJ kR n R

k

π

π

π ε ρ θ φ θ θ π ρ φ ρ

π ε ρ θ φ θ θ π ρ φ ρ

π ε

∞

=

∞

=

⎡ ⎤′ ′ ′ ′⎡ ⎤ ⎡ ⎤− − ⋅ = − >⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤′ ′ ′ ′⎡ ⎤ ⎡ ⎤− − ⋅ = − >⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

∑∫

∑∫

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

2 2

0
0

2 2

0
0

cos cos( ) cos ,     

cos sin( ) sin ,       
2

m m m n n n
m

m m m n n n
m

J kR Y k iJm k m n Rd kR J kR Y k iJ k n R

k J kR Y k iJm k m n Rd kR J kR Y k iJ k n R

π

π

ρ ρ θ φ θ θ π ρ ρ φ ρ

π ε ρ ρ θ φ θ θ π ρ ρ φ ρ

∞

=

∞

=

⎧
⎪
⎪
⎪
⎪
⎪⎪
⎨

⎡ ⎤⎪ ′ ′⎡ ⎤ ⎡ ⎤− − ⋅ = − <⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎣ ⎦⎪
⎪ ⎡ ⎤′ ′⎡ ⎤ ⎡ ⎤− − ⋅ = − <⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎩

∑∫

∑∫⎪⎪
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Limit Rρ →  for 0n =  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2
0 0 0 0 0 0

2 2
0 0 0 0 0 0

lim ,     

lim ,     

R

R

kR J k Y kR iJ kR kR J k Y kR iJ kR R

kR J kR Y k iJ k kR J kR Y k iJ k R

ρ

ρ

π ρ π ρ ρ

π ρ ρ π ρ ρ ρ

→

→

⎧ ⎡ ⎤′ ′ ′ ′⎡ ⎤ ⎡ ⎤− = − >⎣ ⎦ ⎣ ⎦⎣ ⎦⎪
⎨

⎡ ⎤′ ′⎡ ⎤ ⎡ ⎤− = − <⎪ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎩

 

for 0n ≠  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 2

2

lim cos cos ,     

lim sin = sin ,        

lim cos

n n n n n nR

n n n n n nR

n n nR

kR J k Y kR iJ kR n kR J kR Y kR iJ kR n R

kR J k Y kR iJ kR n kR J kR Y kR iJ kR n R

kR J kR Y k iJ k n kR

ρ

ρ

ρ

π ρ φ π φ ρ

π ρ φ π φ ρ

π ρ ρ φ π

→

→

→

⎡ ⎤′ ′ ′ ′⎡ ⎤ ⎡ ⎤− = − >⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤′ ′ ′ ′⎡ ⎤ ⎡ ⎤− − >⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤′ ⎡ ⎤− =⎣ ⎦⎣ ⎦ ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

2 2

cos ,     

lim sin = sin ,        

n n n

n n n n n nR

J kR Y kR iJ kR n R

kR J kR Y k iJ k n kR J kR Y kR iJ kR n R
ρ

φ ρ

π ρ ρ φ π φ ρ
→

⎧
⎪
⎪
⎪⎪
⎨

′ ⎡ ⎤− <⎪ ⎣ ⎦
⎪
⎪ ⎡ ⎤′ ′⎡ ⎤ ⎡ ⎤− − <⎣ ⎦ ⎣ ⎦⎣ ⎦⎪⎩

 

(jump for R Rρ− +< < ) 
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 ( ) ( ) ( )

B

(s,x) and s,x s sL L t dB∫  

Degenerate kernel 
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
0

0

, ; , cos ,
2

(s,x)

, ; , cos ,
2

i
m m m m

m

e
m m m m

m

L R k J k Y kR iJ kR m R

L

L R k J kR Y k iJ k m R

πθ ρ φ ε ρ θ φ ρ

πθ ρ φ ε ρ ρ θ φ ρ

∞

=
∞

=

⎧
′ ⎡ ⎤= − − >⎪ ⎣ ⎦

⎪
= ⎨
⎪ ′ ′⎡ ⎤= − − <⎪ ⎣ ⎦
⎩

∑

∑
 

Orthogonal process for 0n =  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

2 2
0 0 00

0

2

0
0

cos cos 0 ,       
2

sin sin 0 0,                                                      
2

m m m m
m

m m m m
m

k J k Y kR iJ kR m Rd kR J k Y kR iJ kR R

k J k Y kR iJ kR m Rd

π

π

π ε ρ θ φ φ θ π ρ ρ

π ε ρ θ φ φ θ

∞

=

∞

=

⎡ ⎤′ ′⎡ ⎤ ⎡ ⎤− − ⋅ = − >⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤′ ⎡ ⎤− − ⋅ =⎢ ⎥⎣ ⎦⎣ ⎦

∑∫

∑∫

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

2 2
0 0 00

0

2

0
0

        

cos cos 0 ,       
2

sin sin 0 0,                                        
2

m m m m
m

m m m m
m

R

k J kR Y k iJ k m Rd kR J kR Y k iJ k R

k J kR Y k iJ k m Rd

π

π

ρ

π ε ρ ρ θ φ φ θ π ρ ρ ρ

π ε ρ ρ θ φ φ θ

∞

=

∞

=

>

⎡ ⎤′ ′ ′ ′⎡ ⎤ ⎡ ⎤− − ⋅ = − <⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤′ ′⎡ ⎤− − ⋅ =⎢ ⎥⎣ ⎦⎣ ⎦

∑∫

∑∫                     R ρ

⎧
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪

<⎪
⎪⎩

 

for 0n ≠  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( )

2 2

0
0

2 2

0
0

cos cos cos ,      
2

sin sin sin ,         
2

2

m m m m n n n
m

m m m m n n n
m

m m m

k J k Y kR iJ kR m n Rd kR J k Y kR iJ kR n R

k J k Y kR iJ kR m n Rd kR J k Y kR iJ kR n R

k J kR Y k

π

π

π ε ρ θ φ φ θ π ρ φ ρ

π ε ρ θ φ φ θ π ρ φ ρ

π ε

∞

=

∞

=

⎡ ⎤′ ′⎡ ⎤ ⎡ ⎤− − = − >⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤′ ′⎡ ⎤ ⎡ ⎤− − = − >⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

′

∑∫

∑∫

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

2 2

0
0

2 2

0
0

cos cos cos ,     

sin sin sin ,        
2

m n n n
m

m m m m n n n
m

iJ k m n Rd kR J kR Y k iJ k n R

k J kR Y k iJ k m n Rd kR J kR Y k iJ k n R

π

π

ρ ρ θ φ φ θ π ρ ρ φ ρ

π ε ρ ρ θ φ φ θ π ρ ρ φ ρ

∞

=

∞

=

⎧
⎪
⎪
⎪
⎪
⎪⎪
⎨

⎡ ⎤⎪ ′ ′ ′⎡ ⎤ ⎡ ⎤− − = − <⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎣ ⎦⎪
⎪ ⎡ ⎤′ ′ ′ ′⎡ ⎤ ⎡ ⎤− − = − <⎪ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎣ ⎦⎩

∑∫

∑∫
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Limit Rρ →  for 0n =  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2
0 0 0 0 0 0

2 2
0 0 0 0 0 0

lim ,      

lim = ,       

R

R

kR J k Y kR iJ kR kR J kR Y kR iJ kR R

kR J kR Y k iJ k kR J kR Y kR iJ kR R

ρ

ρ

π ρ π ρ

π ρ ρ π ρ

→

→

⎧ ⎡ ⎤′ ′⎡ ⎤ ⎡ ⎤− = − >⎣ ⎦ ⎣ ⎦⎣ ⎦⎪
⎨

⎡ ⎤′ ′ ′ ′⎡ ⎤ ⎡ ⎤− − <⎪ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎩

 

for 0n ≠  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 2

2 2

lim cos cos ,       

lim sin sin ,         

lim cos

n n n n n nR

n n n n n nR

n n nR

kR J k Y kR iJ kR n kR J kR Y kR iJ kR n R

kR J k Y kR iJ kR n kR J kR Y kR iJ kR n R

kR J kR Y k iJ k n kR

ρ

ρ

ρ

π ρ φ π φ ρ

π ρ φ π φ ρ

π ρ ρ φ π

→

→

→

⎡ ⎤′ ′⎡ ⎤ ⎡ ⎤− = − >⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤′ ′⎡ ⎤ ⎡ ⎤− = − >⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤′ ′⎡ ⎤− =⎣ ⎦⎣ ⎦ ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2

cos ,       

lim sin sin ,         

n n n

n n n n n nR

J kR Y kR iJ kR n R

kR J kR Y k iJ k n kR J kR Y kR iJ kR n R
ρ

φ ρ

π ρ ρ φ π φ ρ
→

⎧
⎪
⎪
⎪⎪
⎨

′ ′⎡ ⎤− <⎪ ⎣ ⎦
⎪
⎪ ⎡ ⎤′ ′ ′ ′⎡ ⎤ ⎡ ⎤− = − <⎣ ⎦ ⎣ ⎦⎣ ⎦⎪⎩

 

(jump for R Rρ− +< < ) 
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 ( ) ( ) ( )

B

(s,x) and s,x s sM M u dB∫  

Degenerate kernel 
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

2

0

2

0

, ; , cos ,
2

(s,x)

, ; , cos ,
2

i
m m m m

m

e
m m m m

m

M R k J k Y kR iJ kR m R

M

M R k J kR Y k iJ k m R

πθ ρ φ ε ρ θ φ ρ

πθ ρ φ ε ρ ρ θ φ ρ

∞

=
∞

=

⎧
′ ′ ′⎡ ⎤= − − ≥⎪ ⎣ ⎦

⎪
= ⎨
⎪ ′ ′ ′⎡ ⎤= − − <⎪ ⎣ ⎦
⎩

∑

∑
 

Orthogonal process for 0n =  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

2 2 2 2
0 0 00

0

2 2

0
0

cos cos 0 ,     
2

cos sin 0 0,                                               
2

m m m m
m

m m m m
m

k J k Y kR iJ kR m Rd k R J k Y kR iJ kR R

k J k Y kR iJ kR m Rd

π

π

π ε ρ θ φ φ θ π ρ ρ

π ε ρ θ φ φ θ

∞

=

∞

=

⎡ ⎤′ ′ ′ ′ ′ ′⎡ ⎤ ⎡ ⎤− − ⋅ = − ≥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤′ ′ ′⎡ ⎤− − ⋅ =⎢ ⎥⎣ ⎦⎣ ⎦

∑∫

∑∫

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

2 2 2 2
0 0 00

0

2 2

0
0

             

cos cos 0 ,    
2

cos sin 0 0,                                
2

m m m m
m

m m m m
m

R

k J kR Y k iJ k m Rd k R J kR Y k iJ k R

k J kR Y k iJ k m Rd

π

π

ρ

π ε ρ ρ θ φ φ θ π ρ ρ ρ

π ε ρ ρ θ φ φ θ

∞

=

∞

=

≥

⎡ ⎤′ ′ ′ ′ ′ ′⎡ ⎤ ⎡ ⎤− − ⋅ = − <⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤′ ′ ′⎡ ⎤− − ⋅ =⎢ ⎥⎣ ⎦⎣ ⎦

∑∫

∑∫                             R ρ

⎧
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪

<⎪
⎪⎩

 

for 0n ≠  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

2 2 2 2

0
0

2 2 2 2

0
0

2

cos cos cos ,     
2

cos sin sin ,       
2

2

m m m m n n n
m

m m m m n n n
m

k J k Y kR iJ kR m n Rd k R J k Y kR iJ kR n R

k J k Y kR iJ kR m n Rd k R J k Y kR iJ kR n R

k

π

π

π ε ρ θ φ φ θ π ρ φ ρ

π ε ρ θ φ φ θ π ρ φ ρ
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Appendix Ⅲ Image concept and the decomposition of superposition of a circular cavity 
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Appendix Ⅳ Image concept and the decomposition of superposition of a alluvial valley 
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Appendix Ⅴ Limiting process of the annular Green’s function to an exterior case by setting b →∞ . 
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Table 1-1 Comparisons of the present method and conventional BEM. 
 

 Boundary density discretization Auxiliary system Formulation Observer 
system Singularity 

Pr
es

en
t m

et
ho

d 

Fourier series 

 

Degenerate 
kernel 

Null-field 
integral equation

Adaptive 
observer 
system 

No principal 
value 

C
on

ve
nt

io
na

l B
EM

 

Constant element 

 

Fundamental 
solution 

Boundary 
integral equation

Fixed observer 
system 

Principal value 
(CPV, RPV and 

HPV) 

where CPV, RPV and HPV are the Cauchy principal value, Riemann principal value and Hadamard principal value, respectively. 
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Table 3-1 Comparison of formulation between the present approach and conventional BEM 

Conventional BEM 
fundamental solution-closed form 

2 (x) (s, x) (s) (s) (s, x) (s) (s)
B B

u T u dB U t dBπ = −∫ ∫ , x ∈Ω  

(x) . . . (s,x) (s) (s) . . . (s, x) (s) (s)
B B

u C PV T u dB R PV U t dBπ = −∫ ∫ , x B∈  

Prim
ary field 0 (s,x) (s) (s) (s,x) (s) (s)

B B
T u dB U t dB= −∫ ∫ , x c∈Ω  

x

(x)2 (s,x) (s) (s) (s,x) (s) (s)
n B B

u M u dB L t dBπ ∂ = −
∂ ∫ ∫ , x ∈Ω  

x

(x) . . . (s,x) (s) (s) . . . (s,x) (s) (s)
n B B

u H PV M u dB C PV L t dBπ ∂ = −
∂ ∫ ∫ , x B∈  

Secondary field 0 (s,x) (s) (s) (s,x) (s) (s)
B B
M u dB L t dB= −∫ ∫ , x c∈Ω  

Present formulation 
(degenerate kernel-series form) 

 Interior problem Exterior problem 

2 (x) (s,x) (s) (s) (s,x) (s) (s)i i

B B
u T u dB U t dBπ = −∫ ∫ , x B∈Ω∪  2 (x) (s,x) (s) (s) (s,x) (s) (s)e e

B B
u T u dB U t dBπ = −∫ ∫ , x B∈Ω∪  

NA, x B∈  NA, x B∈  

Prim
ary field 0 (s, x) (s) (s) (s,x) (s) (s)e e

B B
T u dB U t dB= −∫ ∫ , x c B∈Ω ∪  0 (s,x) (s) (s) (s,x) (s) (s)i i

B B
T u dB U t dB= −∫ ∫ , x c B∈Ω ∪  
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x

(x)2 (s,x) (s) (s) (s,x) (s) (s)
n

i i

B B

u M u dB L t dBπ ∂ = −
∂ ∫ ∫ , x B∈Ω∪

x

(x)2 (s,x) (s) (s) (s,x) (s) (s)
n

e e

B B

u M u dB L t dBπ ∂ = −
∂ ∫ ∫ , x B∈Ω∪  

NA, x B∈  NA, x B∈  

Secondary field 0 (s,x) (s) (s) (s,x) (s) (s)e e

B B
M u dB L t dB= −∫ ∫ , x c B∈Ω ∪  0 (s,x) (s) (s) (s,x) (s) (s)i i

B B
M u dB L t dB= −∫ ∫ , x c B∈Ω ∪  

where . .C PV , . .R PV  and . .H PV  denote the Cauchy principal value, Riemann principal value and Hadamard principal value, respectively. 
 
 
 
 

Table 3-2 Torsional rigidity of a circular cylinder with a single eccentric hole ( )/ 1/3a R =  

Geometry 
         

b
R a−

 0.20 0.40 0.60 0.80 0.90 0.92 0.94 0.96 0.98 

Exact solution [68] 0.97872 0.95137 0.90312 0.82473 0.76168 0.74454 0.72446 0.69968 0.66555 
20L =  0.97872 0.95137 0.90312 0.82473 0.76168 0.74455 0.72451 0.69991 0.66705 Present 

method 10L =  0.97872 0.95137 0.90312 0.82476 0.76244 0.74603 0.72748 0.70616 0.68111 
40 

divisions 0.97872 0.95137 0.90316 0.82497 0.76252 0.74569 0.72605 0.70178 0.66732 ( )4

2G
Rµπ

 
Caulk’s 
method 

(BIE) [14] 20 
divisions 0.97873 0.95140 0.90328 0.82574 0.76583 0.75057 0.73367 0.71473 0.69321 
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Table 3-3 Torsional rigidity of a circular cylinder with a ring of N  holes / 1/ 4a R = , / 1/ 2b R =  

 

Number of holes 

2 3 4 
Caulk (First-order  
Approximate) [14] 

0.8661 0.8224 0.7934 

Caulk (BIE 
formulation) [14] 

0.8657 0.8214 0.7893 ( )4

2G
Rµπ

 

Present method 
( 10L = ) 

0.8657 0.8214 0.7893 

 
 
Table 3-4 Torsional rigidity in Ling’s [57] examples 

   

Case 

/ 2 / 7, / 3/ 7a R b R= =
/ 1/5, / 1/5,
/ 3/5

c R a R
b R

= =
=

 / 1/5, / 1/5,
/ 3/5

c R a R
b R

= =
=

Caulk (First-order 
approximate) [14]

0.8739 0.8741 0.7261 

Caulk (BIE 
formulation) [14]

0.8713 0.8732 0.7261 

Ling’s results 0.8809 0.8093 0.7305 

( )4

2G
Rµπ

 
Present method 

( 10L = ) 
0.8712 0.8732 0.7244 

 

R

aa c

R

b
aa  
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Table 5-1 Green’s functions of interior and exterior problems. 

Close form [31]: 
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Table 5-2 Green’s function of annular case 
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Figure 1-1 The boundary value problems with arbitrary boundaries. 
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Figure 2-1 Problem statement. 
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Figure 2-2 (a) The 1-D degenerate kernel for (s,x)U . 

 
 

 
 

Figure 2-2 (b) The 2-D degenerate kernel for (s,x)U . 
 
 
 

 
Figure 2-2 (c)The 3-D degenerate kernel for (s,x)U . 
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Figure 2-3 (a) Sketch of the null-field integral equation in conjunction with the 

adaptive observer system. 
 

 

 
Figure 2-3 (b) Sketch of the boundary integral equation for the domain point in 

conjunction with the adaptive observer system. 
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Figure 2-4 Vector decomposition for the potential gradient in the hypersingular 
equation. 
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Figure 2-5 The flowchart of the present method. 
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Figure 3-1 Cross section of a bar weakened by N  ( 3N = ) equal circular holes. 
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Figure 3-2 Torsion rigidity versus the number of Fourier terms. 
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Figure 3-3 Cross-section of a cantilever beam of symmetrical holes. 
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Figure 3-4 Stress concentration for 1.0R = , 0.5b = , / 4θ π=  and 0.1a = . 
(a) Sc  along AB ( Present method) 
(b) Sc  along CD ( Present method) 
(c) Sc  along OT ( Present method) 
(d) Sc  along AB ( Naghdi’s result) [68] 
(e) Sc  along CD ( Naghdi’s result) [68] 
(f) Sc  along OT ( Naghdi’s result) [68] 
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Figure 3-5 Stress concentrations around the third circle. 
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Figure 3-6 Stress concentration versus b  for 0.12a =  and 1.0R = . 

(a) /8θ π=   ( Present method) 
(b) 3 /8θ π=  ( Present method) 
(c) /8θ π=   (Bird’s result [6]) 
(d) 3 /8θ π=  ( Bird’s result [6]) 
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Figure 3-7 Stress concentration versus b  for 0.12a = , 1.0R =  and three different 
values of /8θ π= , / 4θ π=  and 3 /8θ π= . 

(a) Sc at the point B (Present method) 
(b)Sc at the point B (Naghdi’s result [68]) 
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Figure 3-8 Stress concentration along AB  and extremely close to the point B  for 
5b = , 1a = , 10R =  and / 4θ π= . 
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Figure 3-9 Stress concentration on point B  for 1.0R = , 0.5b = , / 4θ π=  and 
0.1a = . 
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(c) 3 /8θ π=  
Figure 3-10 Contour plot for 1.0R = , 0.4b = , 0.12a =  for three various values of 

(a) /8θ π= , (b) / 4θ π=  and (c) 3 /8θ π= . 
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Figure 3-11 Cantilever beam under bending weakened by two holes the on x axis−  
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(a) Present method (b) Bird’s result [6] 

Figure 3-12 Stress concentration versus / 2D a  for the point P . 
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(a) Present method (c) Bird’s result [6] 

(b) Present method (local) (d) Bird’s result (local) [6] 
Figure 3-13 Contour of stress concentration of / 2 0.0625D a =  
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Figure 4-1 A half-plane problem with a circular cavity subject to incident SH-wave. 
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(a) Two cavities with centers on the 

y axis−  
(b) Two cavities with centers on the 

45 axis−  

  
(c) Shear stress around the smaller cavity 

(Honein’s result [44]) 
(d) Shear stress around the smaller cavity 

(Honein’s result [44]) 
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(e) Shear stress around the smaller cavity 

(Present method) 
(f) Shear stress around the smaller cavity 

(Present method) 
Figure 4-2 A full-plane problem with two cavities subject to the incident SH-wave. 
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(a) A full-plane problem with a cavity subject to SH-wave. 
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Figure 4-3 Shear stress ( zθσ ) around the cavity of a full-plane problem subject to the 
horizontally incident SH wave. 
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Present method Lin and Liu’s results [89] 
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(i) Limiting case of 90γ =  and / 100h a = . 

Figure 4-4 Shear stress ( *
zθσ ) around the cavity under the ground surface subject to 

the SH-wave. 
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Figure 4-5 A half-plane problem with a semi-circular alluvial valley subject to the 

SH-wave. 
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(a) ~ (d) Present method 
/ 1/ 6, / 2 /3I M I Mµ µ ρ ρ= =  (e) ~ (h) Manoogian’s results [61] 
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(d) 90γ =  (h) 90γ =  
Figure 4-6 Surface amplitudes of the alluvial valley problem for 0.5η = . 
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(a) ~ (d) Present method 
/ 1/ 6, / 2 /3I M I Mµ µ ρ ρ= =  (e) ~ (h) Manoogian’s results [60] 
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(d) 90γ =  (h) 90γ =  
Figure 4-7 Surface amplitudes of the alluvial valley problem for 1.0η = . 
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(a) ~ (d) Present method 
/ 1/ 6, / 2 /3I M I Mµ µ ρ ρ= =  (e) ~ (h) Manoogian’s results [60] 
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(d) 90γ =  (h) 90γ =  
Figure 4-8 Surface amplitudes of the alluvial valley problem for 1.5η = . 
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(a) ~ (d) Present method 
/ 1/ 6, / 2 /3I M I Mµ µ ρ ρ= =  (e) ~ (h) Manoogian’s results [60] 
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(d) 90γ =  (h) 90γ =  
Figure 4-9 Surface amplitudes of the alluvial valley problem for 2.0η = . 
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(a) ~ (d) Present method / 2 /3I Mρ ρ =  (e) ~ (h) Manoogian’s results [60] 
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(d) 90γ =  (h) 90γ =  
Figure 4-10 Limiting case of a canyon ( 8/ 10I Mµ µ −=  and 0.5η = ) 
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(a) ~ (d) Present method / 2 /3I Mρ ρ =  (e) ~ (h) Manoogian’s results [60] 
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(d) 90γ =  (h) 90γ =  
Figure 4-11 Limiting case of a canyon ( 8/ 10I Mµ µ −=  and 1η = ). 
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(a) ~ (d) Present method / 2 /3I Mρ ρ =  (e) ~ (h) Manoogian’s results [60] 
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(d) 90γ =  (h) 90γ =  
Figure 4-12 Limiting case of a canyon ( 8/ 10I Mµ µ −=  and 1.5η = ). 
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(a) ~ (d) Present method / 2 /3I Mρ ρ =  (e) ~ (h) Manoogian’s results [60] 
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(d) 90γ =  (h) 90γ =  
Figure 4-13 Limiting case of a canyon ( 8/ 10I Mµ µ −=  and 2η = ). 
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Figure 4-14 Limiting case of a rigid alluvial valley ( 4/ 10I Mµ µ= = , / 2 /3I Mρ ρ =  
and 2η = ). 
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Present method ( / 2 /3I Mρ ρ =  and / 1/ 2I Mc c = ) 

 
Trifunac’s result [79] 

Figure 4-15 Surface displacements as a function of /x a  and η  for the vertical 
incidence ( 0γ = ). 
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Present method ( / 2 /3I Mρ ρ =  and / 1/3I Mc c = ) 

 
Trifunac’s result [79] 

Figure 4-16 Surface displacements as a function of /x a  and η  for the vertical 
incidence ( 0γ = ). 
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Present method ( / 3/ 2I Mρ ρ =  and / 2I Mc c = ) 

 
Trifunac’s result [79] 

Figure 4-17 Spectral displacement with harder material of alluvial valley versus the 
dimensionless frequency η  for the vertically incident SH-wave. 
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/ 1/ 6, / 2 /3I M I Mµ µ ρ ρ= =  (Present method) 

 
Trifunac’s result [79] 

Figure 4-18 Spectral amplification at / 0.8x a =  versus the dimensionless frequency 
η  (Present method and Trifunac’s result). 
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Trifunac’s result [79] 

Figure 4-19 Spectral amplification at / 0.8x a = −  versus the dimensionless 
frequency η  (Present method and Trifunac’s result). 
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Figure 4-20 A half-plane problem with two alluvial valleys subject to the incident 

SH-wave. 
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(d) 90γ =  (h) 90γ =  
Figure 4-21 Surface displacements of two alluvial valleys ( / 1/ 6I Mµ µ =  and 

/ 2 /3I Mρ ρ = ). 
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(d) 90γ =  (h) 90γ =  
Figure 4-22 Surface displacements of two alluvial valleys ( / 1/ 6I Mµ µ =  and 

/ 2 /3I Mρ ρ = ). 
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(a) ~ (d) Present method (e) ~ (h) Tsaur et al.’s results [103] 

-4 -3 -2 -1 0 1 2 3 4 5 6 7
x/a

0

2

4

6

8

A
m

pl
itu

de

 

 
(a) 0γ =  (e) 0γ =  

-4 -3 -2 -1 0 1 2 3 4 5 6 7
x/a

0

2

4

6

8

Am
pl

itu
de

 

 
(b) 30γ =  (f) 30γ =  

-4 -3 -2 -1 0 1 2 3 4 5 6 7
x/a

0

2

4

6

8

A
m

pl
itu

de

 

 
(c) 60γ =  (g) 60γ =  

-4 -3 -2 -1 0 1 2 3 4 5 6 7
x/a

0

2

4

6

8

Am
pl

itu
de

 

 
(d) 90γ =  (h) 90γ =  

Figure 4-23 Limiting case of two canyons ( 8/ 10I Mµ µ −=  and 1η = ). 
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(a) ~ (d) Present method (e) ~ (h) Tsaur et al.’s results [103] 
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(d) 90γ =  (h) 90γ =  

Figure 4-24 Limiting case of two canyons ( 8/ 10I Mµ µ −=  and 2η = ). 
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Figure 4-25 A half-plane problem with a circular inclusion subject to the incident 

SH-wave. 
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 (a) ~ (d) Present method (e) ~ (h) Tsaur et al.’s results[102] (i) ~ (l) Manoogian and Lee’s results [62] 
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(d) 90γ =  (h) 90γ =  (l) 90γ =  

Figure 4-26 Surface displacements of a inclusion problem under the ground surface with 2η =  and / 1.5h a = ( / 1/ 6, / 2 / 3I M I Mµ µ ρ ρ= = ). 



 - 128 -
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(d) 90γ =  (h) 90γ =  (l) 90γ =  

Figure 4-27 Surface amplitudes of the inclusion problem for various values of η  and / 1.5h a = ( / 1/ 6, / 2 / 3I M I Mµ µ ρ ρ= = ). 
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 (a) ~ (d) Present method 
( 2, / 1.5, / 2 /3I Mh aη ρ ρ= = = ) 

(e) ~ (h) Lee and Manoogian’s [53] for 
the cavity case. 
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(d) 90γ =  (h) 90γ =  
Figure 4-28 Limiting case of a cavity problem ( 8/ 10I Mµ µ −= ). 
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 (a) ~ (d) Present method 

( 2, / 5, / 2 /3I Mh aη ρ ρ= = = ) 
(e) ~ (h) Lee and Manoogian’s [53] 

results for the cavity case 
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(d) 90γ =  (h) 90γ =  
Figure 4-29 Limiting case of a cavity problem ( 8/ 10I Mµ µ −= ). 

 
 
 
 
 
 
 
 



 - 131 -
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Figure 4-30 Limiting case of a rigid inclusion problem ( 4/ 10I Mµ µ = ). 
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Figure 4-31 A half-plane problem with two circular inclusions subject to the 
SH-wave. 
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Figure 4-32 Surface amplitudes of two-inclusions problem  
( / 1/ 6I Mµ µ = , / 2 /3I Mρ ρ = , / 1.5h a = , / 2.5D a = , 10L = ). 
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 (a) ~ (d) Present method (e) ~ (h) Jiang et al. result [95] 
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Figure 4-33 Limiting case of two-cavities problem  

( 8/ 10I Mµ µ −= , / 2 /3I Mρ ρ = , / 1.5h a = , / 2.5D a =  and 10L = ). 
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(a) Green’s function of an annular case 
 
 

 
(b) An annular Dirichlet problem 

 
Figure 5-1 A two-dimensional annular problem 
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(a) Limiting case of the annular Green’s 
function ( 71, 10 , 20, (1.25,0 )a b L ξ= = = ) 

(c) Series-form Green’s function of 
exterior case [31] 
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(b) Limiting case of the annular Green’s 
function ( 0.001, 1, 20, (0.8,0 )a b L ξ= = = ) 

(d) Series-form Green’s function of 
interior case [31] 

 
Figure 5-2 Two limiting cases ( 0,a b→ →∞ ) of the annular Green’s function  

(a)  71, 10 , 20, (1.25,0 )a b L ξ= = =  
(b)  0.001, 1, 20, (0.8,0 )a b L ξ= = =  
(c)  Exterior case [31] 
(d)  Interior case [31] 
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(a) Analytical solution ( 50L = ) 
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(b) Semi-analytical solution ( 50L = ) 
 
 

Figure 5-3 Contour plots for the annular Green’s function 
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