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Abstract

In this thesis, we solve the Green’s function and boundary value problems (BVPs)
without source for the Laplace equation with circular and spherical boundaries by using
the image method. We find that the image method is a special case of the method of
fundamental solutions (MFS), and the optimal locations of sources in the MFS can be
determined by using the image method. The optimal locations are dependent on the
source location and the geometry of problems. In the concentric sphere case, the
solutions derived by the Trefftz method and the MFS are found to be mathematically
equivalent by using the addition theorem. Moreover, it is found that final image points
in the image method terminate at the two focuses of the bipolar coordinates for all the
three cases of two-dimensional, an eccentric annulus, a half plane with a circular hole
and an infinite domain with two circular holes. Similarly, it is found that the final two
image locations freeze at the two focuses in the bispherical coordinates for the
three-dimensional case where the weighting of image source can be determined by
using the degenerate kernel. Finally, we solve the symmetrical and anti-symmetrical
BVPs for the two and three dimensional cases by using the image method. For the
three-dimensional case, we have found the strengths of the two initial sources at the two
centers that can be determined by matching BC in advance, and the final strengths at the
two strengths of frozen images approaches zero if the number of images becomes
infinite. However, the two-dimensional case is not the same of the three-dimensional
case, only two nonzero strengths are found at the two focuses after theoretical study and

numerical calculate.

Keywords: image method, Green’s function, boundary value problem (BVP), Laplace
equation, method of fundamental solutions (MFS), addition theorem, Trefftz method,
bipolar coordinates, degenerate kernel
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Chapter 1 Introduction

1.1 Motivation of the research and literature review

The Green’s function has been studied and applied in many fields by mathematicians as
well as engineers [36, 48]. It’s a long history that, many researchers studied the circular
boundary value problems (BVPs), such as circular apertures and/or inclusions. As a
result of the aforementioned consideration, many theoretical studies concerning the
circular boundary problems in engineering problems have appeared in the literature. A
number of problems in engineering problems can be modeled, such as the steady state
heat conduction problem [23, 26], electrostatic potential [4, 5], torsion bar problems [9,
47], temperature in case of the displacement of an infinite medium under remote
uniformly shear [1, 24, 29, 30, 31], velocity potential in a steady flow of an ideal fluid
[3, 35, 45] and the pure torsion of an elastic bar by equilibrated end torques [9, 47] are
examples in which the Laplace equation is satisfied; acoustics, membrane vibration [32]
and water wave problems [20] governed by the Helmholtz equation; plate vibration [33,
34] and Stokes’ flow [50] formulated by the biharmonic equation. The Laplace equation

arises in many branches of physics, from which it recruits a wide group of researchers.

In order to solve engineering problems, researchers and engineers have paid more
attention on the development of several numerical methods. Therefore, many numerical
methods were developed such us the finite element method (FEM), the finite difference
method (FDM), the boundary element method (BEM) and meshless method. The FEM
given domain is viewed as a collection of subdomains, and over each subdomain the
governing equation is approximated by any of the traditional variational methods. The
main reason behind seeking approximate solution on a collection of subdomain is the
fact that it is easier to represent a complicated function as a collection of geometrically
simple subdomains. However, a few problems are not easy tasks for FEM that another

numerical method, thus BEM is developed. The BEM uses Green’s theorem to reduce



the dimensionality of the problem such as a 3-D problem is reduced to a surface
problems, a surface problem is reduced to a line problem. In the recent years, the
meshless method can avoid the singularity or hypersingularity problem of BEM.
Meshless method does not need the conception of elements, it is mesh-free for a model
creation to solve engineering problems. Figure 1-1 depicts the mesh of FEM, BEM and
meshless method for two-dimensional domain. In the BEM, the method of fundamental
solutions (MFS) and Trefftz method are one kinds of the meshless methods. Figure 1-2

shows the collocation point of the MFS and Trefftz method.

The main concern of this thesis is that the optimal location of the MFS sources can be
obtained by using the image concept. The image method is a technique that is widely
known to solve Green’s function in theoretical physics [51]. When considering
problems of obtaining Green’s functions for a bounded domain, the reflection is
described by one or successive image sources, and the position and sign of the image
sources are chosen so that the boundary conditions can be satisfied [7]. A simple image
method for one-dimensional string is demonstrated in Fig. 1-3. The image method is an
approach to construct a Green’s function for a part of domain bounded by planes, circles
or spherical surface in terms of the corresponding fundamental solution in the full space.
In certain cases, it is possible to obtain the exact solution for a concentrated source in a
domain through superimposing the infinite plane or space solution for the given source
and its image sources [38, 39]. The Greenberg’s book introduced the image method to
solve the Laplace problem with circular boundaries [27]. An anisotropic film-substrate
system solution of the edge dislocation was solved by using the image method [59]. The
image solution of dielectric plate problem was also obtained [55]. However, they all

focused on the Green’s function with plane or a circular (sphere) boundary only.

In this thesis, we obtain semi-analytical and analytical solutions of the Green’s functions
for Laplace problems with circular (spherical) boundaries by using the image method
and bipolar (bispherical) coordinates system in conjunction with the addition theorem.
In addition, we can link the image method and the MFS for Laplace problems by using

the addition theorem. The analytical solutions of the three-dimensional problems were



derived by using the Trefftz method and the bispherical coordinate system, respectively.
Also, the semi-analytical solutions were obtained by using the image method. The
solutions derived by using the Trefftz method and MFS were proved to be
mathematically equivalent for the 3-D case. Furthermore, it is found that final location
of the image points terminate at the two focuses of the bipolar (bispherical) coordinates
for both the two-dimensional and three-dimensional cases. Finally, not only Green’s

function but also BVPs without sources are considered.
1.2 Organization of the thesis

The frame of the thesis is shown in Fig. 1-4. In this thesis, we solve the Green’s
function and BVPs for the Laplace equation with circular and spherical boundaries by
using the image method. We obtain the analytical solutions for two-dimensional and

three-dimensional cases by using bipolar and bispherical coordinates, respectively.

In Chapter 2, we focus on the application in deriving the solution of the Green’s
function for the Laplace equation with circular boundaries by using the image method.
The image method can be seen as a special case of the MFS with only at most four
unknown strengths which are required to be determined. The optimal locations of
sources in the MFS can be captured by using the image method and their positions are
dependent on the source location and the geometry of problems. Moreover, it is found
that final locations of image points in the image method terminate at the two focuses of
the bipolar coordinates for all the two-dimensional cases.

In Chapter 3, an image solution is obtained for the Green’s function with spherical
boundaries. Furthermore, the mathematical equivalence between solutions derived by
using the Trefftz method and the MFS for concentric spheres are examined. Also, the
analytical solution is obtained by using the bispherical coordinates for the
non-concentric spheres. Similarly, it is found that the final two images freeze at the two
focuses in the bispherical coordinates for the three-dimensional cases as well as 2-D
case in Chapter 2. In Chapter 4, we employ the image method to solve BVPs without

sources. Not only 2-D and 3-D problems but also the symmetric and anti-symmetric



cases are considered. To verify the contour plot, analytical solutions by using
bispherical and bipolar coordinates in the Lebedev et al.’s book [43] are compared with.

Finally, we draw out some concluding remarks item by item and reveal some further

topics in Chapter 5.



(a) FEM

(b) BEM

(©) meshless method

Fig. 1-1 Model creation by using (a) FEM, (b) BEM and (c) meshless
method.



(b) Trefftz method

Fig. 1-2 The collocation point of the MFS and Trefftz method.
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Fig. 1-3 A simple image method for one-dimensional string.
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Chapter 2 Derivation of two-dimensional
Green’s functions for Laplace problem with
circular boundaries

Summary

Green’s functions of Laplace problems with circular boundaries are solved by
using analytical and semi-analytical approaches. For the analytical solution, we
derive the Green’s function by using the bipolar coordinates. The image method is
a semi-analytical approach. It is interesting to find that the two frozen images for
the eccentric annulus by using the image method are located on the two focuses in
the bipolar coordinates. This finding also occurs for the cases of a half plane with
a circular hole and an infinite plane with two circular holes. The image method
can be seen as a special case of the MFS with only at most four unknown strengths
to be determined. The optimal locations of sources in the MFS can be captured by
using the image method and they are dependent on the source location and the
geometry of problems. Three illustrative examples were demonstrated to verify

this point. Agreement among the results is observed.

2.1 Introduction

A number of physical and engineering problems governed by the Laplace equation in
two independent variables, e.g., steady-state heat conduction, electrostatic potential
and fluid flow, were solved by using conformal mapping to obtain an analytical
solution. Besides, we can formulate the same problems by using special curvilinear
coordinates to obtain a solution, e.g., bipolar coordinates and elliptic coordinates.
Carrier and Pearson [8] employed the bilinear transformation of conformal mapping to
solve certain kinds of potential problems. An eccentric case was mapped to an annular

domain. For a polygonal shape, it can also be mapped to a regular region by using the



Schwarz-Christoffel transformation [42]. For the regular geometry, it is easy to solve
the Laplace problem by using the polar or Cartesian coordinates. Muskhelishivili [52]
gave us a detailed description how an eccentric annulus can be mapped into concentric
annulus by using a simple form of linear fractional transformation. Chen and Weng [21]
also used the similar method to solve eccentric annulus problems. Although a bilinear
transformation was used, the mapping functions were not exactly the same between the
one of Carrier and Pearson [8] and that of Muskhelishivili [52]. Problems of eccentric
annulus or a half plane with a circular hole usually use the bipolar coordinates to
derive the analytical solution [28]. Ling [47], Timoshenko and Goodier [58], and
Lebedev et al. [43] all presented an analytic solution of using the bipolar coordinates
for the torsion of an eccentric bar. However, the mapping functions were not exactly
the same. One is a cotangent function [47], another is a hyperbolic tangent function [43]
and the other is a hyperbolic cotangent function [58]. After the bipolar coordinate
system is introduced, the problem of special domain can be solved by using the
separation of variables. Although Carrier and Pearson [8], Muskhelishivili [52], Ling
[47], Timoshenko and Goodier [58] have solved the eccentric Laplace problems, their
approaches are very similar but they are not the same. Chen et al. [17] found that all
the forgoing approaches can be unified after suitable transformations, translation,
rotation and taking log in the conformal mapping. However, we will focus on the

Green’s function instead of BVP without sources in this chapter.

Green’s function has been studied and applied in science and engineering by
mathematicians as well as engineers, respectively [48]. A computer-friendly solution
for the potential generated by a point source in the ring-shaped region was studied by
Melnikov and Arman [49]. In order to derive the Green’s function, Thomson [57]
proposed the concept of reciprocal radii to find the image source to satisfy the
homogeneous Dirichlet boundary condition by using the image method. Greenberg [27]
and Riley et al. [53] employed a trick to satisfy the condition for two special points,
then the image location can be determined. Chen and Wu [18] proposed a natural and

logical way to find the location of image and the strength by employing the degenerate



kernel. The image method is a classical approach for constructing the Green’s function.
In certain cases, it is possible to obtain the exact solution for a concentrated source in a
domain through superimposing the infinite plane solution for the given source and its
image source. Although the scope of this method is limited, it yields a great deal of
insight into the solution when it works [39]. Here, we will extend to a semi-analytical
approach once the closed-form solution using the image method is not possible. Our

goal is to broaden the scope of the image method.

In this chapter, we have three issues. First, the image method is seen as a special case
of the MFS, since its image singularities locate outside the domain. Second, the
optimal locations of the MFS sources are found to be dependent on the source
location and the geometry of the problems. Third, it is found that the two frozen
images of the image method are located on the two focuses in the bipolar coordinates.
By using the bipolar coordinates and the image method, three cases, an eccentric
annulus, a half plane with a circular hole and an infinite domain with two holes are
solved. The bipolar coordinates are reviewed for the eccentric ring in Section 2.2. In
Section 2.3, the image method is employed to derive the Green’s function in problems
with circular boundaries. Numerical results are given in Section 2.4. Finally, a

conclusion is drawn in Section 2.5.

2.2 Geometric characterization of the bipolar coordinates

The relation between the bipolar coordinates (&£,77) and the Cartesian coordinates (X, y)
[17] are defined by

. 1 .
x+|y:|ccot(§§), =¢+in, (2-1)
where c is a positive constant. Equation (2-1) yields
sinh sin
x=c— My e (2-2)
coshn —cosé coshn—cosé

where —r<&<7m, —o<n<ow. By eliminating £ in Eqg. (2-2), we obtain a circle

with the center at (ccoth7,0) and the radius ccschz, as shown below:
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(x—ccothn)®+y* =c’csch? 7 . (2-3)
Elimination of » from Eq. (2-2) results in the other circle with the center at

(0, ccoté) and the radius of ccscé  as given below:

X* +(y—ccot(&))? =c’esc?(£). (2-4)

From Egs. (2-3) and (2-4), the bipolar coordinates are shown in Fig. 2-1(a). Denoting
by (r,.6) and (r,,6,),we have

X+iy+c=re* x+iy—c=r_,e", (2-5)

n=Ilog(r./r,), {£=6,—6,. (2-6)
It follows that a curve & =constant is a family of circles passing through the
poles(+c, 0). The curve of 7 =constant shows a curve for which r,/r_, =constant.
The eccentric annulus is shown in Fig. 2-1(b). The outer radius b, inner radius a and

the distance d are determined from Eqg. (2-3) as shown below:

a=ccsch(n,), (2-7)
b=ccsch(z,), (2-8)
d = c[coth(7,) —coth(r,)] . (2-9)

To describe an eccentric annulus in the bipolar coordinates, the three parameters, c, 7,

and 7, are determined as shown below:

. Ja* +b* —2a%’ —2d?(a% + b%) + d*

(2-10)
2d

n, =sinh™! ” (2-11)

n, = sinh~* [g] , (2-12)

where 7, and 7, denote the inter and outer circles, respectively. Then, we can
describe an eccentric annulus by using the bipolar coordinates. In this case, the Green’s

function was derived in terms of the bipolar coordinates as shown below [28]:
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(1
2m

(m.—n)(n, —n,)

Th—",

> sinh n(r, —n)sinh n(n, —n,) B
2 T s
G(&m&ims) = (2-13)
1 {(—n,)(ns—m)
21 =,

+2§: sinh n(n, —n)sinh n(n, —7,) cosn(¢é—&,)
=i nsinhn(n, —1,) s

yTh 21 2N

1 Me =1 21y,

where (&, 7) is the position of the source point.
2.3 Image method

For a problem of two-dimensional eccentric annulus as shown in Fig. 2-2, the Green’s

function G(x, s) satisfies

ViG(x,8) =86(x—5s), xeQ, (2-14)
where Q is the domain of interest, x is the field pointand & denotes the Dirac-delta
function for the source at s. For simplicity, the Green’s function is considered to be
subject to the Dirichlet boundary conditions. In this case, we obtain the location of
image point by using the fundamental solution and matching the boundary condition.
The eccentric annulus can be seen as a combination of interior and exterior problems
as shown in Fig. 2-3. The source point and the image point are sand s in Fig. 2-3,
respectively. When matching the homogeneous Dirichlet boundary conditions for the
interior or exterior boundaries, position of the image source is at (a*/R,, #), where

s=(R,, ). We consider the fundamental solution U (x,s) that is governed by

VU (X, S) = 276(X—9). (2-15)

Then, we obtain the fundamental solution as follows:
U(xs)=Inr, (2-16)
where r is the distance between sand x (r =| x—s|). Based on the separable property

of the addition theorem or the so-called degenerate kernel, the fundamental solution
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U (x,S) can be expanded into a series form by separating the field point x(p,¢) and
source point s(R,6) in the polar coordinates,
< 1
U'(p,¢;R,0)=INR, — Zla(é)mcos m@—a), R, > p,
U(xs)= o L R (2-17)
U (p,¢;R,0)=Inp— Y. =(=)"cosm(¢—¢), R < p.
m=1Mm p

The semi-analytical approach can solve the Green’s function of eccentric case.
Following the successive image process, it is found that the final two image locations
freeze at the s, and s,,. The Green’s functions for the three cases (a) an eccentric
annulus, (b) a half plane with a circular hole and (c) an infinite plane with two holes

are represented by
1 .
G(x,9) :E{In|x—s|— le[g(ln|x—s4i3|+ In|x-s, ,|-In|x—s, |- In|x-s,])

+e(N) ]},

(2-18)
+¢,(N) In|x-s,

+C,(N)In|x-s,

where Sji.3, Sz, i1 and & are the successive image locations [14], e(N) can be
understood as a rigid body term, ci(N) and cx(N) are the singularity strengths of the two
frozen points at s, and s, which can be determined by matching the boundary
conditions. Table 2-1 demonstrates that the frozen image points s, and s, happen

to be the focuses in the bipolar coordinates.
2.4 lllustrative examples and discussions

Case 1: An eccentric case (a special case: annular case [49])

The problem sketch of an eccentric annulus is shown in Fig. 2-2. The location of image
source and bipolar coordinates are shown in Fig. 2-4(a). The source point is located at
s=(0, 0.75) . The centers of two holes are set at (0, 0) and (-4, 0), and radii are 0.4 and
1.0 for the inner and outer boundaries, respectively. Following the success of annulus
case for the iterative images, we now extend to the eccentric case. In a similar way of
finding the successive images for matching the inner and outer boundary conditions
[14], the solution can be superimposed by using Eq. (2-18). Finally, we can find that

the final frozen image points and the focuses of the bipolar coordinates are the same.
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After collocating some points to match the boundary conditions, all the unknown
coefficients can be determined. The results are compared well with the analytical
solution by using the bipolar coordinates. The contour plots by using the present
method of Eq. (2-18), the bipolar coordinates of Eq. (2-13) and the null-field BIEM [11]

are shown in Fig. 2-5.

Case 2: A half plane with a circular hole

Figure 2-4(b) depicts the Green’s function for the half plane with a hole and the
Dirichlet boundary condition. The source point is located at s=(3, 0). The center and
radius of the hole is (0, 0) and a=1. The d/2=1.25 is the distance from the center to the
ground line. Similarly, the analytical and semi-analytical solutions are obtained by
using the bipolar coordinates and the image method, respectively. The results agree
well with those of the null-field BIEM [11] in Fig. 2-6.

Case 3: An infinite plane with two circular holes

Following the success of the eccentric annulus case for the iterative images, we now
extend to the infinite plane with two circular holes as shown in Table 2-1. The problem
sketch of the infinite plane with two circular holes is shown in Fig. 2-4(c). The source
point is located at s=(3.85, 0). The centers of two holes are set at (0, 0) and (2.1, 0),
their radii are 0.4 and 1.0, respectively. In a similar way of finding the image for
matching boundary conditions [14], an image solution is derived. We also found that
the final frozen image points approach to the focuses of the bipolar coordinates. Based
on the image solution for an infinite plane with a circular hole subject to the Neumann
BC, an extra source at the center of hole is required. This motivates us to put sources at
two centers of the holes to obtain acceptable results. Therefore, Eq. (2-18) is extended
to

N
G(x,9) :%{In|x—s|+ hI‘i_r]ll[zjlﬂx—%i1|+In|x—s?i|)+(:l(N)In|x—sc1|+c2(N)In|x—sc2|

W } (2-19)

M M
+d,(N)|In|x= s+ > In|x—s]||+d,(N) |In|x—5,,[ + > In|x— 5|
=1 j=1

where the s, and s,, are located at the two centers of holes, s; and s’ are the
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successive images due to s,, and s,,, respectively. The results agree well with those
of the null-field BIEM [11] and the conventional MFS in Fig. 2-7. It is interesting to
find that the final images also freeze at focuses in the bipolar coordinates. The results

are summarized in Table 2-1.

2.5 Conclusions

In this chapter, Green’s functions were derived using the bipolar coordinates and the
image method. It is found that final image points terminate at the two focuses of the
bipolar coordinates for all the three cases, an eccentric annulus, a half plane with a
circular hole and an infinite plane with two circular holes. The optimal source
distribution in MFS is dependent on the given geometry and the source location. An
image method can guide as to search for an optimal source location of MFS and can
determine the strengths of sources except the two frozen images. Three examples were
demonstrated to find all the image sources for constructing the Green’s function. The
dimension in the linear algebraic equation is at most four in all the examples.

Agreement is observed after comparing with other solutions.
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Table 2-1 Frozen points of the image method and focuses in the bipolar coordinates.

o 1 @
Cases m
SCZ .’
4_ ~
Method
1 . N
G(x,s)zz—{ln|x—s|+'5|m‘[Zln|x—gi_l|
N T Uiz
G(x,s):i{|n|x—q+ lim |(>"—In|x—s, 4| —In|x—s, ,|+In|x—s, | +Inx—s;]) +¢,(N)In|x— 5|+ ¢, In|x—s,,|
21 N—oo| M
+d,(N)[In|x— s,,[+ > " In|x—s]|
+In|x—s,[) + ¢ (N) In|x—s,|+¢,(N) In|x—s,,|+&(N)]} =L
Image +d,(N) In|x—sd2|+ZIn‘x—sﬂ}
method =
a2 b2 a2 a2 b2
—d= y X, = X =—, % =d—x, (when b=a) d—x = X = —
§ x, —d & x +d %, . d—x, % X,
4 212 4 242 22 4 2 2
oo 06—%) _ Va'-2a®’+b'—2ad’—20°d’ +d* _ Vd’—4a (a—b)
2 2d 2
Bipolar _a*—2a%’ +b* —2a2d? — 2b%d? +d*
Coordinates = 2d
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(b) Geometry relation of bipolar coordinates.

Figure 2-1 The sketch of curve family (a) bipolar coordinate system, (b) geometric
relation of bipolar coordinates.
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Figure 2-2 Problem sketch for the Green’s function of an eccentric annulus.
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Figure 2-3 Sketch of position of image point (a) an interior case, and (b) an exterior case
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(c) an infinite plane with two circular holes
Figure 2-4 Final images and the focuses of the bipolar coordinate (a) an eccentric
annulus, (b) a half plane with a circular hole and (c) an infinite plane with two circular
holes.
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(a) an analytical solution
using bipolar coordinates

(c) solution using superposition (d) solution using the Green’s third
technique and the null-field BIEM identity in the null-field BIEM

Figure 2-5 Green’s function using (a) an analytical solution using bipolar coordinate,

(b) image solution, (c) solution using superposition technique and the null-field
BIEM [11] and (d) solution using the Green’s third identity in the null field BIEM.
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(a) an analytical solution using bipolar
coordinates (b) image solution

25 25 |
0 X . . X . 0.5

(c) solution using superposition technique and  (d) solution using the Green’s third identity in
the null-field BIEM the null-field BIEM

Figure 2-6 Green’s function using (a) an analytical solution using bipolar coordinate, (b) image
solution, (c) solution using superposition technique and the null-field BIEM [11] and (d) solution
using the Green’s third identity in the null field BIEM.
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_ _ (b) solution using superposition technique and
(a) image solution the null-field BIEM

(c) solution using the Green’s third identity in
the null-field BIEM (d) solution of MFS

Figure 2-7 Green’s function using (a) image solution, (b) solution using superposition technique
the null-field BIEM [11], (c) solution using the Green’s third identity in the null field BIEM and
(d) solution of MFS.
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Chapter 3 Derivation of three-dimensional Green’s
function for Laplace problem with sphere boundaries

Summary

Following the success of the mathematical equivalence between the Trefftz method and
the MFS for the annular Green’s function [14], we extend to solve the Green’s function
of 3-D problems in this chapter. The Green’s function of the concentric sphere is first
derived by using the image method which can be seen as a special case of MFS
solutions. Dirichlet boundary conditions are considered. Also, the Trefftz method is
employed to derive the analytical solution by using the T-complete sets. By employing
the addition theorem, both solutions are found to be mathematically equivalent when the
number of Trefftz bases and the number of image points are both infinite. In the
successive image process, the final two images freeze at the origin and infinity, where
their singularity strengths can be analytically and numerically determined in a consistent
manner. The agreement among the three results, including two analytical solutions by
using the Trefftz method and the image method, and one numerical solution by using
the conventional MFS is observed.

The main result is the analytical derivation of Green’s function for the domain bounded
by non-concentric spheres in terms of bispherical coordinates. Both surfaces, inner and
outer boundaries are specified by the Dirichelet boundary conditions. This work can be
seen as an extension study for the Green’s function of eccentric annulus derived by
Heyda. To verify the solution, a semi-analytical solution using the image method and a
numerical solution using the MFS are utilized for comparisons. Good agreement is

made.
3.1 Introduction

In 1926, Trefftz presented the Trefftz method for solving boundary value problems by

superimposing the functions which satisfy the governing equation [40]. The unknown

24



coefficients are determined by matching the boundary condition. In the potential theory,
it is well known that the MFS can solve potential problems when a fundamental
solution is known. This method was proposed by Kupradze [41] in Russia. The MFS
can be viewed as an indirect boundary element method containing concentrated sources
instead of boundary distributions. The initial idea is to approximate the solution through
a linear combination of fundamental solutions where sources are located outside the
domain of the problem. Moreover, it has certain advantages over BEM, e.g., no
singularity and no boundary integrals are required. Bogomolny [6] studied the stability
and error bound of the MFS. Li et al. [46] used the effective condition number to study
the ill-poseness of collocation approaches, the MFS and the Trefftz method. They found
that the condition number of the MFS is much worst than that of the Trefftz method.
Although the Trefftz method and the MFS individually have a long history, the link
between the two methods was not discussed in the literature until Chen et al.’s papers
[14, 19]. Researchers have paid attention to construct the mathematical relationship
between the Trefftz method and MFS since 2006. For example, Schabck [54] found that
the MFS with singularity at infinity behaves like the Trefftz base of harmonic
polynomials. Chen et al. proved the equivalence between the Trefftz method and the
MFES for Laplace and biharmonic problems containing a circular domain [19]. The key
point is the use of the degenerate kernel or so-called the addition theorem. They only
proved the equivalence by demonstrating a simple circle with angular distribution of
singularity to link the two methods. Following the success of deriving the annular
Green’s function [14], we plan to derive the Green’s function of a concentric sphere.
Here, we also distribute singularities along the radial direction by using the method of
image. Image solutions and Trefftz results for the annular Green’s function were
obtained [14]. Since a two-dimensional problem can be solved easily by using the
complex variable, the image method can be seen as an alternative way to obtain the
solution. However, the extension to 3-D problem is limited for the theory of complex
variable. The image method can deal with the 3-D problems without any difficulty.

An analytical solution for the Green’s function of an annular ring was given in the book

of Courant and Hilbert [25]. When the bounding circles of the annular region are no
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longer concentric, the reflection principle is not easy to be implemented. In the Lebedev
et al.’s book [43], many special coordinates were mentioned to solve problems with a
special geometry such as the bipolar coordinates and the bispherical coordinates. Upon
introducing the bipolar coordinates as given in [43, 51], the Green’s function of an
eccentric annulus has been derived by Heyda [28]. Chen et al. [13, 14] employed the
image method to revisit the Green’s functions for annular (analytical) and eccentric
(semi-analytical) cases. In the recent years, the method of fundamental solutions to
solve boundary value problem also attracted the attention of researchers since the
numerical method is truly meshless. In this paper, we solve the Green’s function for the
domain bounded by non-concentric spheres using the biospherical coordinates. This
solution was not provided in the Lebedev et al.’s book [43] and was not solved by
Heyda [28]. The fundamental solution is expanded into a series form in terms of the
bispherical coordinates. The solution is decomposed into singular and regular parts.
After matching the boundary conditions, the unknown coefficients in the regular part
solution can be determined. To verify the accuracy of the analytical solution, one
semi-analytical solution using the image method and one numerical solution using the
MFS are utilized for comparisons.

In this paper, we focus on proving the mathematical equivalence on the Green’s
functions for the Laplace problem of a concentric sphere derived by using the Trefftz
method and the image method. Both surfaces of inner and outer boundaries are specified
by the Dirichlet boundary conditions. By employing the image method and the addition
theorem, the mathematical equivalence of the two solutions derived by using the Trefftz
method and the image method will be proved when the number of successive image
points and the number of the Trefftz bases are both infinite. The image method can be
seen as a special case of the conventional MFS, since its image singularities locate
outside the domain. The solution by using the image method for constructing the 2-D
Green’s function also indicates that a free constant is required for the completeness of
the solution which is always neglected in the conventional MFS. In the 3-D case, the

free constant becomes zero as the number of successive image points become infinity.

26



3.2 Construction of the Green’s function for the domain
boundary by concentric sphere by using the image method
and the MFS

3.2.1 The image solution

For the problem of concentric sphere as shown in Fig. 3-1, the Green’s function satisfies
V?G(x,8) =86(x—9s), xeD, (3-1)

where D is the domain of interest and ¢ denotes the Dirac-delta function for the source
at s. For simplicity, the Green’s function is considered to be subject to the Dirichlet

boundary condition,
G(x,8)=0, xe€BUB,, (3-2)

where B; and B; are the inner and outer boundaries of the sphere, respectively. We

consider the fundamental solution U(s,x) for a source singularity which satisfies

VU (x,8) =6(x—5). (3-3)
Then, we obtain the fundamental solution as follows:
-1
U(x,s)=—-, 3-4
(X,9) pp- (3-4)

where r is the distance between sand x (r =| x—s|). Based on the separable property of
the addition theorem or degenerate kernel, the fundamental solution U(x,s) can be

expanded into series form in the spherical coordinates:

Ui = &y (n—m)! " - o
47st ZZM (S (M@ ~9)R (cosO)Py (cos0) s

U(X, S) _ n=1 m=0 n (3_5)
) It L L e PRI SR (050) 25, R <

|
n=1 m=0 )

where x=(p,0,¢4), s=(R,0,4), P"(+) is the associated Legendre polynomial, the
superscripts of i and e denote the interior and exterior regions, respectively, and ¢, is

the Neumann factor which defined by,

B 1, m=0, 36
10 me12...00. (3-6)

As mentioned in [16], the interior and exterior Green’s functions can satisfy the

homogeneous Dirichlet boundary conditions if the image source is correctly selected.
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The closed-form Green’s functions for both interior and exterior problems are written to

be the same form

.- _i -1 & 1 c -
e e | AL o0

where a is the radius of the sphere, s=(R,7/2,0), and s’ is the image source and
its position is at (a’/R,x/2,0) as shown in Fig. 3-2. It is interesting that the
formulae for the location of image are the same as the 2-D case [14]. However, the
magnitude of strength (R,/a) is different from the 2-D case [14].

In order to match the inner and outer homogenous Dirichlet boundary conditions, the

image relation between the source point and successive image points yields

b? b? b? b® b* i
=— =E¥: -------- ' R4i—3=E(¥) '
a2 a’ a a’ a’y
=—, st:__z’ ....... , Rdi_zz—(—2 Ifl,
R R b Rb (3-8)
_PR L DR _PR Py
= R = el Ry = 7 (az) ,
_a'R , _aRa _a’R a'y,
" Rt e R )

The successive image points for the concentric sphere are shown in Fig. 3-3. After

successive image process, the main part of Green’s function is expressed by

Gm(X,S):i{ -1 +|imZN:|: Wi_s + Wi, _ Wiy _ W, }}' (3_9)

|X_S| N== T |X_S4i—3| |X_S4i—2| |X_S4i—l| |X_S4i|

where w is the weighting of the k™ image point which is determined by [16]

_R_b _aR_bb _aR_b b, _b by
N_b_&’ws_bz_&(a)’wg_ 0 —&(a) ,,,,, W4i73—RS(a) ,
_a _& _aa _a _aa, _a,ag,
WZ—RS1 Wﬁ_bRS_I{(b)’\MO_bZRS_R(b) W‘H—Rs(b) : a10
aR, b aR bbb a’R, b b, b by,
W3 :b_:_’W7 = > = — _)’\Ml = 3 :—(—) ..... W4i l:_(_) ,
R a bR, a'a b°’R, a a aa
_a _&_aa _& _aa, _adg
W4_b1 WB_ z_b(b)l V\ﬁz_bg_b(b)1 """ ' 4i b(b)

Satisfaction of the boundary condition by using interpolation functions

We set G, (x,s) to be the main part of the Green’s function in Eq. (3-9). Unfortunately,

G, (x,9) in Eq. (3-9) can not simultaneously satisfy both the inner and outer boundary
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conditions of G_(x,8)=G_ (x,5)=0 , where x =(a0,¢), x=(b0,),
0<0 <z, 0<¢ <2x.Inorder to satisfy both the inner and outer boundary conditions,

an alternative method is introduced such that we have

_ _(blp—a) a(b-p) ]
G(x,5) =G, (X 9) (p(b—a)]Gm(x"’S) ( (b a )jG( ,S),a<p<b, (3-11)

where (b(p—a)/p(b—a)) and (a(b—p)/p(b—a)) are the interpolation functions,
Gm(xb,s):—(%)“‘% and G_(x,,9) =_€1(E)N. Therefore, Eq. (3-11) can be simplified

to

_ N . | | |
G(X,S):i{ﬁﬂimZ{ Waig o Waip _ Waoa Wi }

|X Syi_ 3| |X_S4i—2| |X_S4i—l| |X_S4i|
(3-12)

where C=(= ) [ a-R } and D=(= ) [a(&—b)}. Equation (3-12) indicates
R (a-b) R(a-b)

that not only image singularitiesat s, ,, s, ,, S, , and s, , butalso one singularity
at the origin and one rigid body term for one singularity at infinity are required. The
Green’s function in Eq. (3-12) satisfies the governing equation and boundary conditions
at the same time. It is found that a conventional MFS always loses a free constant and

completeness may be questionable.

Satisfaction of boundary conditions to determine two singularity strengths at the

origin and infinity

After successive image process, the final two image locations freeze at the origin and
infinity. There are two strengths of singularities to be determined. Therefore, the

Green’s function is rewritten as

G(X,S):4];Z'{|X—1S|+Ilm|:i( Wai3 + Wiz _ Wi _ W, J

N |X Sy 3| |X_S4i—2| |X_S4i—l| |X_SAi|

i=1

(3-13)
+c(N) + (N)}}
P
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where the final two images locate at the center of sphere and infinity with strength of
c(N) and d(N), respectively, which can be analytically and numerically determined by
matching the inner and outer boundary conditions.

After matching the inner and outer boundary conditions, the unknown coefficients c(N)
and d(N) are determined by using the numerical method and analytical approach are

shown in Fig. 3-4. Agreement is made.
3.2.2 The conventional MFS [41]

In the method of fundamental solutions, the Green’s function G(x,s) is superimposed

by using the fundamental solutions U (x,s), as follows:
-1 DNy
G(x, S)=—+ZajU (xs;), xeD, (3-14)

where the N,, is the number of source points which are distributed outside the domain,
a; isthe j"™ unknown coefficient. By similarly matching the boundary conditions in
Eqg. (3-2), the unknown coefficient «; can be determined. Then, we have a numerical
solution. By comparing Eqg. (3-13) with Eq. (3-14), the image method of Eq. (3-13) can
be seen as a special MFS of Eq. (3-14) with optimal locations and specified strengths

for the singularities except the two strengths at two frozen points.

3.3 Derivation of the Green’s function for the domain
bounded by concentric spheres using the Trefftz method

The problem of a concentric sphere in Fig. 3-5 can be decomposed into two parts. One
is an infinite space with a concentrated source (fundamental solution) in Fig. 3-5(a) and
the other is subject to specified boundary conditions as shown in Fig. 3-5(b). The
first-part solution can be obtained from the fundamental solution. Here, the second part
is solved by using the Trefftz method. The solution can be superposed by using the
Trefftz bases as shown below:

G (x,9)= JZ PP, (3-15)

where p, isthe weighting, @, is the j™ T-complete function and N is the number of

J
T-complete functions. Here, the T-complete functions are given as 1,
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p"P"(cos@)cos(mp) and p"P"(cosd)sin(mg) for the interior case and 1/p ,
p "PM(cos@)cos(mp) and p "UPM(cosd)sin(mg) for the exterior case. The
second-part solution can be represented by

G, (x9) = Am+ +ZlmZ[A”"‘p P"(cos@)cos(m@) + B, o " P"(cosd)cos(mg) (3.16)

+Cnmp P"(cos@)sin(m@) + D, o " P"(cosd)sin(mg)],

where A, B,, A, B,, C, and D_ are unknown coefficients. By matching the
boundary conditions, the unknown coefficients can be determined. Then, the
series-form Green’s function is obtained by superimposing the solutions of U(x,Ss)

and G,(x,9) as shown be|OW'

G
(x,8) = e |x S|+A)°
npm -(n+l) pm (3'17)
+Z Z[Amp P"(cos@)cos(mp) + B, p " P"(cosd)cos(myp)
+C,p" P (c058)sin(Mf) + D0 "R (cos ) sin(mi)]
where the unknown coefficients are obtained as shown below:
_R-a
A)o 47Z'Rs(b—a)
- : (3-18)
By |_ab-R)_
47R (b-a)
& (N-m)!|  R™-a™ _Pm(cose)COS(mqﬁ)
A]m 4z (n+m)! ”+1(b2n+1 2n+1)
{B }: 2n+( 2n+1 2n+1)_ (3'19)
nm 8 (n m) -
47z (n+m)! { R (b - 2n+1)_Pn (cos &) cos(my)
En (N—m)! anit _ g2net ] . .
C.) |4z (n+m) {Rgfsbm 227 | R."(cos 0) sin(mg)
{Dnm}: P (n—m)! a2l b2n+1 2n+1) ) (3-20)
4x (n+m){ (P - muJF’nm(COSH)sin(rn@

It is interesting to find that Eq. (3-18) can be included into Eqg. (3-19) since we
introduce the Neumann factor and set n=m=0. We will prove the equivalence of

solutions derived by using the Trefftz method and the image method (special MFS) in

the next section.
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3.4 Mathematical equivalence for the solutions derived by the
MFS and Trefftz method

3.4.1 Method of fundamental solutions (image method)

The image method can be seen as a special case of the conventional MFS, since its
singularities are located outside the domain. The Green’s function of Eg. (3-13) can be
expanded into a series form by separating the field point x and source point s for the

fundamental solution in the spherical coordinates of Eg. (3-5) as shown below:

G(xs)zi{ -1 , R-a  ab-R)
"7 4z||x-9 R(b-a) Rp(b- a)

S Ey (N—)! p" Ri,
Sy 3y, (L)oo (Bs] 2

-3
i=1 n=1 m=0 (n+ m)' : R:lJrlﬁl

—W, ( p j wM( R ﬂcos[m(qﬁ —@)]P"(cos@)P"(cos b).
P

1 n+1 n+l
R’

By using Egs. (3-8) and (3-10), the series containing four geometry series with the same

ratio of (a/ b)2n+l which is smaller than one in Eq. (3-13) can be rearranged into

G(x.9 - 1{ R-a , ab-R)
4| [x~ (Fg(b) a)&zn&p(b a) i w1 e
g n-m +lp2n+1 a2n+1p2n+l 2n+l 2n+1 _a2n+1 2n+1 _
+;mZ4ﬂ_ (n+m) |: B Rsn+1 n+l(b2n+1_a2n+1) :|
cos[m(@ —¢)IP"(cos &) P (cos b),

after expanding all the image singularities of —1/r functions. It is interesting to find
that the optimal location may not be the expansion type of Fig. 3-6(a) or angular
distribution of Fig. 3-6(b) but a lump singularity in one radial direction shown in Fig.
3-6(c) as mentioned by Antunes [2]. In this paper, our image location in the MFS only
distribute along the radial direction which agrees with the optimal location in [2]. This
finding agrees with the experience in the annular case [14] and the present case of a

concentric sphere.
3.4.2 Trefftz method

Substitution of Egs. (3-18)-(3-20) into Eq. (3-17) yields
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G(x s):i{ -1 , R-a , ab-R)
" 4z||x-§ R(b-a) Rp(b-a)
© n gm (n_m ' &2n+lp2n+l_a2n+lp2n+l+a2n+lb2n+l_a2n+1|12n+l (3_23)
+ZZ4_ ntl _nilgp2nil _ o2nid }
n=1 m=0 ”(n+_m)! _ & P (b a )
cos[m(¢ —#)]R,"(cos &) R"(cos 0),

After comparing Eq. (3-22) with Eq. (3-23), it is found that the two solutions, Egs.
(3-13) and (3-17) are proved to be mathematically equivalent by using the addition
theorem when the number of images and the number of Trefftz bases are both infinite.
To verify the Trefftz and image solutions, the conventional MFS is utilized for
comparison. The distribution of collocation nodes and images (sources of MFS) is
shown in Fig. 3-7. Contour plots by using the three approaches are shown in Fig. 3-8.

Good agreement is observed.

3.5 Derivation of the Green’s function for non-concentric
spheres

3.5.1 Geometric characterization of the bispherical coordinates

Many curvilinear coordinates were mentioned to deal with problems of special
geometry [43]. For example, the bipolar coordinates are suitable for the eccentric
annulus as shown in Fig. 3-9. The relation between the Cartesian coordinates (X,Y)

and the bipolar coordinates (&,7) can be linked by

B sinh(n) B sin(¢)
X osh() —cos@)’ ” ~ cosh() —cos(2) (3-24)

where c¢ is the half distance between two focuses. Similarly, the non-concentric

spheres problem can be described by using the bispherical coordinates as shown in Fig.
3-10. The bispherical coordinates are obtained by rotating the bipolar axes about the line

between two focuses, and the relationship to the Cartensian coordinates is shown below:

« = ¢ SIn(g) cos(g) y=c sin()sin(¢) _ ,_,___sinh(p) (3-25)
cosh(r7) —cos(&) cosh(r7) —cos(&) cosh(r7) —cos(&)

where 0<é<rz, —o<np<ow, —z<¢<r,and

5:6’2—61,nzln(%zj,¢:arctan(%). (3-26)
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It follows that the curves & =constant are a family of spheres passing through two
focuses (0,+c,0) which can be described by
(r, —ccot(£))? + Z* = c? esc? (&), (3-27)
where 1, = \/m . The curve of 7 =constant are also a family of spheres with the
center at y = ccoth(z), which can also be described by
(y—ccoth(z))® +r,” =c”csch? () . (3-28)
The inner radius a, outer radius b and the distance h between two centers for the

non-concentric spheres are given by

a=ccsch(r,), (3-29)
b=ccsch(n,), (3-30)
h = c[coth(r,) — coth(r,)], (3-31)

in Fig. 3-10, respectively. In order to describe the non-concentric spheres in the

bispherical coordinates, the three parameters, c, n, and 7, are determined as

follows,
4 4 2112 2 2 2 4
C:Ja +b* -2a’h’ -2h’ (@’ +b%) +h* (3.29)
2h

m=sinh (%), (3-30)
n, =sinh™ (6 ). (3-31)

The coordinates of two focuses are obtained as shown below:
¢ =(0, -¢c 0), (3-32)
c,=(0,c 0). (3-33)
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For this case, the Green’s function was derived in terms of the bispherical coordinates
as shown below [43]:

1, & .
%hxmzzgm P (cos(&,))

n=0 m=0

BT (COS(é))COS[m(¢ -4,)]
sinh| (n-+ 20)(, —n) [sinh[ (n+ 10)(n, - 1,) |
sinh (n+ 1)~ 7,) |

y Ipzn 21,
1 S (n- m) m
%MZZ% [ (cos(S,))

n=0 m=0

A" (cos(§))cos[m(¢ )]
sinh| (n+ 19)(n, - ) [sinh| (n+ 1)), - 1)
sinh| (n+ 20)(n, - m,) |

» s 211 21,

G(§1ﬂ1¢1 gs’ﬂs’¢s) = (3-34)

where the subscript s for &, n and ¢ denotes the location of source in the

bispherical coordinates, and the factors h, and h, are defined by
h, = \/cosh(z) —cos(&) , (3-35)
h, = \/cosh(z,) — cos(&,) . (3-36)

3.5.2 Image method - semi-analytical solution

For the problem of non-concentric spheres as shown in Fig. 3-11, the Green’s function
satisfies

V’G(x,8)=6(x-s), xeD, (3-37)
where D isthe domain, ¢ denotes the Dirac-delta function, x is the field point and
s is the source point. The specified boundary condition is the Dirichlet type,

G(x,8)=0, xeBUB,, (3-38)

where B and B, are the inner and outer boundaries, respectively. The
semi-analytical approach can solve the Green’s function of non-concentric case.
Following the successive image process that image points for the non-concentric
spheres is shown in Fig. 3-12, it is found that the final two image locations freeze at the

s, and s,,. The image solution for non-concentric spheres is below:
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G(x S):i{_—lﬂim[i( Wis | Wao  Way Wy
4z |X_S| N T |X_S4i—3| |X_S4i—2| |X_S4i—1| |X_Si|

)
LGN | G(N) 39
|X—SC1| |X_Sc2|
where c1(N) and cx(N) are the singularity strengths of the two frozen points at s, and
S., Which can be determined by matching the boundary conditions. Then, we have the
image solution of Eq. (3-39) which belongs to a semi-analytical solution.

, Xe D,

3.6 Illustrative examples and discussions

Case 1: Green’s function for a domain bounded by non-concentric spheres (a
concentrated source at the z axis)
In the first case, a Green’s function for non-concentric spheres and its location of the
concentrated source is at the z axis as shown in Fig. 3-13. The distance from the center
of outer sphere to the source point is equal to 2.5. The two radii of inner and outer
spheres are a=2 and b=5, respectively. The two centers of inner and outer spheres
are (0, 0, ccoth(r,)) and (O, O, ccoth(r,)), the distance h between two centers is
equal to 2. The distribution of fictitious sources is shown in Fig 3-14. Figures 3-15(a)
to 8(c) show the potential contours by using the bispherical coordinates (an analytical
solution), the image method (a semi-analytical solution) and the method of fundamental
solutions (a numerical solution). The distribution of image points is shown in Fig. 3-12,
while the sources distribution of the MFS is shown in Fig. 3-14. The frozen images
happen to be the two focuses in the bispherical coordinates. It is found that the results of

three approaches match well.

Case 2: Green’s function for a non-concentric spheres (a concentrated source at S,)

In the second case, the concentrated source is moved to s, =(2.5, O, ccoth(r,)) as
shown in Fig. 3-16. The other parameters of geometry are the same with the case 1.
Also, the frozen images terminate at the two focuses in the bispherical coordinates.
Figures 3-17(a) to (c) show the potential contours by using three approaches. Similarly,

good agreement is made after comparing other results.

36



3.7 Concluding remarks

In this chapter, not only the image method (a special MFS) but also the Trefftz method
was employed to solve the Green’s function of 3-D Laplace problems bounded by
concentric spheres. The two solutions using the Trefftz method and MFS for the
fixed-fixed case were proved to be mathematically equivalent by using the addition
theorem or so-called degenerate kernel. Also, the solution of image method shows the
existence of the free constant which is always overlooked in the conventional MFS
although it becomes zero as the number of images approaches infinity. Finally, we also
found the final two frozen image points at the origin and infinity where their strengths
can be determined numerically and analytically in a consistent manner. Contour plots by

using the three approaches, Trefftz method, image method and MFS, agree well.

In other cases, analytical Green’s functions for the three-dimensional Laplace problems
were derived. After comparing with the semi-analytical solution using the image
method and the numerical solution determined by the method of fundamental solutions,
the agreement was observed to verify the accuracy of the analytical solution. This
analytical solution can provide a benchmark example for the Green’s function of 3-D

Laplace problems.
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Figure 3-1 Sketch of an annular sphere subject to a concentrated load.
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(a) interior case (b) exterior case

Figure 3-2 Sketch of position of image point (a) interior case and (b) exterior
case.
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®  true source

®@® image point

Figure 3-3 Successive images for an annular problem.
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Figure 3-4 Coefficients of c(N) and d(N) versus N for the fixed-fixed case.
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(b) a concentric sphere subject to the Dirichlet boundary condition

Figure 3-5 Sketch of the superposition approach. (a) an infinite space with a
concentrated source. (b) a concentric sphere subject to the Dirichlet boundary
condition.
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(6) Lump (Optimal case)

Figure 3-6 Optimal locations for conventional MFS [2].
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(c) Conventional MFS (angular distribution of singularities)

Figure 3-7 Sketches of (a) Trefftz method, (b) image method and (¢c) MFS.
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Figure 3-8 (c) Potential contour by using the MFS (z=2 plane).
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Figure 3-11 A Green’s function for a domain bounded by non-concentric spheres.
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Figure 3-12 Successive image points of the non-concentric sphere and two frozen images
at s, and s,.

Figure 3-13 A non-concentric sphere with a concentrated source at the z axis.
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. fictitious sources

Figure 3-14 Distribution of fictitious sources of the MFS.
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Figure 3-15(a) Potential contour by using the bispherical coordinates (z=0 plane)
~ (an analytical solution).

FON

Figure 3-15(b) Potential contour b'y using the image
(a semi-analytical solution).

mesthod (z=0 plane)

(O

Figure 3-15(c) Potential contour by using the MFS (z=0 plane)
(a numerical solution).



Figure 3-16 A non-concentric sphere with a concentrated source at s, =(&,,, 77.,, ?s,) -
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Figure 3-17(a) Potential contour by usring the bispherical coordinates (z=0 plane)
~ (an analytical solution).

T —T T T
1 2

Figure 3-17(b) Potential contour by using the image method (z=0 plane)
(a semi-analytical solution).

Figure 3-17(c) Potential contour by using the MFS (z=0 plane)
(a numerical solution).
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Chapter 4 Image solutions for boundary value
problems without sources

Summary

In this chapter, we employ the image method to solve BVPs without sources. Two and
three dimensional problems as well as symmetric and anti-symmetric cases are
considered. By treating the image method as a special case of MFS, only at most four
unknown strengths, distributed at the center, two locations of frozen images and one
free constant, need to be determined. Besides, the optimal locations of sources are
determined. For the symmetric and anti-symmetric cases, only two coefficients are
required to match the two boundary conditions. The convergence rate versus number of
image group is numerically performed. The differences of the image solutions between
2-D and 3-D problems are addressed. It is found that the two-dimensional solution in
terms of the bipolar coordinates is mathematically equivalent to that of the simplest
MFS with only two sources and one free constant. Finally, several examples are

demonstrated to see the validity of the image method for BVPs.
4.1 Introduction

The image method is a popular approach in the theoretical physics [51] and has
commonly been used in multidisciplines such as electro-magnetics, acoustics and optics.
When solving problems by using the Green’s functions for a bounded domain, the
reflection is described by one or successive image sources, and the position and sign of
the image sources is chosen so that the boundary conditions can be satisfied [7]. Green’s
function for a part of domain bounded by planes, circles or spherical surface in terms of
the corresponding fundamental solution in the full space can be found in the literature
[27]. In certain cases, it is possible to obtain the exact solution for a concentrated source
in a domain through superimposing the infinite plane or infinite space solution for the

given source and its image sources. Although the scope of this method is limited for
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special geometry, it yields a great deal of insight into the solution when it works [38, 39].
As a result of the aforementioned consideration, many theoretical studies concerning the
Green’s function in circular and spherical boundaries have appeared in the literature.
For example, Green’s function for plane boundaries has been investigated [56]. The
image method was employed to solve edge dislocation in an anisotropic film-substrate
system [59] and dielectric plate [55]. Chen et al. [13, 14] solved Green’s functions of
annulus or concentric spheres by using the image method. It is found that almost all the
related works on the image method deal with the problem with a true source in the
domain. Although Cheng’s book [22] has employed the image method to solve the
boundary value problems (BVPs) of an infinite space with two spherical boundaries, the
frozen image locations were not found to be the focuses of the bispherical coordinates.
However, we may wonder whether the image method may work for BVPs without
sources in the domain. Bispherical and bipolar coordinates were always used to derive
the analytical solutions for problems containing boundaries of two spheres or circles
[43], respectively. The BVPs of eccentric annulus were solved in a unified way of
conformal mapping [17]. Problems with several circular boundaries were solved by

using the null-field BIEM [16].

In this chapter, we will illustrate several examples to demonstrate the possible use of
image method in solving 2-D and 3-D BVPs without sources. Symmetric,
anti-symmetric and eccentric cases are considered. Based on the singularities distributed
outside the domain for the image method, it can be seen as a special MFS with optimal
locations and strengths of sources. To verify our image idea, analytical solutions by
using the bipolar and bispherical coordinates are used to check the accuracy of our
results. Besides, numerical results using the conventional MFS and null-field BIEM are
also given for comparison. An infinite space with two spherical cavities as well as an
infinite plane with two circular holes are both considered. Besides, an eccentric sphere
is also given. Also, the static result for a limiting case of two-spheres radiation to

simulate Laplace problems is provided for comparison.
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4.2 Derivation of the image solution for BVPs
4.2.1 3-DBVP

The problem of an infinite space with two spherical cavities is shown in Fig. 4-1 and the

governing equation is
V?u(x) =0, xe D, (4-1)

where /2 is the Laplacian, u(x) is the potential function and D is the domain of interest.

For a two-spheres case, the boundary conditions are
u(x)=V,, xe B, (4-2)
u(x)=V,, xe B,, (4-3)

where B; and B, are left and right spherical boundaries with boundary data of V; and V,,
respectively. In this case, the analytical solution [43] was derived in terms of the

bispherical coordinates as shown below:

1
o cosh(n+=)7n
u(&,n) =+/2coshn—2cos&Y [Vz +V1j 12
|\ 2 Josh(n+ D),
I (4-4)

sinh(n+ )
+[V2 _Vlj 2 7 e_(n+%)770|:’n(005§)1

2 sinh(n+;)770

where & =constant is a family of spindle-shaped surfaces passing through the poles
(0,£c,0), 7, is on the right spherical boundary, 7 =constant shows a surface of
In(r,/r,)=constant, and P,(e) is the Legendre polynomial. It contains both

symmetric and anti-symmetric problems.

The problem of infinite space with two spherical cavities can be seen as a combination
of symmetric and anti-symmetric problems as shown in Fig. 4-2(a) and (b). The
fundamental solution of the three-dimensional Laplace equation is shown below:
-1

U(x,5s)= . (4-5)
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where r is the distance between the source point s and the field point x (r =/ x—s|). For
the symmetric case, we derive the solution by using the image concept. To satisfy the
nonhomogeneous boundary conditions (BCs) on the two spherical surfaces, both
artificial sources at the two centers outside the domain are initiated in advance.
However, the source at the left (right) center also results a nonzero potential on the right
(left) boundary. Therefore, successive images are required to construct the solution as
given below:

N p—
U(X) = lim {qS(N)|:(i+ij+Z( W, 5 _ W, N W, , . W, j:|
N—>o0 r loo i=1 |X_S4i—3| |X_S4i—2| |X—S4i—1| |X_S4i|

ol

L G(N) | c(N) }
‘X_SQ‘ ‘X_SCZ‘

(4-6)

where three coefficients of symmetric case, g%(N), ¢’(N) and c;(N) are required to
be determined by matching the boundary conditions, ro; and rq, are the distances
between center and field point. Two frozen images, s, and s,, are found after

successive images. The locations of two frozen images must simultaneously satisfy
d a’
E+RC2:W' Rclstzl

E_Rcl

(4-7)

where a, d, R;; and R, are shown in Fig. 4-2. The distance between the two focuses is

denoted by
|R31+R02|:20' (4-8)

The parameter c is the half distance between the two focuses in the bispherical
coordinates which can be obtained by:

\Jd? —4a? | (4-9)

2
The wi in Eq. (4-6) is the weighting of the K" image source that can be obtained by

C=

using the formula of image location [14] as shown below:
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a aw, aw, ,
W =—, W = vy Wy g =——
d d_RA d_R4i—4
szg’ W6=%’ ...... ’WAi_Zz%,
daw ij 5.\4}{/7-5 (4-10)
W3: 2 ,W7= 6 ’...’W4i—l:#!
d-R, d-R d-R,,
WAZa_\Nl, WBZ%’ ...... 7W4i:%' i:2,3,..,,00,
R R R

where Ry is the distance between the K" image source and the center of left cavity, and

they are determined by the recurrence relation

a’ ? a’
Rl=d_F! Rszd_d_R4""’Rm—a:d_d_RAH’
a’ a’ a’
_a _2 R, ,= ,
d » R, " Ris 2 (4-11)
iR Nl TR
a a’ a’ -
=—, TR , | = , :2,3,,.,,00.
R R, R R |

Here, the image solution for an anti-symmetric problem is shown below:

_ N _w _ _ |
u(x) = lim {qa(N){(_l_;_ij_i_Z( Wis + Wi _ Wi n W, j}
N> f Too) TT\X=Sual  [X=Su| [X=s4| [X—s4]

LG(N) | c(N) }
‘X_Scl‘ ‘X_ch‘

(4-12)

where the coefficients of the anti-symmetric case, g®(N), ¢’(N) and cJ(N), are
required to be determined by matching the boundary condition, g%(N) and g?(N) are the
initial strengths for symmetric and anti-symmetric cases, respectively, which can be
determined later by matching the boundary conditions. Successive images for the

symmetric and anti-symmetric cases were shown in Fig. 4-2.
4.2.22-D BVP

Let us consider an infinite plane with two circular holes subject to the anti-symmetric
boundary condition. Similarly, the two-dimensional anti-symmetric problem is solved
by using the image method in a similar way of three-dimensional case. The fundamental

solution of the two-dimensional Laplace equation is given below:
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U(x,8)=In(r). (4-13)

For the anti-symmetric case, the boundary conditions are
ux)=V,=-V, xeB, (4-14)
u(x)=V, =V, xe B,, (4-15)

where B;and B, are left and right circular boundaries with boundary data of V; and V5,

respectively. Therefore, the image solution for the two-dimensional anti-symmetric

problem in Fig. 4-3 can be constructed as

u(x) = lim {q(N)[(~In 1,y +Inr, )

+ZN:(In|x—s4i_3|—In|x—s4i_2|+In|x—s4i_1|—ln|x—s4i N (4-16)
+c1.:EN)In‘x—sq‘+cz(N)In‘x—scz‘+e(N)},

where q(N) is an initial strength at the two centers of circular hole which can be

determined later by matching the boundary conditions, s, and s, are two locations

of final two frozen images which are similar to the three-dimensional case, c;(N) and

c2(N) are their corresponding strengths, e(N) is the rigid body term, the iterative images

and their locations are shown in Fig. 4-3. The exact solution [43] in terms of the bipolar

coordinates is given below:

u(E ) = v

n=—n. 4-17
In|r1/r2| o ( )

4.3 Hlustrative examples and discussions
4.3.1 3-D problems

Case 1: An infinite space with two spherical cavities subject to symmetric boundary

conditions (symmetric problem of V1=V,=V=1)

In the first case, the problem sketch for an infinite space with two spherical cavities is
shown in Fig. 4-4. The centers of two cavities are set at (0, -2.5, 0) and (0, 2.5, 0), and
the radii are both 1. By matching the boundary conditions, the analytical solution [43]

can be simplified by using Eq. (4-4) as given below:
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1
© cosh(n+>)n ]
u(&,nm) =+/2coshn—2coséY. |V 2 | gmmRiesd) (4-18)
n=0 cosh(n+§)770

By matching the boundary conditions, all the unknown coefficients in Eq. (4-6), g%(N),
c¢’(N) and c;(N), can be determined as shown in Fig. 4-5. In the numerical
experiment, we found that the coefficient of q°(N) is equal to 1, since the 3-D
fundamental solution is -1/r where r is the distance between s and x (r =| x—s|),
Liglcf(N):O and Limcj(N):O. Finally, we can find that the final frozen image
points terminate at the focuses of the bispherical coordinates. The contour plots by using
Eq. (4-6) the image method Eq. (4-18) in terms of and the bispherical coordinates are
shown in Fig. 4-6. It can be observed that our results are compared well with the
analytical solution. Also, the static result for limiting solution of two-spheres radiation
by using the null-field BIEM [45] is provided for comparison. Good agreement is also

made.

Case 2: An infinite space with two spherical cavities subject to anti-symmetric

boundary conditions (anti-symmetric problem of V;=-V=-1, V,=V=1)

Figure 4-7 is a sketch of an infinite space with two spherical cavities subject to
anti-symmetry boundary conditions instead of the above symmetric case. The geometry
data are the same as the case 1 and the analytical solution is obtained as follows:

o sinh(n+l)77

U(g,ﬂ)=\/ZCOShU—ZCOS§Z V—lz e’(f‘H%)ﬂoPn(Cosf). (4_19)
n=0 sinh(n+§)770

In a similar way of finding the successive images for matching the boundary conditions,
the solution can be obtained by using Eq. (4-12). After locating boundary points to
match the boundary conditions, all the unknown coefficients, g*N), c’(N) and
c,(N), versus N can be determined as shown in Fig. 4-8. Similarly, we also found that
the final frozen image points happen to be the focuses of the bispherical coordinates.
The contour plots by using Eqg. (4-12) in the image method and Eq. (4-19) of the

analytical solution are shown in Fig. 4-9. The results of our approach are compared well
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with the analytical solution by using the bispherical coordinates. Also, the static result
for limiting solution of two-spheres radiation using the null-field BIEM [45] is provided

for comparison. Good agreement is also made.
Case 3: A non-concentric sphere (V1=0, V,=1)

In this case, the two radii of inner and outer spheres are a=1 and b=2.5,
respectively. The distance d between the two centers is equal to 1 as shown in Fig. 4-10.
After successive images, the image solution can be obtained as shown below:
u(x) = lim {q(N)[—1+Z( Moy, P ﬂ+ aN) , &) +e(N)}. (4-20)
N> ro o FUx=-sl [x-s ‘X_Sq‘ ‘X_S ‘

G
Since the center of outer sphere is in the domain, we only put an artificial source at the

center of inner sphere to satisfy the governing equation. Similarly, two frozen images
are found after successive images. The locations of two frozen images are governed by

= Rczbz—d+d’ szé—i, (4-21)

where R, and R, are the y coordinates for the left and right focuses , respectively, as

R

shown in Fig. 4-11. The distance between the two focuses is denoted by

IRy —R|=2c. (4-22)
The parameter c is the half distance between two focuses in the bispherical coordinates

which can be obtained by:

Ja* —2a%? + b* — 2a%d? — 2b?d? + d*
2d '
After matching the boundary conditions, the unknown coefficients, q(N), ci(N), cx(N)

(4-23)

and e(N), versus N are shown in Fig. 4-12. The frozen images happen to be the two
focuses in the bispherical coordinates. The analytical solution [12] obtained by using the
bispherical coordinates is

u(&,n) =+/2coshn —2cos &
. v, ( e2(n+}/2)77 _ eZ(m}/z)nz )—V2 ( ez<n+}/2)r; B ezm%m)
Z e2(n+%)'h B e2<n+%>zzz

n=0

(4-24)

e—(n+}/2)nPn (cosé)
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Figures 4-13(a), (b) and (c) show the potential contours by using the image method, the
bispherical coordinates and the method of fundamental solutions, respectively. It is

found that the results of three approaches match well with each other.
4.3.2 2-D problems

Case 4: An infinite plane with two circular holes subject to anti-symmetric BCs
(Vi=-V=-1, V,=V=1)
It is interesting to find that q(N) for 3-D case can be obtained in advance to fit the
boundary condition. We may wonder whether the q(N) of the 2-D problem can be
determined in the same way as 3-D case. The problem sketch for an infinite plane with
two circular holes subject to anti-symmetric boundary conditions is shown in Fig. 4-14.
The distance between the centers of two circular holes is 10, and the radii of two holes
are both 1. The frozen images happen to be the two focuses in the bipolar coordinates.
After matching the boundary conditions in Egs. (4-14) and (4-15), the unknown
coefficients of g(N), ci(N), c(N) and e(N) versus N are shown in Fig. 4-15. It is
interesting to find that the strengths of g(N) and e(N) are zero. Besides, we also observe
that c;(N)=-c(N) in numerical experiment and therefore the image solution of the
anti-symmetrical case can be written as

u(x) =c(N)[In|x—s,|-In|x-s, ], (4-25)
where the coefficient ¢;(N) is determined by matching the boundary condition
(u(x)|XeElz =V =1) as given below:

6(N) = v

In‘x—sq‘—ln‘x—soz‘

, XeB,, (4-26)

in which c¢;(N) is found to be a constant and is independent of N. It indicates that the
analytical solution by using the bipolar coordinates is the same as that of image method
(special MFS) with only two sources as follows:
\Y
u(é,n) = Wﬂ : (4-27)

a
Figures 4-16(a), (b) and (c) show the potential contours by using the image method, the
bipolar coordinates and the null-field BIEM [16], respectively. Good agreement of the
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three approaches is made.
Case 5: An eccentric annulus [16]

The problem sketch for an eccentric annulus is shown in Fig. 4-17 with V;=0 and V,=1.
The two of inner and outer circular holes are a=1 and b=2.5, respectively. The
distance d between the two centers is equal to 1. This problem has been solved by using
several approaches and a unified point of view by using the conformal mapping was
provided in [17]. By putting successive images, the image solution can be obtained as
below:
W60 = lim {a(N)DIN T+ (~Infx-s, [+ In[x— s, )]
i=1 (4-28)
+G(N)In|x—s,|+c,(N)In|[x—s, |+e(N)}.
The coefficients of g(N), ci(N), c(N) and e(N) versus N are shown in Fig. 4-18. The

analytical solution obtained by using the bipolar coordinates is given below:

uign)=A7+8B, (4-29)
where
A= V-V, ,
sinh™ (;) —sinh* (g) (4-30)

V1 _Vz

sinh‘l(;j—sinh‘ltgj sinh (gj (4-31)

It is also found that the solution derived by the image method and the MFS with only

B=V, -

two sources are the same as the analytical solution derived by using bipolar coordinates.
Figures 4-19(a), (b) and (c) show the potential contours by using the image method, the
bipolar coordinates and the null-field BIEM, respectively. The frozen images happen to
be the two focuses in the bipolar coordinates. It is found that the results of three
approaches match well. In this case, the optimal number of sources in the MFS is only
two and the two positions are found to be exactly located on the focuses in the bipolar

coordinates. The image method in this case can be seen as an optimal and simple MFS.
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For the 3-D case, the successive strengths become smaller and the final strengths at the
two frozen points approach zero for sufficiently large number of images. However, the
2-D case is quite different, i.e., the strengths at the two centers are not 1/In(a) which
satisfies the boundary condition (u=In(a)/In(a)=1). Only two singularities at the two
focuses are required. In the cases of 4 and 5, we found the equivalence between the
image solution and the analytical solution derived by using the separation of variables in
the bipolar coordinates. Table 4-1 shows the comparison of the anti-symmetric problem
between two-dimensional and three-dimensional cases. The image method can be seen
as a simple MFS in the 2-D case. For the five (2-D and 3-D) cases, all frozen images

merge at the focuses.
4.4 Conclusions

In this chapter, five solutions for the two and three dimensional BVVPs were obtained by
using the image method. For the 3-D case, we have found the strengths of the two initial
sources at the two centers that can be determined in advance to satisfy its own boundary
condition. The strengths of successive images are then calculated and their values
become smaller and smaller. The final strengths of frozen images approach zero for
sufficiently large number of successive images. However, the finding in the 3-D case
can not be directly applied to the 2-D case. Nonzero strengths at the frozen images are
found and the initial strengths of sources at the centers are zero. The image method can
provide optimal locations and specified weightings for the conventional MFS. The
dimension of the matrix in the linear algebraic equation is at most four by four in the all
examples. Agreement is made after comparing the image solution with those of the
conventional MFS, the null-field BIEM, the analytical solutions by using the bipolar
(2-D) and the bispherical (3-D) coordinates and the static result for limiting case of

two-spheres radiation by using the null-field BIEM.
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Table 4-1 Anti-symmetric problem of 2-D and 3-D.
Domain 2-D problem 3-D problem
A AZ
u=V y u=-V u=-VvV
/_\ fa\ « ’a-\‘I
Figure AN 5 o > TS >’
ketch !
S 2C |/
-« >
2l 2l |
u(x) = lim {a(N)[(~Inr,, +Inr,,) u(x) = lim L ()| [ 2+ L +ZN: Wyis | W
Image X N-seo r TUX=5s,.5]  [X—5,,]
g In|x—s, ,|-In|x=s, ,|+In|x=s, |-In|x—s o e e e
solution + 2, (nfx=s 5| Infx =8 o[ +In|x =5, |~ In|x—s, )] Wiy W c'(N) L &(N)
=1 - + +
+G(N) In|X—s4[+C,(N) In[x—s,,[} IX=s;4] |x=sy|)] [x-s,| |[x-s]
q(N)=0 q*(N) =aV
Value of v Ry,
coefficient q(N)=f, ¢,(N)=— % lim ¢(N) = lim c3(N) =0
sinh™(5) sinh™(5) N> N>
a a
Key images Focus dominant Pole dominant

61




Figure 4-1 An infinite space problem with two spherical cavities composed of (a) symmetric
problem and (b) anti-symmetric problem.
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Figure 4-2 Successive images for the (a) symmetric and (b) anti-symmetric cases.
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Figure 4-4 Problem sketch for the 3-D symmetric problem.

64



1.2

Lim g(N)=1
1 00 0 0 0 0 0 0 ¢
0.8 —
H—H——-t] Cls(N)
A A A CZS(N)
Value 0.4 —| o O o qS(N)
| Lim ¢’ (N)=0, Lim c(N)=0
o —|
-0.4 ‘ ‘
0 4 8
N

Figure 4-5 Coefficients of g°(N), ¢’(N) and c;(N) versus N for an infinite space with two
spherical cavities subject to the symmetric boundary condition.
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(a) an image solution

(c) a limiting case of static solution using the null-field
Figure 4-6 Potential contours (a) an image solution, (b) an analytical solution using
the bispherical coordinates and (c) a limiting case of static solution using the
null-field BIEM [45] (x-y plane).



Figure 4-7 Problem sketch for the 3-D anti-symmetric problem.
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Figure 4-8 Coefficients of g*(N), c*(N) and c3(N) versus N for an infinite space with
two spherical cavities subject to the anti-symmetry boundary condition.
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(a) an image solution
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(c) a limiting case of static solution using the null-field
Figure 4-9 Potential contours (a) an image solution, (b) an analytical solution using
the bispherical coordinates and (c) a limiting case of static solution using the
null-field BIEM [45] (x-y plane).
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Figure 4-10 Sketch for the problem of non-concentric spheres.

X Frozen image point and Focus of the

® -, - -
Initial point ®® Image point bispherical coordinates

Figure 4-11 Image location for the problem of the non-concentric spheres.
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Figure 4-12 Coefficients of q(N), ci(N), c2(N) and e(N) versus N for the non-concentric
spherical problem.
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(c) a solution by using the MFS
Figure 4-13 Potential contours (a) an image solution, (b) an analytical solution using
the bispherical coordinates [12] and (c) a solution by using the MFS (x-y plane).
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Figure 4-14 An infinite plane with two circular holes in the bipolar coordinate system.
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Figure 4-15 Coefficients of q(N), ci(N), c2(N) and e(N) versus N for an infinite plane with two
circular holes.
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(c) a solution by using the null-field BIEM
Figure 4-16 Potential contours (a) an image solution (b) an analytical solution using
the bipolar coordinates and (c) a solution by using the null-field BIEM [16].
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Figure 4-17 Problem sketch for an eccentric annulus.
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Figure 4-18 Coefficients of q(N), c1(N), c2(N) and e(N) versus N for the eccentric annulus.
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(a) an image solution
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(c) a solution by using the null-field BIEM
Figure 4-19 Potential contours (a) an image solution, (b) an analytical solution using
the bipolar coordinates and (c) a solution by using the null-field BIEM [17].
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Chapter 5 Conclusions and further research

5.1 Conclusions

The thesis is concerned with the derivation of Green’s function and boundary value
problems (BVPs) for Laplace equation with circular holes or spherical cavities by using
the image method and addition theorem. In the context of this thesis, we have
demonstrated that our approach is efficient and effective. Based on the proposed
formulation for solving the problems involving circular and/or spherical boundaries,

some concluding remarks are drawn below:

1. Numerically speaking, the image method can be seen as a special method of
fundamental solution (MFS) since the image singularities locate outside the
domain. The optimal location and the strength of source in the MFS can be easily

determined by using the image method.
2. Inthe chapter 2, two frozen images for the three cases, an eccentric annulus, a half
plane with a circular hole and an infinite plane with two circular holes are found to

be the focuses of the bipolar coordinate system passing the two circles.

3. Regarding the exterior problem subject to the Neumann BC, an extra source at the

center of hole is required and successive images also terminate at the two focuses.

4. The dimension of the matrix in the linear algebraic equation is at most four by four

in all the examples. Agreement is made after comparing with the results of MFS.

5. In the 3-D case, the weighting of image source can be determined by using the

degenerate kernel for interior and exterior problems as shown in Table 2-1.
6. The Green’s functions of annular case and concentric sphere can be obtained by
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10.

using the image method and the Trefftz method. The mathematical equivalence
between the solutions derived by using the Trefftz method and the MFS was

proved in Chapter 3.

It is found that the convergence rate of image method is better than those of Trefftz

method and conventional MFS in the concentric sphere case.

We derived the Green’s function for the 2-D and 3-D Laplace problems by using
the image method and addition theorem. Also, the present approach can be utilized
to construct boundary value problems (BVPs) without sources for problems with
circular or spherical boundaries. The present method is seen as a “semi-analytical”
approach since the unknown coefficient in the image method needs to be solved by

using linear algebraic system.

The symmetric and anti-symmetric solutions for the two and three dimensional
BVPs were obtained by using the image method in Chapter 4. For the 3-D case, we
have found the strengths of the two initial sources at the two centers that can be
determined in advance. The final strengths at the two strengths of frozen images
approach zero if the number of images becomes infinite. Nevertheless, the 2-D
case is not the same as 3-D case. An example of only two frozen images can
construct the exact solution of 2-D BVP. This solution happens to be the Lebedev

et al.’s solution by using the bipolar coordinates.
A program for deriving the Green’s function due to the concentrated source for

problems with one or two circular or spherical boundaries involving the Dirichlet

and Neumann boundary conditions was developed.
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5.2 Further research

In this thesis, our formulation has been applied to derive the Green’s function for the
concentrated forces and BVPs with circular or spherical boundaries by using the
addition theorem and the image method. However, several issues need further

investigation as follows:

1. Although the Green’s function for the concentrated source was solved by using the
image method, we may also employ the image method to solve the screw

dislocation problems in the future study.

2. The degenerate kernels are expanded in the polar and spherical coordinates for
problems with circular and spherical boundaries, respectively. For boundary value

problems with an elliptical hole, further investigation should be done.

3. According to our successful experiences in the image solution for Laplace

problems, extension to the Helmholtz and Biharmonic problems may be possible.

4.  Whether the image method can be employed to solve the Green’s functions with

inclusions is also future work. Extension to the Robin BC may be considered.

5. In this thesis, we focus on Green’s function and boundary value problem of two
circular boundaries. The image solution may be extended to more than three
circular boundaries problem. The focuses of any two circular boundaries may

provide the optimal location of MFS.
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