Derivation of the Green＇s function for Laplace and Helmholtz problems with circular boundaries by using the null－field integral equation approach

Reporter：Ke J．N． Advisor：Chen J．T．
Committee members：
Chen I．L．，Lee W．M．，Leu S．Y．\＆Chen K，H．

Outlines

Motivation and literature review
 Derivation of the Green's function

- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Take free body
- Image technique for solving half-plane problems

Numerical examples

- Green's function for Laplace problems
- Green's function for Helmholtz problems

Conclusions

National Taiwan Ocean University
Department of Harbor and River Engineering

Outlines

Motivation and literature review

Derivation of the Green's function

- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Take free body
- Image technique for solving half-plane problems

Numerical examples

- Green's function for Laplace problems
- Green's function for Helmholtz problems

Conclusions

National Taiwan Ocean University
Department of Harbor and River Engineering

Motivation

Engineering problem with arbitrary geometries

National Taiwan Ocean University
Department of Harbor and River Engineering

Literature review

Derivation of the Green's function

Successive iteration
method

Boley, 1956, "A method for the construction of Green's functions,", Quarterly of Applied Mathematics

MeFnikov, 2001, "Modified potential as a toolfoor computing Green's functions in continuum mechanics", Computer Modeling in Engineering Science

Trefftz 6ases

Wang and Sudak, 2007, "Antiplane time-harmonic Green's functions for a circular infomogeneity with an imperfect interface", Mechanics Research Communications

Outlines

Motivation and literature review Derivation of the Green's function

- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Take free body
- Image technique for solving half-plane problems

Numerical examples

- Green's function for Laplace problems
- Green's function for Helmholtz problems

Conclusions

National Taiwan Ocean University
Department of Harbor and River Engineering

Null-field integral approach to construct the Green's function

Original Problem

Governing equation: $\nabla^{2} G(x, \xi)=\delta(x-\xi), x \in D$
Boundary condition: Subjected to given B. C.
Green's third identity
BIE for Green's function

$$
\begin{array}{ll}
\iint_{D}\left[u(x) \nabla^{2} v(x)-v(x) \nabla^{2} u(x)\right] d D(x) & 2 \pi G(x, \xi)
\end{array}=\int_{B} \frac{\partial U(s, x)}{\partial n_{s}} G(s, \xi) d B(s) \quad \begin{cases}=\int_{B}\left[\left(u(x) \frac{\partial v(x)}{\partial n}-v(x) \frac{\partial u(x)}{\partial n}\right] d B(x)\right. & -\int_{B} U(s, x) \frac{\partial G(s, \xi)}{\partial n_{s}} d B(s)+U(\xi, x)\end{cases}
$$

Governing equation: $\nabla^{2} U(x, s)=2 \pi \delta(x-s)$

$$
\begin{aligned}
& v(x)=U(s, x) \quad \text { Fundamental solution } \\
& u(x)=G(x, \xi)
\end{aligned}
$$

Boundary integral equation and null-field integral equation

Interior case
Exterior case

$$
T(\mathrm{~s}, \mathrm{x})=\frac{\partial U(\mathrm{~s}, \mathrm{x})}{\partial \mathrm{n}_{\mathrm{s}}}
$$

Expansions of fundamental solution (2D)

Laplace problem-- $U(s, x)=\ln |x-s|=\ln r$
$U(\mathrm{~s}, \mathrm{x})=\left\{\begin{array}{l}U^{i}(R, \theta ; \rho, \phi)=\ln R-\sum_{m=1}^{\infty} \frac{1}{m}\left(\frac{\rho}{R}\right)^{m} \cos m(\theta-\phi), \quad R \geq \rho \\ U^{e}(R, \theta ; \rho, \phi)=\ln \rho-\sum_{m=1}^{\infty} \frac{1}{m}\left(\frac{R}{\rho}\right)^{m} \cos m(\theta-\phi), \quad \rho>R\end{array}\right.$

Helmholtz problem-- $U(s, x)=-i \pi H_{0}^{(1)}(k r) / 2$
$U(\mathrm{~s}, \mathrm{x})=\left\{\begin{array}{lc}U^{i}(R, \theta ; \rho, \phi)=\frac{-\pi i}{2} \sum_{m=0}^{\infty} \varepsilon_{m} J_{m}(k \rho) H_{m}^{(1)}(k R) \cos (m(\theta-\phi)), R \geq \rho & \text { Neumann factor } \\ U^{e}(R, \theta ; \rho, \phi)=\frac{-\pi i}{2} \sum_{m=0}^{\infty} \varepsilon_{m} H_{m}^{(1)}(k \rho) J_{m}(k R) \cos (m(\theta-\phi)), \rho>R & \varepsilon_{\mathrm{m}}=\left\{\begin{array}{l}1, \boldsymbol{m}=0 \\ 2, \boldsymbol{m}=1,2, \cdots\end{array}\right.\end{array}\right.$

Laplace problem--

$$
T(\mathrm{~s}, \mathrm{x})=\left\{\begin{array}{l}
T^{i}(R, \theta ; \rho, \phi)=\frac{1}{R}+\sum_{m=1}^{\infty}\left(\frac{\rho^{m}}{R^{m+1}}\right) \cos m(\theta-\phi), R>\rho \\
T^{e}(R, \theta ; \rho, \phi)=-\sum_{m=1}^{\infty}\left(\frac{R^{m-1}}{\rho^{m}}\right) \cos m(\theta-\phi), \rho>R
\end{array}\right.
$$

Helmholtz problem--

$$
T(s, x)=\left\{\begin{array}{l}
T^{i}(R, \theta ; \rho, \phi)=\frac{-\pi k i}{2} \sum_{m=0}^{\infty} \varepsilon_{m} J_{m}(k \rho) H_{m}^{\prime(1)}(k R) \cos (m(\theta-\phi)), R>\rho \\
T^{e}(R, \theta ; \rho, \phi)=\frac{-\pi k i}{2} \sum_{m=0}^{\infty} \varepsilon_{m} J_{m}^{\prime}(k R) H_{m}^{(1)}(k \rho) \cos (m(\theta-\phi)), \rho>R
\end{array}\right.
$$

Boundary density discretization

Fourier series expansions - boundary density

$$
\begin{aligned}
& u(\mathrm{~s})=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right), \mathrm{s} \in B \\
& t(\mathrm{~s})=p_{0}+\sum_{n=1}^{\infty}\left(p_{n} \cos n \theta+q_{n} \sin n \theta\right), \mathrm{s} \in B
\end{aligned}
$$

Fourier series

Ex. constant element

Adaptive observer system

National Taiwan Ocean University
Department of Harbor and River Engineering

Vector decomposition technique for potential gradient

Linear algebraic equation

$$
0=\int_{B} T(\mathrm{~s}, \mathrm{x}) G(\mathrm{~s}, \xi) d B(\mathrm{~s})-\int_{B} U(\mathrm{~s}, \mathrm{x}) \frac{\partial G(\mathrm{~s}, \xi)}{\partial n_{\mathrm{s}}} d B(\mathrm{~s})+U(\xi, \mathrm{x})
$$

$$
[\mathbf{U}]\{\mathbf{t}\}=[\mathbf{T}]\{\mathbf{u}\}+\{\mathbf{b}\}
$$

$$
[\mathbf{U}]=\left[\begin{array}{cccc}
\mathbf{U}_{00} & \mathbf{U}_{01} & \cdots & \mathbf{U}_{0 N} \\
\mathbf{U}_{10} & \mathbf{U}_{11} & \cdots & \mathbf{U}_{1 N} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{U}_{N 0} & \mathbf{U}_{N 1} & \cdots & \mathbf{U}_{N N}
\end{array}\right]\{\mathbf{t}\}=\left\{\begin{array}{c}
\mathbf{t}_{0} \\
\mathbf{t}_{1} \\
\mathbf{t}_{2} \\
\vdots \\
\mathbf{t}_{N}
\end{array}\right\}\{\mathbf{b}\}=\left\{\begin{array}{c}
\mathbf{b}_{0} \\
\mathbf{b}_{1} \\
\mathbf{b}_{2} \\
\vdots \\
\mathbf{b}_{N}
\end{array}\right\}
$$

O Collocation point

Take free body

Take free body

National Taiwan Ocean University
Department of Harbor and River Engineering

Image technique for solving halfplane problems

National Taiwan Ocean University
Department of Harbor and River Engineering

Flowchart of present method

Outlines

Motivation and literature review
 Derivation of the Green's function

- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Take free body
- Image technique for solving half-plane problems

Numerical examples

- Green's function for Laplace problems
- Green's function for Helmholtz problems

Conclusions

National Taiwan Ocean University
Department of Harbor and River Engineering

Numerical examples

- Laplace problems
- Eccentric ring
- A half-plane with an aperture
(1) Dirichlet boundary condition
(2) Robin boundary condition
- A half-plane problem with a circular hole and a halfcircular inclusion
Helmholtz problems
- An infinite matrix containing a circular inclusion with a concentrated force in the matrix or inclusion
- Special cases and parameter study
- An infinite matrix containing two circular inclusions with a concentrated force in the matrix

Present study for Laplace equation

Analytical Green's function

Semi-Analytical
 Green's function

Numerical examples

- Laplace problems
- Eccentric ring
- A half-plane with an aperture
(1) Dirichlet boundary condition
(2) Robin boundary condition
- A half-plane problem with a circular hole and a halfcircular inclusion
Helmholtz problems
- An infinite matrix containing a circular inclusion with a concentrated force in the matrix or inclusion
- Special cases and parameter study
- An infinite matrix containing two circular inclusions with a concentrated force in the matrix

Eccentric ring

Eccentric ring

Potential contour using the Melnikov's method

Potential contour using the present method ($\mathrm{M}=50$)

Numerical examples

- Laplace problems
- Eccentric ring
- A half-plane with an aperture
(1) Dirichlet boundary condition
(2) Robin boundary condition
- A half-plane problem with a circular hole and a halfcircular inclusion
Helmholtz problems
- An infinite matrix containing a circular inclusion with a concentrated force in the matrix or inclusion
- Special cases and parameter study
- An infinite matrix containing two circular inclusions with a concentrated force in the matrix

A half plane with an aperture subjected to Dirichlet boundary condition

National Taiwan Ocean University
Department of Harbor and River Engineering

Result of a half-plane problem with an aperture subjected to Dirichlet boundary condition

Potential contour using the Melnikov's method

Potential contour using the present method ($\mathrm{M}=50$)

A half plane with an aperture subjected to Robin boundary condition

National Taiwan Ocean University
Department of Harbor and River Engineering

Result of a half-plane problem with an aperture subjected to Robin boundary condition

Potential contour using the Melnikov's method

Potential contour using the present method ($\mathrm{M}=50$)

Numerical examples

- Laplace problems
- Eccentric ring
- A half-plane with an aperture
(1) Dirichlet boundary condition
(2) Robin boundary condition
- A half-plane problem with a circular hole and a halfcircular inclusion
Helmholtz problems
- An infinite matrix containing a circular inclusion with a concentrated force in the matrix or inclusion
- Special cases and parameter study
- An infinite matrix containing two circular inclusions with a concentrated force in the matrix

A half-plane problem with a circular hole and a half-circular inclusion

National Taiwan Ocean University
Department of Harbor and River Engineering

Result of a half-plane problem with a circular hole and a half-circular inclusion

Contour plot by using the Melikov's approach (2006)

Contour plot by using the null-field integral equation approach

Numerical examples

- Laplace problems
- Eccentric ring
- A half-plane with an aperture
(1) Dirichlet boundary condition
(2) Robin boundary condition
- A half-plane problem with a circular hole and a halfircular inclusion
- Helmholtz problems
- An infinite matrix containing a circular inclusion with a concentrated force in the matrix or inclusion
- Special cases and parameter study
- An infinite matrix containing two circular inclusions with a concentrated force in the matrix

Present study for Helmholtz equation

Perfect interface boundary

SH-wave problem (Chen P. Y.)

Imperfect interface boundary

Green's function problem (Ke J. N.)

Numerical examples

- Laplace problems
- Eccentric ring
- A half-plane with an aperture
(1) Dirichlet boundary condition
(2) Robin boundary condition
- A half-plane problem with a circular hole and a halfcircular inclusion
- Helmholtz problems
- An infinite matrix containing a circular inclusion with a concentrated force in the matrix or inclusion
- Special cases and parameter study
- An infinite matrix containing two circular inclusions with a concentrated force in the matrix

An infinite matrix containing a circular inclusion with a concentrated force at ξ in the matrix

Take free body

National Taiwan Ocean University
Department of Harbor and River Engineering

Distribution of $\sigma_{z r}^{*}$ for the quasi-static ($k_{M} a=0.01$)

solution along the circular boundary

$$
\sigma_{z r}^{*}=a\left|\sigma_{z r}^{I}\right| / p=a\left|\sigma_{z r}^{M}\right| / p
$$

Wang and Sudak's solution

$$
\sigma_{z r}^{z}=a \sigma_{z r}^{I} / p=a \sigma_{z r}^{M} / p
$$

$$
\sigma_{\text {2r }}^{*}
$$

The present solution

Parameter study of $\lambda=a \beta / \mu_{M}$ for the stress response

$$
\sigma_{z r}^{*}=a\left|\sigma_{z r}^{I}\right| / p=a\left|\sigma_{z r}^{M}\right| / p
$$

Bonding behavior

Wang and Sudak's solution

The present solution

The distribution of displacement u_{I}^{*} along the circular boundary for the case ($k_{M} a=1,2,3,4,5$)

$$
u_{I}^{*}=\mu_{M}\left|u_{I}\right| / p
$$

Dynamic effect

Wang and Sudak's solution

The present solution

Test of convergence for the Fourier series with

 a concentrated force in the inclusion

An infinite matrix containing a circular inclusion with a concentrated force at ξ in the inclusion

$e=0.9 a$
$\mu_{I}=4 \mu_{M}, \quad c_{I}=2 c_{M}$
μ is the shear modulus
C is the wave speed
β is the imperfect interface parameter
National Taiwan Ocean University
Department of Harbor and River Engineering

Distribution of $\sigma_{z r}^{*}$ for the quasi-static ($k_{M} a=0.01$)

solution along the circular boundary ($e=0.9 a$)

National Taiwan Ocean University
Department of Harbor and River Engineering

Parameter study of $\lambda=a \beta$ / μ_{M} for the stress response ($e=0.9 a$)

$$
\sigma_{z r}^{*}=a\left|\sigma_{z r}^{I}\right| / p=a\left|\sigma_{z r}^{M}\right| / p
$$

National Taiwan Ocean University
Department of Harbor and River Engineering

The distribution of displacement u_{I}^{*} along the

 circular boundary for the case of $\lambda=1 \quad(e=0.9 a)$$$
u_{I}^{*}=\mu_{M}\left|u_{I}\right| / p
$$

National Taiwan Ocean University
Department of Harbor and River Engineering

Numerical examples

- Laplace problems
- Eccentric ring
- A half-plane with an aperture
(1) Dirichlet boundary condition
(2) Robin boundary condition
- A half-plane problem with a circular hole and a halfircular inclusion
- Helmholtz problems
- An infinite matrix containing a circular inclusion with a concentrated force in the matrix or inclusion
- Special cases and parameter study
- An infinite matrix containing two circular inclusions with a concentrated force in the matrix

Special case of an ideally bonded case ($\beta=\infty$)

$$
\mu_{I}=4 \mu_{M}
$$

$$
c_{I}=2 c_{M}
$$

μ is the shear modulus
C is the wave speed
β is the imperfect interface parameter

National Taiwan Ocean University
Department of Harbor and River Engineering

The absolute amplitude of displacement by the present method

Special case of cavity ($\beta=0$)

$\mu_{I}=4 \mu_{M}$
$c_{I}=2 c_{M}$
μ is shear modulus
C is wave speed
β is the imperfect interface parameter

$$
\begin{aligned}
& t^{M}=-\frac{\mu_{I}}{\mu_{M}} t^{I} \\
& t^{I}=\frac{\beta}{\mu_{I}}\left(u^{M}-u^{I}\right)
\end{aligned}
$$

Imperfect bonding
Cavity

$$
\begin{aligned}
& t^{M}=0 \\
& u^{M}=?
\end{aligned}
$$

National Taiwan Ocean University
Department of Harbor and River Engineering

The absolute amplitude of displacement by the present method

Parameter study ($k=0$)for ideal bonding

Fundamental solution

$$
\begin{aligned}
& U(s, x)=-i \pi H_{0}^{(1)}(k r) / 2 \\
& k=0 \\
& U(\mathrm{~s}, \mathrm{x})=\ln |\mathrm{x}-\mathrm{s}|=\ln r \\
& \mu_{I}=4 \mu_{M} \\
& \mu \\
& \beta \quad \text { is the shear modulus } \\
& \beta \text { is the imperfect }
\end{aligned}
$$

National Taiwan Ocean University Department of Harbor and River Engineering

Stress contours of $\sigma_{z x}$ and $\sigma_{z y}$ for the static

 solutions (a concentrated force in the matrix)$\sigma_{z x}=\sigma_{z r} \cos \phi-\sigma_{z \theta} \sin \phi$

$\sigma_{z y}=\sigma_{z r} \sin \phi+\sigma_{z \theta} \cos \phi$

National Taiwan Ocean University
Department of Harbor and River Engineering

Stress contours of $\sigma_{z x}$ and $\sigma_{z y}$ for the dynamic solutions (a concentrated force in the matrix)

$$
\sigma_{z y}=\sigma_{z r} \sin \phi+\sigma_{z \theta} \cos \phi
$$

National Taiwan Ocean University
Department of Harbor and River Engineering

Stress contours of $\sigma_{z x}$ and $\sigma_{z y}$ for the static

 solutions (a concentrated force in the inclusion)

National Taiwan Ocean University
Department of Harbor and River Engineering

Stress contours of $\sigma_{z x}$ and $\sigma_{z y}$ for the dynamic solutions (a concentrated force in the inclusion)

$$
\sigma_{z x}=\sigma_{z r} \cos \phi-\sigma_{z \theta} \sin \phi
$$

$\sigma_{z y}=\sigma_{z r} \sin \phi+\sigma_{z \theta} \cos \phi$

Series-form \& closed-form solutions for the static case (ideally bonded interface)

Concentrated force in the matrix
Concentrated force in the inclusion

Numerical examples

- Laplace problems
- Eccentric ring
- A half-plane with an aperture
(1) Dirichlet boundary condition
(2) Robin boundary condition
- A half-plane problem with a circular hole and a halfircular inclusion
- Helmholtz problems
- An infinite matrix containing a circular inclusion with a concentrated force in the matrix or inclusion
- Special cases and parameter study
- An infinite matrix containing two circular inclusions with a concentrated force in the matrix

An infinite matrix containing two circular

 inclusions with a concentrated force at ξ in the matrix

National Taiwan Ocean University Department of Harbor and River Engineering

Distribution of $\sigma_{z r}^{*}$ of the matrix at the position of d various $\left(a_{1}, \pi\right)$

National Taiwan Ocean University
Department of Harbor and River Engineering

The contour of the displacement for an infinite matrix containing two inclusions with a concentrated force at ξ in the matrix for ideal bonding

Potential contour using the present method ($\mathrm{M}=30$)
National Taiwan Ocean University
Department of Harbor and River Engineering

Outlines

Motivation and literature review Derivation of the Green's function

- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Take free body
- Image technique for solving half-plane problems
- Numerical examples
- Green's function for Laplace problems
- Green's function for Helmholtz problems
- Conclusions

Conclusions

After introducing the degenerate kernel, the BIE is nothing more than the linear algebra.

We derived the analytic Green's function for one inclusion problem by using the null-field integral equation. Also, the present approach can be utilized to construct semi-analytic Green's functions for several circular inclusions.

Conciusions

Several examples, Laplace and Helmholtz problems were demonstrated to check the validity of the present formulation and the results match well with available solutions in the literature.
A general-purpose program for deriving the Green's function of Laplace or Helmholtz problems with arbitrary number of circular apertures and/or inclusions of arbitrary radii and various positions involving Dirichlet or Neumann or mixed boundary condition was developed.

Further studies

The imperfect circular interface is homogeneous \longrightarrow nonhomogeneous.

$$
\beta \rightarrow \beta(\theta)
$$

According to our successful experiences for half-plane problems, it is straightforward to quarter-plane problems.

The end

Thanks for your attentions.

You can get more information on our website.

http://msvlab.hre.ntou.edu.tw

