Derivation of the Green's function for Laplace and Helmholtz problems with circular boundaries by using the null-field integral equation approach

Reporter : Ke J. N. Advisor : Chen J. T. Committee members : Chen I. L., Lee W. M., Leu S. Y. & Chen K, H.

1

Outlines

Motivation and literature review

Derivation of the Green's function

- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Take free body
- Image technique for solving half-plane problems

Numerical examples

- Green's function for Laplace problems
- Green's function for Helmholtz problems

Conclusions

Outlines

Motivation and literature review

Derivation of the Green's function

- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Take free body
- Image technique for solving half-plane problems

Numerical examples

- Green's function for Laplace problems
- Green's function for Helmholtz problems

Conclusions

Literature review

Derivation of the Green's function

Successive iteration method

Modified potential method

Trefftz bases

Boley, 1956, "A method for the construction of Green's functions,", Quarterly of Applied Mathematics Melnikov, 2001, "Modified potential as a tool foor computing Green's functions in continuum mechanics", Computer Modeling in Engineering Science Wang and Sudak, 2007, "Antiplane time-harmonic Green's functions for a circular inhomogeneity with an imperfect interface", Mechanics Research Communications

Outlines

Motivation and literature review

Derivation of the Green's function

- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Take free body
- Image technique for solving half-plane problems

Numerical examples

- Green's function for Laplace problems
- Green's function for Helmholtz problems

Conclusions

Null-field integral approach to construct the Green's function

Expansions of fundamental solution (2D)

Laplace problem--
$$U(\mathbf{s}, \mathbf{x}) = \ln |\mathbf{x} - \mathbf{s}| = \ln r$$

$$U(\mathbf{s}, \mathbf{x}) = \begin{cases} U^{i}(R, \theta; \rho, \phi) = \ln R - \sum_{m=1}^{\infty} \frac{1}{m} (\frac{\rho}{R})^{m} \cos m(\theta - \phi), \ R \ge \rho \\ U^{e}(R, \theta; \rho, \phi) = \ln \rho - \sum_{m=1}^{\infty} \frac{1}{m} (\frac{R}{\rho})^{m} \cos m(\theta - \phi), \ \rho > R \end{cases} \qquad \mathbf{0} \quad \mathbf{$$

Helmholtz problem-- $U(s,x) = -i\pi H_0^{(1)}(kr)/2$

Laplace problem--

$$T(\mathbf{s}, \mathbf{x}) = \begin{cases} T^{i}(R, \theta; \rho, \phi) = \frac{1}{R} + \sum_{m=1}^{\infty} \left(\frac{\rho^{m}}{R^{m+1}}\right) \cos m(\theta - \phi), \ R > \rho \\ T^{e}(R, \theta; \rho, \phi) = -\sum_{m=1}^{\infty} \left(\frac{R^{m-1}}{\rho^{m}}\right) \cos m(\theta - \phi), \ \rho > R \end{cases}$$

Helmholtz problem--

$$T(s,x) = \begin{cases} T^{i}(R,\theta;\rho,\phi) = \frac{-\pi ki}{2} \sum_{m=0}^{\infty} \varepsilon_{m} J_{m}(k\rho) H_{m}^{(1)}(kR) \cos(m(\theta-\phi)), R > \rho \\ T^{e}(R,\theta;\rho,\phi) = \frac{-\pi ki}{2} \sum_{m=0}^{\infty} \varepsilon_{m} J_{m}'(kR) H_{m}^{(1)}(k\rho) \cos(m(\theta-\phi)), \rho > R \end{cases}$$

Boundary density discretization

Adaptive observer system

Vector decomposition technique for potential gradient

True normal direction $\mathbf{n}_{\rho} :: \mathcal{I} = \int_{B} M_{\rho}(\mathbf{s}, \mathbf{x}) G(\mathbf{s}) dB(\mathbf{s}) - \int_{B} L_{\rho}(\mathbf{s}, \mathbf{x}) \frac{\partial G(\mathbf{s})}{\partial \mathbf{n}} dB(\mathbf{s}) + L_{\rho}(\xi, \mathbf{x})$ $\zeta - \xi \quad 2\pi \frac{\partial G(x,\xi)}{\partial t} = \int_{B} M_{\phi}(s,x) G(s) dB(s) - \int_{B} L_{\phi}(s,x) \frac{\partial G(s)}{\partial r} dB(s) + L_{\phi}(\xi,x)$ Non-concentric case: $L_{\rho}(\mathbf{s},\mathbf{x}) = \frac{\partial U(\mathbf{s},\mathbf{x})}{\partial \rho} \cos(\zeta - \xi) + \frac{1}{\rho} \frac{\partial U(\mathbf{s},\mathbf{x})}{\partial \phi} \cos(\frac{\pi}{2} - \zeta + \xi)$ $M_{\rho}(\mathbf{s},\mathbf{x}) = \frac{\partial T(\mathbf{s},\mathbf{x})}{\partial \rho} \cos(\zeta - \xi) + \frac{1}{\rho} \frac{\partial T(\mathbf{s},\mathbf{x})}{\partial \phi} \cos(\frac{\pi}{2} - \zeta + \xi)$ \otimes Source point Concentric case (special case): $\zeta = \xi$ **Collocation point** $L_{\rho}(\mathbf{s},\mathbf{x}) = \frac{\partial U(\mathbf{s},\mathbf{x})}{\partial \rho} \qquad \qquad M_{\rho}(\mathbf{s},\mathbf{x}) = \frac{\partial T(\mathbf{s},\mathbf{x})}{\partial \rho}$ National Taiwan Ocean University

Department of Harbor and River Engineering

Image technique for solving halfplane problems

Outlines

Motivation and literature review

Derivation of the Green's function

- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Take free body
- Image technique for solving half-plane problems

Numerical examples

- Green's function for Laplace problems
- Green's function for Helmholtz problems

Conclusions

Numerical examples

Laplace problems

- Eccentric ring
- A half-plane with an aperture (1) Dirichlet boundary condition (2) Robin boundary condition
- A half-plane problem with a circular hole and a half-circular inclusion
- Helmholtz problems
 - An infinite matrix containing a circular inclusion with a concentrated force in the matrix or inclusion
 - Special cases and parameter study
 - An infinite matrix containing two circular inclusions with a concentrated force in the matrix

Numerical examples

- Laplace problems
 - Eccentric ring
 - A half-plane with an aperture (1) Dirichlet boundary condition (2) Robin boundary condition
 - A half-plane problem with a circular hole and a half-circular inclusion
- Helmholtz problems
 - An infinite matrix containing a circular inclusion with a concentrated force in the matrix or inclusion
 - Special cases and parameter study
 - An infinite matrix containing two circular inclusions with a concentrated force in the matrix

Eccentric ring

Eccentric ring

Potential contour using the Melnikov's method

Potential contour using the present method (M=50)

-0.2

-0.5

0.2 0.4 0.6

0.8

-0.6 -0.4

0.8

Numerical examples

- Laplace problems
 - Eccentric ring
 - A half-plane with an aperture

 (1) Dirichlet boundary condition
 (2) Robin boundary condition
 - A half-plane problem with a circular hole and a halfcircular inclusion
- Helmholtz problems
 - An infinite matrix containing a circular inclusion with a concentrated force in the matrix or inclusion
 - Special cases and parameter study
 - An infinite matrix containing two circular inclusions with a concentrated force in the matrix

A half plane with an aperture subjected to Dirichlet boundary condition

Result of a half-plane problem with an aperture subjected to Dirichlet boundary condition

Potential contour using the Melnikov's method

Potential contour using the present method (M=50)

A half plane with an aperture subjected to Robin boundary condition

Result of a half-plane problem with an aperture subjected to Robin boundary condition

Potential contour using the Melnikov's method

Potential contour using the present method (M=50)

Numerical examples

Laplace problems

- Eccentric ring
- A half-plane with an aperture

 Dirichlet boundary condition
 Robin boundary condition
- A half-plane problem with a circular hole and a halfcircular inclusion
- Helmholtz problems
 - An infinite matrix containing a circular inclusion with a concentrated force in the matrix or inclusion
 - Special cases and parameter study
 - An infinite matrix containing two circular inclusions with a concentrated force in the matrix

A half-plane problem with a circular hole and a half-circular inclusion

Result of a half-plane problem with a circular hole and a half-circular inclusion

Contour plot by using the Melikov's approach (2006)

Contour plot by using the null-field integral equation approach

Numerical examples

- Laplace problems
 - Eccentric ring
 - A half-plane with an aperture (1) Dirichlet boundary condition (2) Robin boundary condition
 - A half-plane problem with a circular hole and a half-ircular inclusion
- Helmholtz problems
 - An infinite matrix containing a circular inclusion with a concentrated force in the matrix or inclusion
 - Special cases and parameter study
 - An infinite matrix containing two circular inclusions with a concentrated force in the matrix

SH-wave problem (Chen P. Y.)

Green's function problem (Ke J. N.)

Numerical examples

- Laplace problems
 - Eccentric ring
 - A half-plane with an aperture (1) Dirichlet boundary condition (2) Robin boundary condition
 - A half-plane problem with a circular hole and a half-circular inclusion
- Helmholtz problems
 - An infinite matrix containing a circular inclusion with a concentrated force in the matrix or inclusion
 - Special cases and parameter study
 - An infinite matrix containing two circular inclusions with a concentrated force in the matrix

An infinite matrix containing a circular inclusion with a concentrated force at ξ in the matrix

Take free body

Parameter study of $\lambda = a\beta / \mu_M$ for the stress response

The distribution of displacement u_I^* along the circular boundary for the case ($k_M a = 1, 2, 3, 4, 5$)

Department of Harbor and River Engineering

An infinite matrix containing a circular inclusion with a concentrated force at ξ in the inclusion

$$e = 0.9a$$
$$\mu_I = 4\mu_M, \quad c_I = 2c_M$$

- μ_{-} is the shear modulus
- \mathcal{C} is the wave speed
- eta is the imperfect interface parameter

Distribution of σ_{zr}^* for the quasi-static ($k_M a = 0.01$) solution along the circular boundary (e = 0.9a)

Parameter study of $\lambda = a\beta / \mu_M$ for the stress response (e = 0.9a)

The distribution of displacement u_I^* along the circular boundary for the case of $\lambda = 1$ (e = 0.9a)

 $u_I^* = \mu_M \left| u_I \right| / p$

Numerical examples

- Laplace problems
 - Eccentric ring
 - A half-plane with an aperture
 (1) Dirichlet boundary condition
 (2) Robin boundary condition
 - A half-plane problem with a circular hole and a halfircular inclusion
- Helmholtz problems
 - An infinite matrix containing a circular inclusion with a concentrated force in the matrix or inclusion
 - Special cases and parameter study
 - An infinite matrix containing two circular inclusions with a concentrated force in the matrix

Special case of an ideally bonded case ($\beta = \infty$)

$$t^{M} = -\frac{\mu_{I}}{\mu_{M}}t^{I}$$
$$u^{M} = u^{I}$$

$$\mu_I = 4\mu_M$$
$$c_I = 2c_M$$

- μ is the shear modulus
- $\ensuremath{\mathcal{C}}$ is the wave speed
- β is the imperfect interface parameter

National Taiwan Ocean University Department of Harbor and River Engineering

 μ_{M}, c_{μ}

a

 μ_{I}, c_{I}

 $\xi(e,0)$

Department of Harbor and River Engineering

Special case of cavity ($\beta = 0$)

$$\mu_I = 4\mu_M$$
$$c_I = 2c_M$$

- μ is shear modulus
- $\ensuremath{\mathcal{C}}$ is wave speed

 β is the imperfect interface parameter

National Taiwan Ocean University Department of Harbor and River Engineering

 $u^{M} = ?$

Parameter study (k = 0) for ideal bonding

Fundamental solution

$$U(s, x) = -i\pi H_0^{(1)}(kr)/2$$

$$k=0$$

$$U(s, x) = \ln |x - s| = \ln r$$

 $\mu_I = 4\mu_M$

 μ is the shear modulus

 β is the imperfect interface parameter 57

Stress contours of σ_{zx} and σ_{zy} for the static solutions (a concentrated force in the matrix)

Stress contours of σ_{zx} and σ_{zy} for the dynamic solutions (a concentrated force in the matrix)

Department of Harbor and River Engineering

Stress contours of σ_{zx} and σ_{zy} for the dynamic solutions (a concentrated force in the inclusion)

 $\sigma_{zx} = \sigma_{zr} \cos \phi - \sigma_{z\theta} \sin \phi$

1.5-

0.5-

-0.5-

-1-

-1.5-

-2+

 σ_{zx}

National Taiwan Ocean University Department of Harbor and River Engineering 1.5

Series-form & closed-form solutions for the static case (ideally bonded interface)

Department of Harbor and River Engineering

Numerical examples

- Laplace problems
 - Eccentric ring
 - A half-plane with an aperture (1) Dirichlet boundary condition (2) Robin boundary condition
 - A half-plane problem with a circular hole and a half-ircular inclusion
- Helmholtz problems
 - An infinite matrix containing a circular inclusion with a concentrated force in the matrix or inclusion
 - Special cases and parameter study
 - An infinite matrix containing two circular inclusions with a concentrated force in the matrix

An infinite matrix containing two circular inclusions with a concentrated force at ξ in the matrix

Distribution of σ_{zr}^* of the matrix at the position of *d* various (a_1 , π)

The contour of the displacement for an infinite matrix containing two inclusions with a concentrated force at ξ in the matrix for ideal bonding

Potential contour using the present method (M=30)

Outlines

Motivation and literature review

Derivation of the Green's function

- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Take free body
- Image technique for solving half-plane problems

Numerical examples

- Green's function for Laplace problems
- Green's function for Helmholtz problems

Conclusions

Conclusions

- After introducing the degenerate kernel, the BIE is nothing more than the linear algebra.
- We derived the analytic Green's function for one inclusion problem by using the null-field integral equation. Also, the present approach can be utilized to construct semi-analytic Green's functions for several circular inclusions.

Conclusions

- Several examples, Laplace and Helmholtz problems were demonstrated to check the validity of the present formulation and the results match well with available solutions in the literature.
- A general-purpose program for deriving the Green's function of Laplace or Helmholtz problems with arbitrary number of circular apertures and/or inclusions of arbitrary radii and various positions involving Dirichlet or Neumann or mixed boundary condition was developed.

Further studies

The imperfect circular interface is homogeneous nonhomogeneous. $\beta \rightarrow \beta(\theta)$

 According to our successful experiences for half-plane problems, it is straightforward to quarter-plane problems.

The end

Thanks for your attentions.

You can get more information on our website. <u>http://msvlab.hre.ntou.edu.tw</u>

