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中 文 摘 要  

本論文以映像法求解含圓形及球形邊界拉普拉斯方程式之格林函數與無源點之邊

界值問題。文中我們可將映像法視為基本解法(MFS)的一種特例，並透過映像法

找出圓形與球形邊界問題的最佳點源位置。以二維同心圓環與三維同心圓球為

例，透過加法定理來驗證 Trefftz 法及基本解法在數學上的等效性。此外，以三個

二維的例子(偏心圓，半無限域含圓型孔洞與無限域含兩個圓型孔洞)說明，我們

可以發現雙極座標系統的兩個焦點與映像法最後兩個凝固點的位置是一致的。同

樣的，三維的例子中亦可找到映像法最後的凝固點與雙球座標系統之焦點的位置

相同。關於三維映像法的點源強度，我們可透過基本解展開成退化核函數的形式

來求得。最後，我們使用映像法求解二維及三維的對稱與反對稱邊界值問題。在

三維的例子中，兩個位於球心的起始點未知強度可在一開始就由邊界條件決定。

如果映射的組數夠多，最後兩個凝固映像點的強度將會趨近於零。然而，在二維

的例子則完全不同，經由理論與數值計算其唯二非零強度就在兩個焦點上。 

關鍵字: 映像法、格林函數、邊界值問題、拉普拉斯方程式、基本解法(MFS)、

加法定理、Trefftz 法、雙極座標系統，退化核函數 
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Abstract 

In this thesis, we solve the Green’s function and boundary value problems (BVPs) 

without source for the Laplace equation with circular and spherical boundaries by using 

the image method. We find that the image method is a special case of the method of 

fundamental solutions (MFS), and the optimal locations of sources in the MFS can be 

determined by using the image method. The optimal locations are dependent on the 

source location and the geometry of problems. In the concentric sphere case, the 

solutions derived by the Trefftz method and the MFS are found to be mathematically 

equivalent by using the addition theorem. Moreover, it is found that final image points 

in the image method terminate at the two focuses of the bipolar coordinates for all the 

three cases of two-dimensional, an eccentric annulus, a half plane with a circular hole 

and an infinite domain with two circular holes. Similarly, it is found that the final two 

image locations freeze at the two focuses in the bispherical coordinates for the 

three-dimensional case where the weighting of image source can be determined by 

using the degenerate kernel. Finally, we solve the symmetrical and anti-symmetrical 

BVPs for the two and three dimensional cases by using the image method. For the 

three-dimensional case, we have found the strengths of the two initial sources at the two 

centers that can be determined by matching BC in advance, and the final strengths at the 

two strengths of frozen images approaches zero if the number of images becomes 

infinite. However, the two-dimensional case is not the same of the three-dimensional 

case, only two nonzero strengths are found at the two focuses after theoretical study and 

numerical calculate. 

Keywords: image method, Green’s function, boundary value problem (BVP), Laplace 

equation, method of fundamental solutions (MFS), addition theorem, Trefftz method, 

bipolar coordinates, degenerate kernel 



1 

Chapter 1 Introduction 

 

1.1 Motivation of the research and literature review 

The Green’s function has been studied and applied in many fields by mathematicians as 

well as engineers [36, 48]. It’s a long history that, many researchers studied the circular 

boundary value problems (BVPs), such as circular apertures and/or inclusions. As a 

result of the aforementioned consideration, many theoretical studies concerning the 

circular boundary problems in engineering problems have appeared in the literature. A 

number of problems in engineering problems can be modeled, such as the steady state 

heat conduction problem [23, 26], electrostatic potential [4, 5], torsion bar problems [9, 

47], temperature in case of the displacement of an infinite medium under remote 

uniformly shear [1, 24, 29, 30, 31], velocity potential in a steady flow of an ideal fluid 

[3, 35, 45] and the pure torsion of an elastic bar by equilibrated end torques [9, 47] are 

examples in which the Laplace equation is satisfied; acoustics, membrane vibration [32] 

and water wave problems [20] governed by the Helmholtz equation; plate vibration [33, 

34] and Stokes’ flow [50] formulated by the biharmonic equation. The Laplace equation 

arises in many branches of physics, from which it recruits a wide group of researchers.  

In order to solve engineering problems, researchers and engineers have paid more 

attention on the development of several numerical methods. Therefore, many numerical 

methods were developed such us the finite element method (FEM), the finite difference 

method (FDM), the boundary element method (BEM) and meshless method. The FEM 

given domain is viewed as a collection of subdomains, and over each subdomain the 

governing equation is approximated by any of the traditional variational methods. The 

main reason behind seeking approximate solution on a collection of subdomain is the 

fact that it is easier to represent a complicated function as a collection of geometrically 

simple subdomains. However, a few problems are not easy tasks for FEM that another 

numerical method, thus BEM is developed. The BEM uses Green’s theorem to reduce 
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the dimensionality of the problem such as a 3-D problem is reduced to a surface 

problems, a surface problem is reduced to a line problem. In the recent years, the 

meshless method can avoid the singularity or hypersingularity problem of BEM. 

Meshless method does not need the conception of elements, it is mesh-free for a model 

creation to solve engineering problems. Figure 1-1 depicts the mesh of FEM, BEM and 

meshless method for two-dimensional domain. In the BEM, the method of fundamental 

solutions (MFS) and Trefftz method are one kinds of the meshless methods. Figure 1-2 

shows the collocation point of the MFS and Trefftz method. 

The main concern of this thesis is that the optimal location of the MFS sources can be 

obtained by using the image concept. The image method is a technique that is widely 

known to solve Green’s function in theoretical physics [51]. When considering 

problems of obtaining Green’s functions for a bounded domain, the reflection is 

described by one or successive image sources, and the position and sign of the image 

sources are chosen so that the boundary conditions can be satisfied [7]. A simple image 

method for one-dimensional string is demonstrated in Fig. 1-3. The image method is an 

approach to construct a Green’s function for a part of domain bounded by planes, circles 

or spherical surface in terms of the corresponding fundamental solution in the full space. 

In certain cases, it is possible to obtain the exact solution for a concentrated source in a 

domain through superimposing the infinite plane or space solution for the given source 

and its image sources [38, 39]. The Greenberg’s book introduced the image method to 

solve the Laplace problem with circular boundaries [27]. An anisotropic film-substrate 

system solution of the edge dislocation was solved by using the image method [59]. The 

image solution of dielectric plate problem was also obtained [55]. However, they all 

focused on the Green’s function with plane or a circular (sphere) boundary only. 

In this thesis, we obtain semi-analytical and analytical solutions of the Green’s functions 

for Laplace problems with circular (spherical) boundaries by using the image method 

and bipolar (bispherical) coordinates system in conjunction with the addition theorem. 

In addition, we can link the image method and the MFS for Laplace problems by using 

the addition theorem. The analytical solutions of the three-dimensional problems were 
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derived by using the Trefftz method and the bispherical coordinate system, respectively. 

Also, the semi-analytical solutions were obtained by using the image method. The 

solutions derived by using the Trefftz method and MFS were proved to be 

mathematically equivalent for the 3-D case. Furthermore, it is found that final location 

of the image points terminate at the two focuses of the bipolar (bispherical) coordinates 

for both the two-dimensional and three-dimensional cases. Finally, not only Green’s 

function but also BVPs without sources are considered. 

1.2 Organization of the thesis 

The frame of the thesis is shown in Fig. 1-4. In this thesis, we solve the Green’s 

function and BVPs for the Laplace equation with circular and spherical boundaries by 

using the image method. We obtain the analytical solutions for two-dimensional and 

three-dimensional cases by using bipolar and bispherical coordinates, respectively. 

In Chapter 2, we focus on the application in deriving the solution of the Green’s 

function for the Laplace equation with circular boundaries by using the image method. 

The image method can be seen as a special case of the MFS with only at most four 

unknown strengths which are required to be determined. The optimal locations of 

sources in the MFS can be captured by using the image method and their positions are 

dependent on the source location and the geometry of problems. Moreover, it is found 

that final locations of image points in the image method terminate at the two focuses of 

the bipolar coordinates for all the two-dimensional cases.  

In Chapter 3, an image solution is obtained for the Green’s function with spherical 

boundaries. Furthermore, the mathematical equivalence between solutions derived by 

using the Trefftz method and the MFS for concentric spheres are examined. Also, the 

analytical solution is obtained by using the bispherical coordinates for the 

non-concentric spheres. Similarly, it is found that the final two images freeze at the two 

focuses in the bispherical coordinates for the three-dimensional cases as well as 2-D 

case in Chapter 2. In Chapter 4, we employ the image method to solve BVPs without 

sources. Not only 2-D and 3-D problems but also the symmetric and anti-symmetric 
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cases are considered. To verify the contour plot, analytical solutions by using 

bispherical and bipolar coordinates in the Lebedev et al.’s book [43] are compared with. 

Finally, we draw out some concluding remarks item by item and reveal some further 

topics in Chapter 5. 
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(a) FEM 

 

 
(b) BEM 

 

 
(c) meshless method 

 
 
 
 
 

Fig. 1-1 Model creation by using (a) FEM, (b) BEM and (c) meshless 
method. 
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(b) Trefftz method 
 

Fig. 1-2 The collocation point of the MFS and Trefftz method. 
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Fig. 1-3 A simple image method for one-dimensional string. 
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Chapter 2 Derivation of two-dimensional 
Green’s functions for Laplace problem with 

circular boundaries 
 

Summary 

Green’s functions of Laplace problems with circular boundaries are solved by 

using analytical and semi-analytical approaches. For the analytical solution, we 

derive the Green’s function by using the bipolar coordinates. The image method is 

a semi-analytical approach. It is interesting to find that the two frozen images for 

the eccentric annulus by using the image method are located on the two focuses in 

the bipolar coordinates. This finding also occurs for the cases of a half plane with 

a circular hole and an infinite plane with two circular holes. The image method 

can be seen as a special case of the MFS with only at most four unknown strengths 

to be determined. The optimal locations of sources in the MFS can be captured by 

using the image method and they are dependent on the source location and the 

geometry of problems. Three illustrative examples were demonstrated to verify 

this point. Agreement among the results is observed. 

2.1 Introduction 

A number of physical and engineering problems governed by the Laplace equation in 

two independent variables, e.g., steady-state heat conduction, electrostatic potential 

and fluid flow, were solved by using conformal mapping to obtain an analytical 

solution. Besides, we can formulate the same problems by using special curvilinear 

coordinates to obtain a solution, e.g., bipolar coordinates and elliptic coordinates. 

Carrier and Pearson [8] employed the bilinear transformation of conformal mapping to 

solve certain kinds of potential problems. An eccentric case was mapped to an annular 

domain. For a polygonal shape, it can also be mapped to a regular region by using the 
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Schwarz-Christoffel transformation [42]. For the regular geometry, it is easy to solve 

the Laplace problem by using the polar or Cartesian coordinates. Muskhelishivili [52] 

gave us a detailed description how an eccentric annulus can be mapped into concentric 

annulus by using a simple form of linear fractional transformation. Chen and Weng [21] 

also used the similar method to solve eccentric annulus problems. Although a bilinear 

transformation was used, the mapping functions were not exactly the same between the 

one of Carrier and Pearson [8] and that of Muskhelishivili [52]. Problems of eccentric 

annulus or a half plane with a circular hole usually use the bipolar coordinates to 

derive the analytical solution [28]. Ling [47], Timoshenko and Goodier [58], and 

Lebedev et al. [43] all presented an analytic solution of using the bipolar coordinates 

for the torsion of an eccentric bar. However, the mapping functions were not exactly 

the same. One is a cotangent function [47], another is a hyperbolic tangent function [43] 

and the other is a hyperbolic cotangent function [58]. After the bipolar coordinate 

system is introduced, the problem of special domain can be solved by using the 

separation of variables. Although Carrier and Pearson [8], Muskhelishivili [52], Ling 

[47], Timoshenko and Goodier [58] have solved the eccentric Laplace problems, their 

approaches are very similar but they are not the same. Chen et al. [17] found that all 

the forgoing approaches can be unified after suitable transformations, translation, 

rotation and taking log in the conformal mapping. However, we will focus on the 

Green’s function instead of BVP without sources in this chapter.  

Green’s function has been studied and applied in science and engineering by 

mathematicians as well as engineers, respectively [48]. A computer-friendly solution 

for the potential generated by a point source in the ring-shaped region was studied by 

Melnikov and Arman [49]. In order to derive the Green’s function, Thomson [57] 

proposed the concept of reciprocal radii to find the image source to satisfy the 

homogeneous Dirichlet boundary condition by using the image method. Greenberg [27] 

and Riley et al. [53] employed a trick to satisfy the condition for two special points, 

then the image location can be determined. Chen and Wu [18] proposed a natural and 

logical way to find the location of image and the strength by employing the degenerate 
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kernel. The image method is a classical approach for constructing the Green’s function. 

In certain cases, it is possible to obtain the exact solution for a concentrated source in a 

domain through superimposing the infinite plane solution for the given source and its 

image source. Although the scope of this method is limited, it yields a great deal of 

insight into the solution when it works [39]. Here, we will extend to a semi-analytical 

approach once the closed-form solution using the image method is not possible. Our 

goal is to broaden the scope of the image method. 

In this chapter, we have three issues. First, the image method is seen as a special case 

of the MFS, since its image singularities locate outside the domain. Second, the 

optimal locations of the MFS sources are found to be dependent on the source 

location and the geometry of the problems. Third, it is found that the two frozen 

images of the image method are located on the two focuses in the bipolar coordinates. 

By using the bipolar coordinates and the image method, three cases, an eccentric 

annulus, a half plane with a circular hole and an infinite domain with two holes are 

solved. The bipolar coordinates are reviewed for the eccentric ring in Section 2.2. In 

Section 2.3, the image method is employed to derive the Green’s function in problems 

with circular boundaries. Numerical results are given in Section 2.4. Finally, a 

conclusion is drawn in Section 2.5.  

2.2 Geometric characterization of the bipolar coordinates 

The relation between the bipolar coordinates ( , )ξ η  and the Cartesian coordinates (x, y) 

[17] are defined by 

1cot( )
2

x iy ic ζ+ = , iζ ξ η= + , (2-1)

where c is a positive constant. Equation (2-1) yields 
sinh

cosh cos
x c η

η ξ
=

−
, sin

cosh cos
y c ξ

η ξ
=

−
, (2-2)

where π ξ π− ≤ < , η−∞ < < ∞ . By eliminating ξ  in Eq. (2-2), we obtain a circle 

with the center at ( coth ,0)c η  and the radius csc hc η  as shown below: 
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2 2 2 2( coth ) cschx c y cη η− + = . (2-3)

Elimination of η  from Eq. (2-2) results in the other circle with the center at 

(0, cot )c ξ  and the radius of cscc ξ  as given below: 

( ) ( )2 2 2 2( cot ) cscx y c cξ ξ+ − = . (2-4)

From Eqs. (2-3) and (2-4), the bipolar coordinates are shown in Fig. 2-1(a). Denoting 

by 1 1( , )cr θ  and 2 2( , )cr θ , we have 

1 2
1 2,i i

c cx iy c r e x iy c r eθ θ+ + = + − = , (2-5)

1 2log( / )c cr rη= , 2 1ξ θ θ= − . (2-6)

It follows that a curve ξ = constant is a family of circles passing through the 

poles ( , 0)c± . The curve of η = constant shows a curve for which 1 2/c cr r = constant. 

The eccentric annulus is shown in Fig. 2-1(b). The outer radius b, inner radius a and 

the distance d are determined from Eq. (2-3) as shown below: 

csch( )1a c η= , (2-7)
csch( )2b c η= , (2-8)

2 1[coth( ) coth( )]d c η η= − . (2-9)

To describe an eccentric annulus in the bipolar coordinates, the three parameters, c, 1η  

and 2η  are determined as shown below: 

4 4 2 2 2 2 2 42 2 ( )
2

a b a b d a b d
c

d
+ − − + +

= , (2-10)

1
1 sinh c

a
η − ⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠

, (2-11)

1
2 sinh c

b
η − ⎛ ⎞⎟⎜= ⎟⎜ ⎟⎜⎝ ⎠

, (2-12)

where 1η  and 2η  denote the inter and outer circles, respectively. Then, we can 

describe an eccentric annulus by using the bipolar coordinates. In this case, the Green’s 

function was derived in terms of the bipolar coordinates as shown below [28]: 
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 (2-13)

where ( , )s sξ η  is the position of the source point.  

2.3 Image method 

For a problem of two-dimensional eccentric annulus as shown in Fig. 2-2, the Green’s 

function G(x, s) satisfies 
2 ( , ) ( )G x s x sδ∇ = − , x∈Ω , (2-14)

where Ω  is the domain of interest, x is the field point and δ  denotes the Dirac-delta 

function for the source at s. For simplicity, the Green’s function is considered to be 

subject to the Dirichlet boundary conditions. In this case, we obtain the location of 

image point by using the fundamental solution and matching the boundary condition. 

The eccentric annulus can be seen as a combination of interior and exterior problems 

as shown in Fig. 2-3. The source point and the image point are s and s′  in Fig. 2-3, 

respectively. When matching the homogeneous Dirichlet boundary conditions for the 

interior or exterior boundaries, position of the image source is at 2( / , )sa R θ , where 

( , )ss R θ= . We consider the fundamental solution ( , )U x s  that is governed by  

2 ( , ) 2 ( ).U x s x sπδ∇ = −  (2-15)

Then, we obtain the fundamental solution as follows: 
( , ) ln ,U x s r=  (2-16)

where r is the distance between s and x ( | |)r x s≡ − . Based on the separable property 

of the addition theorem or the so-called degenerate kernel, the fundamental solution 
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( , )U x s  can be expanded into a series form by separating the field point ( , )x ρ φ  and 

source point ( , )ss R θ  in the polar coordinates, 

1

1

1( , ; , ) ln ( ) cos ( ), ,
( , )

1( , ; , ) ln ( ) cos ( ), .

I m
s s s

m s

E ms
s s

m

U R R m R
m R

U x s
RU R m R

m

ρ
ρ φ θ θ φ ρ

ρ φ θ ρ θ φ ρ
ρ

∞

=

∞

=

⎧⎪⎪ = − − ≥∑⎪⎪⎪=⎨⎪⎪ = − − <∑⎪⎪⎪⎩

 (2-17)

The semi-analytical approach can solve the Green’s function of eccentric case. 

Following the successive image process, it is found that the final two image locations 

freeze at the 1cs  and 2cs . The Green’s functions for the three cases (a) an eccentric 

annulus, (b) a half plane with a circular hole and (c) an infinite plane with two holes 

are represented by 

( ){
}

4 3 4 2 4 1 4
1

1 1 2 2

1( , ) ln lim ln ln ln ln
2

( ) ln ( ) ln ( ) ,

N

i i i iN i

c c

G x s x s x s x s x s x s

c N x s c N x s e N
π − − −→∞ =

⎡= − − − + − − − − −∑⎢⎣

+ − + − + ⎤⎦

 (2-18)

where s4i-3, s4i-2, s4i-1 and s4i are the successive image locations [14], e(N) can be 

understood as a rigid body term, c1(N) and c2(N) are the singularity strengths of the two 

frozen points at 1cs  and 2cs  which can be determined by matching the boundary 

conditions. Table 2-1 demonstrates that the frozen image points 1cs  and 2cs  happen 

to be the focuses in the bipolar coordinates.  

2.4 Illustrative examples and discussions 

Case 1: An eccentric case (a special case: annular case [49]) 

The problem sketch of an eccentric annulus is shown in Fig. 2-2. The location of image 

source and bipolar coordinates are shown in Fig. 2-4(a). The source point is located at 

(0, 0.75)s = . The centers of two holes are set at (0, 0) and (-4, 0), and radii are 0.4 and 

1.0 for the inner and outer boundaries, respectively. Following the success of annulus 

case for the iterative images, we now extend to the eccentric case. In a similar way of 

finding the successive images for matching the inner and outer boundary conditions 

[14], the solution can be superimposed by using Eq. (2-18). Finally, we can find that 

the final frozen image points and the focuses of the bipolar coordinates are the same. 
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After collocating some points to match the boundary conditions, all the unknown 

coefficients can be determined. The results are compared well with the analytical 

solution by using the bipolar coordinates. The contour plots by using the present 

method of Eq. (2-18), the bipolar coordinates of Eq. (2-13) and the null-field BIEM [11] 

are shown in Fig. 2-5. 

Case 2: A half plane with a circular hole 

Figure 2-4(b) depicts the Green’s function for the half plane with a hole and the 

Dirichlet boundary condition. The source point is located at s=(3, 0). The center and 

radius of the hole is (0, 0) and a=1. The d/2=1.25 is the distance from the center to the 

ground line. Similarly, the analytical and semi-analytical solutions are obtained by 

using the bipolar coordinates and the image method, respectively. The results agree 

well with those of the null-field BIEM [11] in Fig. 2-6. 

Case 3: An infinite plane with two circular holes 

Following the success of the eccentric annulus case for the iterative images, we now 

extend to the infinite plane with two circular holes as shown in Table 2-1. The problem 

sketch of the infinite plane with two circular holes is shown in Fig. 2-4(c). The source 

point is located at s=(3.85, 0). The centers of two holes are set at (0, 0) and (2.1, 0), 

their radii are 0.4 and 1.0, respectively. In a similar way of finding the image for 

matching boundary conditions [14], an image solution is derived. We also found that 

the final frozen image points approach to the focuses of the bipolar coordinates. Based 

on the image solution for an infinite plane with a circular hole subject to the Neumann 

BC, an extra source at the center of hole is required. This motivates us to put sources at 

two centers of the holes to obtain acceptable results. Therefore, Eq. (2-18) is extended 

to 

)2 1 2 1 1 2 2
1

1 2
1 1 2 2

1 1

1( , ) ln lim ln ln ( ) ln ( ) ln
2

( ) ln ln ( ) ln ln ,

N

i i c cN
i

M M

d j d j
j j

G x s x s x s x s c N x s c N x s

d N x s x s d N x s x s

π −→∞
=

= =

⎧ ⎡⎛⎪⎪ ⎜⎢= − + − + − + − + −⎨ ⎜⎜⎪ ⎢⎝⎪⎩ ⎣
⎡ ⎤ ⎡ ⎤⎫⎪⎪⎢ ⎥ ⎢ ⎥+ − + − + − + − ⎬⎢ ⎥ ⎢ ⎥⎪⎪⎣ ⎦ ⎣ ⎦⎭

∑

∑ ∑
 (2-19)

where the 1ds  and 2ds  are located at the two centers of holes, 1
js  and 2

js  are the 



15 

successive images due to 1ds  and 2ds , respectively. The results agree well with those 

of the null-field BIEM [11] and the conventional MFS in Fig. 2-7. It is interesting to 

find that the final images also freeze at focuses in the bipolar coordinates. The results 

are summarized in Table 2-1.  

2.5 Conclusions 

In this chapter, Green’s functions were derived using the bipolar coordinates and the 

image method. It is found that final image points terminate at the two focuses of the 

bipolar coordinates for all the three cases, an eccentric annulus, a half plane with a 

circular hole and an infinite plane with two circular holes. The optimal source 

distribution in MFS is dependent on the given geometry and the source location. An 

image method can guide as to search for an optimal source location of MFS and can 

determine the strengths of sources except the two frozen images. Three examples were 

demonstrated to find all the image sources for constructing the Green’s function. The 

dimension in the linear algebraic equation is at most four in all the examples. 

Agreement is observed after comparing with other solutions. 
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Table 2-1 Frozen points of the image method and focuses in the bipolar coordinates. 
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       (a) Bipolar coordinates system (poles located on ( 1,0± )) 

 
 

Figure 2-1 The sketch of curve family (a) bipolar coordinate system, (b) geometric 
relation of bipolar coordinates. 
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Figure 2-2 Problem sketch for the Green’s function of an eccentric annulus. 
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(a) 
 

 

 
(b) 

Figure 2-3 Sketch of position of image point (a) an interior case, and (b) an exterior case.
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(a) an eccentric annulus 

 

 
(b) a half plane with a circular hole 

 

 
 

(c) an infinite plane with two circular holes 
Figure 2-4 Final images and the focuses of the bipolar coordinate (a) an eccentric 

annulus, (b) a half plane with a circular hole and (c) an infinite plane with two circular 
holes. 
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(c) solution using superposition 
technique and the null-field BIEM

(d) solution using the Green’s third  
   identity in the null-field BIEM  

Figure 2-5 Green’s function using (a) an analytical solution using bipolar coordinate, 
(b) image solution, (c) solution using superposition technique and the null-field 

BIEM [11] and (d) solution using the Green’s third identity in the null field BIEM. 
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(c) solution using superposition technique and 

the null-field BIEM 
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(d) solution using the Green’s third identity in 

the null-field BIEM 

Figure 2-6 Green’s function using (a) an analytical solution using bipolar coordinate, (b) image 
solution, (c) solution using superposition technique and the null-field BIEM [11] and (d) solution 

using the Green’s third identity in the null field BIEM. 
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(c) solution using the Green’s third identity in 

the null-field BIEM 
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(d) solution of MFS 

Figure 2-7 Green’s function using (a) image solution, (b) solution using superposition technique 
the null-field BIEM [11], (c) solution using the Green’s third identity in the null field BIEM and 

(d) solution of MFS. 
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Chapter 3 Derivation of three-dimensional Green’s 
function for Laplace problem with sphere boundaries 

 

Summary 

Following the success of the mathematical equivalence between the Trefftz method and 

the MFS for the annular Green’s function [14], we extend to solve the Green’s function 

of 3-D problems in this chapter. The Green’s function of the concentric sphere is first 

derived by using the image method which can be seen as a special case of MFS 

solutions. Dirichlet boundary conditions are considered. Also, the Trefftz method is 

employed to derive the analytical solution by using the T-complete sets. By employing 

the addition theorem, both solutions are found to be mathematically equivalent when the 

number of Trefftz bases and the number of image points are both infinite. In the 

successive image process, the final two images freeze at the origin and infinity, where 

their singularity strengths can be analytically and numerically determined in a consistent 

manner. The agreement among the three results, including two analytical solutions by 

using the Trefftz method and the image method, and one numerical solution by using 

the conventional MFS is observed. 

The main result is the analytical derivation of Green’s function for the domain bounded 

by non-concentric spheres in terms of bispherical coordinates. Both surfaces, inner and 

outer boundaries are specified by the Dirichelet boundary conditions. This work can be 

seen as an extension study for the Green’s function of eccentric annulus derived by 

Heyda. To verify the solution, a semi-analytical solution using the image method and a 

numerical solution using the MFS are utilized for comparisons. Good agreement is 

made. 

3.1 Introduction 

In 1926, Trefftz presented the Trefftz method for solving boundary value problems by 

superimposing the functions which satisfy the governing equation [40]. The unknown 
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coefficients are determined by matching the boundary condition. In the potential theory, 

it is well known that the MFS can solve potential problems when a fundamental 

solution is known. This method was proposed by Kupradze [41] in Russia. The MFS 

can be viewed as an indirect boundary element method containing concentrated sources 

instead of boundary distributions. The initial idea is to approximate the solution through 

a linear combination of fundamental solutions where sources are located outside the 

domain of the problem. Moreover, it has certain advantages over BEM, e.g., no 

singularity and no boundary integrals are required. Bogomolny [6] studied the stability 

and error bound of the MFS. Li et al. [46] used the effective condition number to study 

the ill-poseness of collocation approaches, the MFS and the Trefftz method. They found 

that the condition number of the MFS is much worst than that of the Trefftz method. 

Although the Trefftz method and the MFS individually have a long history, the link 

between the two methods was not discussed in the literature until Chen et al.’s papers 

[14, 19]. Researchers have paid attention to construct the mathematical relationship 

between the Trefftz method and MFS since 2006. For example, Schabck [54] found that 

the MFS with singularity at infinity behaves like the Trefftz base of harmonic 

polynomials. Chen et al. proved the equivalence between the Trefftz method and the 

MFS for Laplace and biharmonic problems containing a circular domain [19]. The key 

point is the use of the degenerate kernel or so-called the addition theorem. They only 

proved the equivalence by demonstrating a simple circle with angular distribution of 

singularity to link the two methods. Following the success of deriving the annular 

Green’s function [14], we plan to derive the Green’s function of a concentric sphere. 

Here, we also distribute singularities along the radial direction by using the method of 

image. Image solutions and Trefftz results for the annular Green’s function were 

obtained [14].  Since a two-dimensional problem can be solved easily by using the 

complex variable, the image method can be seen as an alternative way to obtain the 

solution. However, the extension to 3-D problem is limited for the theory of complex 

variable. The image method can deal with the 3-D problems without any difficulty. 

An analytical solution for the Green’s function of an annular ring was given in the book 

of Courant and Hilbert [25]. When the bounding circles of the annular region are no 
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longer concentric, the reflection principle is not easy to be implemented. In the Lebedev 

et al.’s book [43], many special coordinates were mentioned to solve problems with a 

special geometry such as the bipolar coordinates and the bispherical coordinates. Upon 

introducing the bipolar coordinates as given in [43, 51], the Green’s function of an 

eccentric annulus has been derived by Heyda [28]. Chen et al. [13, 14] employed the 

image method to revisit the Green’s functions for annular (analytical) and eccentric 

(semi-analytical) cases. In the recent years, the method of fundamental solutions to 

solve boundary value problem also attracted the attention of researchers since the 

numerical method is truly meshless. In this paper, we solve the Green’s function for the 

domain bounded by non-concentric spheres using the biospherical coordinates. This 

solution was not provided in the Lebedev et al.’s book [43] and was not solved by 

Heyda [28]. The fundamental solution is expanded into a series form in terms of the 

bispherical coordinates. The solution is decomposed into singular and regular parts. 

After matching the boundary conditions, the unknown coefficients in the regular part 

solution can be determined. To verify the accuracy of the analytical solution, one 

semi-analytical solution using the image method and one numerical solution using the 

MFS are utilized for comparisons. 

In this paper, we focus on proving the mathematical equivalence on the Green’s 

functions for the Laplace problem of a concentric sphere derived by using the Trefftz 

method and the image method. Both surfaces of inner and outer boundaries are specified 

by the Dirichlet boundary conditions. By employing the image method and the addition 

theorem, the mathematical equivalence of the two solutions derived by using the Trefftz 

method and the image method will be proved when the number of successive image 

points and the number of the Trefftz bases are both infinite. The image method can be 

seen as a special case of the conventional MFS, since its image singularities locate 

outside the domain. The solution by using the image method for constructing the 2-D 

Green’s function also indicates that a free constant is required for the completeness of 

the solution which is always neglected in the conventional MFS. In the 3-D case, the 

free constant becomes zero as the number of successive image points become infinity. 
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3.2 Construction of the Green’s function for the domain 
boundary by concentric sphere by using the image method 
and the MFS  

3.2.1 The image solution 

For the problem of concentric sphere as shown in Fig. 3-1, the Green’s function satisfies 
2 ( , ) ( )G x s x sδ∇ = − , x D∈ , (3-1) 

where D is the domain of interest and δ  denotes the Dirac-delta function for the source 

at s. For simplicity, the Green’s function is considered to be subject to the Dirichlet 

boundary condition, 
( , ) 0G x s = , 1 2x B B∪∈ , (3-2) 

where B1 and B2 are the inner and outer boundaries of the sphere, respectively. We 

consider the fundamental solution ( , )U s x  for a source singularity which satisfies 
2 ( , ) ( )U x s x sδ∇ = − . (3-3) 

Then, we obtain the fundamental solution as follows: 
1( , )

4
U x s

rπ
−

= , (3-4) 

where r is the distance between s and x ( | |r x s≡ − ). Based on the separable property of 

the addition theorem or degenerate kernel, the fundamental solution ( , )U x s  can be 

expanded into series form in the spherical coordinates: 
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 (3-5) 

where ( , , )x ρ θ φ= , ( , , )ss R θ φ= , ( )m
nP i  is the associated Legendre polynomial, the 

superscripts of i and e denote the interior and exterior regions, respectively, and mε  is 

the Neumann factor which defined by, 
1, 0,
2, 1,2, .m

m
m "

ε
⎧ =⎪⎪=⎨⎪ = ∞⎪⎩

 (3-6) 

As mentioned in [16], the interior and exterior Green’s functions can satisfy the 

homogeneous Dirichlet boundary conditions if the image source is correctly selected. 
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The closed-form Green’s functions for both interior and exterior problems are written to 

be the same form 
1 1 1( , ; ) ,  

4 '
sRG x s s x D

x s a x sπ
−⎛ ⎞′ = + ∈⎜ ⎟− −⎝ ⎠

, (3-7) 

where a is the radius of the sphere, ( , / 2, 0)ss R π= , and s′  is the image source and 

its position is at 2( , / 2, 0)sa R π  as shown in Fig. 3-2. It is interesting that the 

formulae for the location of image are the same as the 2-D case [14]. However, the 

magnitude of strength ( )/sR a  is different from the 2-D case [14]. 

In order to match the inner and outer homogenous Dirichlet boundary conditions, the 

image relation between the source point and successive image points yields 
2 2 2 2 2
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 (3-8) 

The successive image points for the concentric sphere are shown in Fig. 3-3. After 

successive image process, the main part of Green’s function is expressed by 

4 3 4 2 4 1 4

1 4 3 4 2 4 1 4

1 1( , ) lim ,
4

N
i i i i
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∑  (3-9) 

where wk is the weighting of the kth image point which is determined by [16] 
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Satisfaction of the boundary condition by using interpolation functions 

We set ( , )mG x s  to be the main part of the Green’s function in Eq. (3-9). Unfortunately, 

( , )mG x s  in Eq. (3-9) can not simultaneously satisfy both the inner and outer boundary 
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conditions of ( , ) ( , ) 0m a m bG x s G x s= = , where ( , , )ax a θ φ= , ( , , )bx b θ φ= , 

0 θ π≤ ≤ , 0 2φ π≤ ≤ . In order to satisfy both the inner and outer boundary conditions, 

an alternative method is introduced such that we have 
( ) ( )( , ) ( , ) ( , ) ( , ), ,
( ) ( )m m b m a

b a a bG x s G x s G x s G x s a b
b a b a
ρ ρ ρ

ρ ρ
⎛ ⎞ ⎛ ⎞− −

= − − ≤ ≤⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 (3-11) 

where ( )( ) / ( )b a b aρ ρ− −  and ( )( ) / ( )a b b aρ ρ− −  are the interpolation functions, 
1( , ) ( )N

m b
aG x s
b b

= −  and 1( , ) ( )N
m a

s

aG x s
R b
−

= . Therefore, Eq. (3-11) can be simplified 

to  
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where ( )
( )

N s

s

a RaC
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 and ( )( ) .
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N s
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a R baD
b R a b

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 Equation (3-12) indicates 

that not only image singularities at 4 3is − , 4 2is − , 4 1is −  and 4is  , but also one singularity 

at the origin and one rigid body term for one singularity at infinity are required. The 

Green’s function in Eq. (3-12) satisfies the governing equation and boundary conditions 

at the same time. It is found that a conventional MFS always loses a free constant and 

completeness may be questionable.  

Satisfaction of boundary conditions to determine two singularity strengths at the 

origin and infinity 

After successive image process, the final two image locations freeze at the origin and 

infinity. There are two strengths of singularities to be determined. Therefore, the 

Green’s function is rewritten as 

4 3 4 2 4 1 4

1 4 3 4 2 4 1 4
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∑
 (3-13) 
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where the final two images locate at the center of sphere and infinity with strength of 

c(N) and d(N), respectively, which can be analytically and numerically determined by 

matching the inner and outer boundary conditions. 

After matching the inner and outer boundary conditions, the unknown coefficients c(N) 

and d(N) are determined by using the numerical method and analytical approach are 

shown in Fig. 3-4. Agreement is made. 

3.2.2 The conventional MFS [41] 

In the method of fundamental solutions, the Green’s function ( , )G x s  is superimposed 

by using the fundamental solutions ( , )U x s , as follows: 

1

1( , ) ( , ), ,
4

MN

j j
j

G x s U x s x D
r

α
π =

−
= + ∈∑  (3-14) 

where the MN  is the number of source points which are distributed outside the domain, 

jα  is the thj  unknown coefficient. By similarly matching the boundary conditions in 

Eq. (3-2), the unknown coefficient jα  can be determined. Then, we have a numerical 

solution. By comparing Eq. (3-13) with Eq. (3-14), the image method of Eq. (3-13) can 

be seen as a special MFS of Eq. (3-14) with optimal locations and specified strengths 

for the singularities except the two strengths at two frozen points. 

3.3 Derivation of the Green’s function for the domain 
bounded by concentric spheres using the Trefftz method 

The problem of a concentric sphere in Fig. 3-5 can be decomposed into two parts. One 

is an infinite space with a concentrated source (fundamental solution) in Fig. 3-5(a) and 

the other is subject to specified boundary conditions as shown in Fig. 3-5(b). The 

first-part solution can be obtained from the fundamental solution. Here, the second part 

is solved by using the Trefftz method. The solution can be superposed by using the 

Trefftz bases as shown below: 

1
( , ) ,

TN

T j j
j

G x s p
=

= Φ∑  (3-15) 

where jp  is the weighting, jΦ  is the jth T-complete function and NT is the number of 

T-complete functions. Here, the T-complete functions are given as 1, 
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(cos )cos( )n m
nP mρ θ φ  and (cos )sin( )n m

nP mρ θ φ  for the interior case and 1/ ρ , 
( 1) (cos )cos( )n m

nP mρ θ φ− +  and ( 1) (cos )sin( )n m
nP mρ θ φ− +  for the exterior case. The 

second-part solution can be represented by 
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where 00A , 00B , nmA , nmB , nmC  and nmD  are unknown coefficients. By matching the 

boundary conditions, the unknown coefficients can be determined. Then, the 

series-form Green’s function is obtained by superimposing the solutions of ( , )U x s  

and ( , )TG x s  as shown below: 
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where the unknown coefficients are obtained as shown below: 
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It is interesting to find that Eq. (3-18) can be included into Eq. (3-19) since we 

introduce the Neumann factor and set n=m=0. We will prove the equivalence of 

solutions derived by using the Trefftz method and the image method (special MFS) in 

the next section. 
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3.4 Mathematical equivalence for the solutions derived by the 
MFS and Trefftz method 

3.4.1 Method of fundamental solutions (image method) 

The image method can be seen as a special case of the conventional MFS, since its 

singularities are located outside the domain. The Green’s function of Eq. (3-13) can be 

expanded into a series form by separating the field point x and source point s for the 

fundamental solution in the spherical coordinates of Eq. (3-5) as shown below: 
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By using Eqs. (3-8) and (3-10), the series containing four geometry series with the same 

ratio of ( )2 1/ na b +  which is smaller than one in Eq. (3-13) can be rearranged into 
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s ) (cos ),m

nPθ θ

 (3-22) 

after expanding all the image singularities of 1/ r−  functions. It is interesting to find 

that the optimal location may not be the expansion type of Fig. 3-6(a) or angular 

distribution of Fig. 3-6(b) but a lump singularity in one radial direction shown in Fig. 

3-6(c) as mentioned by Antunes [2]. In this paper, our image location in the MFS only 

distribute along the radial direction which agrees with the optimal location in [2]. This 

finding agrees with the experience in the annular case [14] and the present case of a 

concentric sphere. 

3.4.2 Trefftz method 

Substitution of Eqs. (3-18)-(3-20) into Eq. (3-17) yields 
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After comparing Eq. (3-22) with Eq. (3-23), it is found that the two solutions, Eqs. 

(3-13) and (3-17) are proved to be mathematically equivalent by using the addition 

theorem when the number of images and the number of Trefftz bases are both infinite. 

To verify the Trefftz and image solutions, the conventional MFS is utilized for 

comparison. The distribution of collocation nodes and images (sources of MFS) is 

shown in Fig. 3-7. Contour plots by using the three approaches are shown in Fig. 3-8. 

Good agreement is observed. 

3.5 Derivation of the Green’s function for non-concentric 
spheres 

3.5.1 Geometric characterization of the bispherical coordinates 

Many curvilinear coordinates were mentioned to deal with problems of special 

geometry [43]. For example, the bipolar coordinates are suitable for the eccentric 

annulus as shown in Fig. 3-9. The relation between the Cartesian coordinates ( , )x y  

and the bipolar coordinates ( , )ξ η  can be linked by 

sinh( ) sin( ), ,
cosh( ) cos( ) cosh( ) cos( )

x c y cη ξ
η ξ η ξ

= =
− −

 (3-24) 

where c  is the half distance between two focuses. Similarly, the non-concentric 

spheres problem can be described by using the bispherical coordinates as shown in Fig. 

3-10. The bispherical coordinates are obtained by rotating the bipolar axes about the line 

between two focuses, and the relationship to the Cartensian coordinates is shown below: 

sin( ) cos( ) sin( )sin( ) sinh( ), , ,
cosh( ) cos( ) cosh( ) cos( ) cosh( ) cos( )

x c y c z cξ φ ξ φ η
η ξ η ξ η ξ

= = =
− − −

 (3-25) 

where 0 ξ π< < , η−∞ < < ∞ , π φ π− < < , and 

1
2 1

2
, ln , arctan( ).c

c

r y
r xξ θ θ η φ⎛ ⎞= − = =⎜ ⎟

⎝ ⎠
 (3-26) 
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It follows that the curves ξ = constant are a family of spheres passing through two 

focuses (0, , 0)c±  which can be described by 
2 2 2 2( cot( )) csc ( ),xyr c z cξ ξ− + =  (3-27) 

where 2 2
xyr x y= + . The curve of η = constant are also a family of spheres with the 

center at coth( )y c η= , which can also be described by 
2 2 2 2( coth( )) csch ( )xyy c r cη η− + = . (3-28) 

The inner radius a, outer radius b and the distance h between two centers for the 

non-concentric spheres are given by 

csch( )1a c η= , (3-29) 
csch( )2b c η= , (3-30) 

2 1[coth( ) coth( )]h c η η= − , (3-31) 

in Fig. 3-10, respectively. In order to describe the non-concentric spheres in the 

bispherical coordinates, the three parameters, c , 1η  and 2η  are determined as 

follows, 

4 4 2 2 2 2 2 42 2 ( )
2

a b a b h a b h
c

h
+ − − + +

= , (3-29) 

( )1
1 sinh c

aη −= , (3-30) 

( )1
2 sinh c

bη −= . (3-31) 

The coordinates of two focuses are obtained as shown below: 

1 (0,  ,  0)c c= − , (3-32) 

2 (0, , 0)c  c  = . (3-33) 
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For this case, the Green’s function was derived in terms of the bispherical coordinates 

as shown below [43]: 
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 (3-34) 

where the subscript s  for ξ , η  and φ  denotes the location of source in the 

bispherical coordinates, and the factors xh  and sh  are defined by 
cosh( ) cos( )xh η ξ= − , (3-35) 

cosh( ) cos( )s s sh η ξ= − . (3-36) 

3.5.2 Image method – semi-analytical solution 

For the problem of non-concentric spheres as shown in Fig. 3-11, the Green’s function 

satisfies 
2 ( , ) ( )G x s x sδ∇ = − , x D∈ , (3-37) 

where D  is the domain, δ  denotes the Dirac-delta function, x  is the field point and 

s  is the source point. The specified boundary condition is the Dirichlet type, 

( , ) 0G x s = , 1 2x B B∪∈ , (3-38) 

where 1B  and 2B  are the inner and outer boundaries, respectively. The 

semi-analytical approach can solve the Green’s function of non-concentric case. 

Following the successive image process that image points for the non-concentric 

spheres is shown in Fig. 3-12, it is found that the final two image locations freeze at the 

1cs  and 2cs . The image solution for non-concentric spheres is below: 
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where c1(N) and c2(N) are the singularity strengths of the two frozen points at 1cs  and  

2cs  which can be determined by matching the boundary conditions. Then, we have the 
image solution of Eq. (3-39) which belongs to a semi-analytical solution. 

3.6 Illustrative examples and discussions 

Case 1: Green’s function for a domain bounded by non-concentric spheres (a  

concentrated source at the z axis) 

In the first case, a Green’s function for non-concentric spheres and its location of the 

concentrated source is at the z axis as shown in Fig. 3-13. The distance from the center 

of outer sphere to the source point is equal to 2.5. The two radii of inner and outer 

spheres are 2a =  and 5b = , respectively. The two centers of inner and outer spheres 

are 1(0,  0,  coth( ))c η  and 2(0,  0,  coth( )),c η  the distance h  between two centers is 

equal to 2 . The distribution of fictitious sources is shown in Fig 3-14. Figures 3-15(a) 

to 8(c) show the potential contours by using the bispherical coordinates (an analytical 

solution), the image method (a semi-analytical solution) and the method of fundamental 

solutions (a numerical solution). The distribution of image points is shown in Fig. 3-12, 

while the sources distribution of the MFS is shown in Fig. 3-14. The frozen images 

happen to be the two focuses in the bispherical coordinates. It is found that the results of 

three approaches match well.  

Case 2: Green’s function for a non-concentric spheres (a concentrated source at S2) 

In the second case, the concentrated source is moved to 2 2(2.5,  0,  coth( ))s c η=  as 

shown in Fig. 3-16. The other parameters of geometry are the same with the case 1. 

Also, the frozen images terminate at the two focuses in the bispherical coordinates. 

Figures 3-17(a) to (c) show the potential contours by using three approaches. Similarly, 

good agreement is made after comparing other results. 



37 

3.7 Concluding remarks 

In this chapter, not only the image method (a special MFS) but also the Trefftz method 

was employed to solve the Green’s function of 3-D Laplace problems bounded by 

concentric spheres. The two solutions using the Trefftz method and MFS for the 

fixed-fixed case were proved to be mathematically equivalent by using the addition 

theorem or so-called degenerate kernel. Also, the solution of image method shows the 

existence of the free constant which is always overlooked in the conventional MFS 

although it becomes zero as the number of images approaches infinity. Finally, we also 

found the final two frozen image points at the origin and infinity where their strengths 

can be determined numerically and analytically in a consistent manner. Contour plots by 

using the three approaches, Trefftz method, image method and MFS, agree well. 

In other cases, analytical Green’s functions for the three-dimensional Laplace problems 

were derived. After comparing with the semi-analytical solution using the image 

method and the numerical solution determined by the method of fundamental solutions, 

the agreement was observed to verify the accuracy of the analytical solution. This 

analytical solution can provide a benchmark example for the Green’s function of 3-D 

Laplace problems. 
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Figure 3-1 Sketch of an annular sphere subject to a concentrated load. 

 

 

 

(a) interior case (b) exterior case 

Figure 3-2 Sketch of position of image point (a) interior case and (b) exterior     
case. 
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Figure 3-3 Successive images for an annular problem. 
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Figure 3-4 Coefficients of c(N) and d(N) versus N for the fixed-fixed case. 
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Figure 3-5 Sketch of the superposition approach. (a) an infinite space with a 
concentrated source. (b) a concentric sphere subject to the Dirichlet boundary 

condition. 
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Figure 3-6 Optimal locations for conventional MFS [2]. 
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Figure 3-7 Sketches of (a) Trefftz method, (b) image method and (c) MFS. 

a′

b′

(a) Trefftz method  

(b) Image method (Special MFS, radial distribution of singularities) 

(c) Conventional MFS (angular distribution of singularities) 
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Figure 3-8(a) Potential contour by using the bispherical coordinates ( 2z =  plane). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-8(b) Potential contour by using the image method ( 2z =  plane). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-8 (c) Potential contour by using the MFS ( 2z =  plane). 
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Figure 3-9 An eccentric annulus in the bipolar coordinate system (2-D case). 

 

Figure 3-10 A non-concentric problem in the bispherical coordinate system (3-D case).

 

Figure 3-11 A Green’s function for a domain bounded by non-concentric spheres. 
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Figure 3-12 Successive image points of the non-concentric sphere and two frozen images 

at 1cs  and 2cs . 

 

 

Figure 3-13 A non-concentric sphere with a concentrated source at the z axis. 
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Figure 3-14 Distribution of fictitious sources of the MFS. 
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Figure 3-15(a) Potential contour by using the bispherical coordinates ( 0z =  plane) 

(an analytical solution). 
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Figure 3-15(b) Potential contour by using the image method ( 0z =  plane)  

(a semi-analytical solution). 
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Figure 3-15(c) Potential contour by using the MFS ( 0z =  plane)  

(a numerical solution). 
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Figure 3-16 A non-concentric sphere with a concentrated source at 2 2 2 2( , , )s s ss ξ η φ= .
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Figure 3-17(a) Potential contour by using the bispherical coordinates ( 0z =  plane) 

(an analytical solution). 

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

 
Figure 3-17(b) Potential contour by using the image method ( 0z =  plane) 

 (a semi-analytical solution). 
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Figure 3-17(c) Potential contour by using the MFS ( 0z =  plane) 

 (a numerical solution). 
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Chapter 4 Image solutions for boundary value 
problems without sources 

 

Summary 

In this chapter, we employ the image method to solve BVPs without sources. Two and 

three dimensional problems as well as symmetric and anti-symmetric cases are 

considered. By treating the image method as a special case of MFS, only at most four 

unknown strengths, distributed at the center, two locations of frozen images and one 

free constant, need to be determined. Besides, the optimal locations of sources are 

determined. For the symmetric and anti-symmetric cases, only two coefficients are 

required to match the two boundary conditions. The convergence rate versus number of 

image group is numerically performed. The differences of the image solutions between 

2-D and 3-D problems are addressed. It is found that the two-dimensional solution in 

terms of the bipolar coordinates is mathematically equivalent to that of the simplest 

MFS with only two sources and one free constant. Finally, several examples are 

demonstrated to see the validity of the image method for BVPs. 

4.1 Introduction  

The image method is a popular approach in the theoretical physics [51] and has 

commonly been used in multidisciplines such as electro-magnetics, acoustics and optics. 

When solving problems by using the Green’s functions for a bounded domain, the 

reflection is described by one or successive image sources, and the position and sign of 

the image sources is chosen so that the boundary conditions can be satisfied [7]. Green’s 

function for a part of domain bounded by planes, circles or spherical surface in terms of 

the corresponding fundamental solution in the full space can be found in the literature 

[27]. In certain cases, it is possible to obtain the exact solution for a concentrated source 

in a domain through superimposing the infinite plane or infinite space solution for the 

given source and its image sources. Although the scope of this method is limited for 
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special geometry, it yields a great deal of insight into the solution when it works [38, 39]. 

As a result of the aforementioned consideration, many theoretical studies concerning the 

Green’s function in circular and spherical boundaries have appeared in the literature. 

For example, Green’s function for plane boundaries has been investigated [56]. The 

image method was employed to solve edge dislocation in an anisotropic film-substrate 

system [59] and dielectric plate [55]. Chen et al. [13, 14] solved Green’s functions of 

annulus or concentric spheres by using the image method. It is found that almost all the 

related works on the image method deal with the problem with a true source in the 

domain. Although Cheng’s book [22] has employed the image method to solve the 

boundary value problems (BVPs) of an infinite space with two spherical boundaries, the 

frozen image locations were not found to be the focuses of the bispherical coordinates. 

However, we may wonder whether the image method may work for BVPs without 

sources in the domain. Bispherical and bipolar coordinates were always used to derive 

the analytical solutions for problems containing boundaries of two spheres or circles 

[43], respectively. The BVPs of eccentric annulus were solved in a unified way of 

conformal mapping [17]. Problems with several circular boundaries were solved by 

using the null-field BIEM [16].  

In this chapter, we will illustrate several examples to demonstrate the possible use of 

image method in solving 2-D and 3-D BVPs without sources. Symmetric, 

anti-symmetric and eccentric cases are considered. Based on the singularities distributed 

outside the domain for the image method, it can be seen as a special MFS with optimal 

locations and strengths of sources. To verify our image idea, analytical solutions by 

using the bipolar and bispherical coordinates are used to check the accuracy of our 

results. Besides, numerical results using the conventional MFS and null-field BIEM are 

also given for comparison. An infinite space with two spherical cavities as well as an 

infinite plane with two circular holes are both considered. Besides, an eccentric sphere 

is also given. Also, the static result for a limiting case of two-spheres radiation to 

simulate Laplace problems is provided for comparison.  
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4.2 Derivation of the image solution for BVPs 

4.2.1  3-D BVP 

The problem of an infinite space with two spherical cavities is shown in Fig. 4-1 and the 

governing equation is  

2 ( ) 0, ,u x x D∇ = ∈  (4-1)

where ▽2 is the Laplacian, u(x) is the potential function and D is the domain of interest. 

For a two-spheres case, the boundary conditions are  

1 1( ) , ,u x V x B= ∈  (4-2)

2 2( ) , ,u x V x B= ∈  (4-3)

where B1 and B2 are left and right spherical boundaries with boundary data of V1 and V2, 

respectively. In this case, the analytical solution [43] was derived in terms of the 

bispherical coordinates as shown below: 

0
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 (4-4)

where ξ = constant is a family of spindle-shaped surfaces passing through the poles 

(0, , 0)c± , 0η  is on the right spherical boundary, η = constant shows a surface of 

( )1 2ln /c cr r = constant, and ( )nP •  is the Legendre polynomial. It contains both 

symmetric and anti-symmetric problems. 

The problem of infinite space with two spherical cavities can be seen as a combination 

of symmetric and anti-symmetric problems as shown in Fig. 4-2(a) and (b). The 

fundamental solution of the three-dimensional Laplace equation is shown below: 

1( , )U x s
r
−

= , (4-5)
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where r is the distance between the source point s and the field point x ( | |r x s≡ − ). For 

the symmetric case, we derive the solution by using the image concept. To satisfy the 

nonhomogeneous boundary conditions (BCs) on the two spherical surfaces, both 

artificial sources at the two centers outside the domain are initiated in advance. 

However, the source at the left (right) center also results a nonzero potential on the right 

(left) boundary. Therefore, successive images are required to construct the solution as 

given below: 

1 2
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where three coefficients of symmetric case, qs(N), 1 ( )sc N  and 2 ( )sc N  are required to 

be determined by matching the boundary conditions, ro1 and  ro2 are the distances 

between center and field point. Two frozen images, 1cs  and 2cs , are found after 

successive images. The locations of two frozen images must simultaneously satisfy 
2

2

1
2

2

c

c

d aR
d R

+ =
⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜⎝ ⎠

, 1 2c cR R= , 
(4-7)

where a, d, Rc1 and Rc2 are shown in Fig. 4-2. The distance between the two focuses is 

denoted by 

1 2 2c cR R c+ = . (4-8)

The parameter c is the half distance between the two focuses in the bispherical 

coordinates which can be obtained by: 

2 24
2

d ac −
= . (4-9)

The wk in Eq. (4-6) is the weighting of the kth image source that can be obtained by 

using the formula of image location [14] as shown below: 
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where Rk is the distance between the kth image source and the center of left cavity, and 

they are determined by the recurrence relation 
2 2 2
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Here, the image solution for an anti-symmetric problem is shown below: 

1 2

4 3 4 2 4 1 4

11 2 4 3 4 2 4 1 4

1 2

1 1( ) lim ( )

( ) ( ) ,

N
a i i i i

N io o i i i i

a a

c c

w w w wu x q N
r r x s x s x s x s

c N c N
x s x s

− − −

→∞
= − − −

−−⎧ ⎡⎛ ⎞ ⎛ ⎞⎤
= + + + − +⎨ ⎜ ⎟ ⎜ ⎟⎢ ⎥− − − −⎩ ⎣⎝ ⎠ ⎝ ⎠⎦

⎫⎪+ + ⎬− − ⎪⎭

∑
 (4-12)

where the coefficients of the anti-symmetric case, qa(N), 1 ( )ac N  and 2 ( )ac N , are 

required to be determined by matching the boundary condition, qs(N) and qa(N) are the 

initial strengths for symmetric and anti-symmetric cases, respectively, which can be 

determined later by matching the boundary conditions. Successive images for the 

symmetric and anti-symmetric cases were shown in Fig. 4-2.  

4.2.2 2-D BVP 

Let us consider an infinite plane with two circular holes subject to the anti-symmetric 

boundary condition. Similarly, the two-dimensional anti-symmetric problem is solved 

by using the image method in a similar way of three-dimensional case. The fundamental 

solution of the two-dimensional Laplace equation is given below: 
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( )( , ) lnU x s r= . (4-13)

For the anti-symmetric case, the boundary conditions are 

1 1( ) , ,u x V V x B= = − ∈  (4-14)

2 2( ) , ,u x V V x B= = ∈  (4-15)

where B1 and B2 are left and right circular boundaries with boundary data of V1 and V2, 

respectively. Therefore, the image solution for the two-dimensional anti-symmetric 

problem in Fig. 4-3 can be constructed as 

{ ( )

}
1 2

1 2

4 3 4 2 4 1 4
1

1 2

( ) lim ( )[ ln ln

(ln ln ln ln )]

( ) ln ( ) ln ( ) ,

o oN
N

i i i i
i

c c

u x q N r r

x s x s x s x s

c N x s c N x s e N

→∞

− − −
=

= − +

+ − − − + − − −

+ − + − +

∑  (4-16)

where q(N) is an initial strength at the two centers of circular hole which can be 

determined later by matching the boundary conditions, 1cs  and 2cs  are two locations 

of final two frozen images which are similar to the three-dimensional case, c1(N) and 

c2(N) are their corresponding strengths, e(N) is the rigid body term, the iterative images 

and their locations are shown in Fig. 4-3. The exact solution [43] in terms of the bipolar 

coordinates is given below: 

1 2 0

( , )
ln /

V Vu
r r

ξ η η η
η

= = . (4-17)

4.3 Illustrative examples and discussions 

4.3.1 3-D problems 

Case 1: An infinite space with two spherical cavities subject to symmetric boundary 

conditions (symmetric problem of V1=V2=V=1) 

In the first case, the problem sketch for an infinite space with two spherical cavities is 

shown in Fig. 4-4. The centers of two cavities are set at (0, -2.5, 0) and (0, 2.5, 0), and 

the radii are both 1. By matching the boundary conditions, the analytical solution [43] 

can be simplified by using Eq. (4-4) as given below: 
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∑  (4-18)

By matching the boundary conditions, all the unknown coefficients in Eq. (4-6), qs(N), 

1 ( )sc N  and 2 ( )sc N , can be determined as shown in Fig. 4-5. In the numerical 

experiment, we found that the coefficient of qs(N) is equal to 1, since the 3-D 

fundamental solution is -1/r where r is the distance between s and x ( | |r x s≡ − ), 

1lim ( ) 0s

N
c N

→∞
=  and 2lim ( ) 0s

N
c N

→∞
= . Finally, we can find that the final frozen image 

points terminate at the focuses of the bispherical coordinates. The contour plots by using 

Eq. (4-6) the image method Eq. (4-18) in terms of and the bispherical coordinates are 

shown in Fig. 4-6. It can be observed that our results are compared well with the 

analytical solution. Also, the static result for limiting solution of two-spheres radiation 

by using the null-field BIEM [45] is provided for comparison. Good agreement is also 

made. 

Case 2: An infinite space with two spherical cavities subject to anti-symmetric 

boundary conditions (anti-symmetric problem of V1=-V=-1, V2=V=1) 

Figure 4-7 is a sketch of an infinite space with two spherical cavities subject to 

anti-symmetry boundary conditions instead of the above symmetric case. The geometry 

data are the same as the case 1 and the analytical solution is obtained as follows: 

0
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− +
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= − ⎢ ⎥

+⎢ ⎥
⎣ ⎦

∑  (4-19)

In a similar way of finding the successive images for matching the boundary conditions, 

the solution can be obtained by using Eq. (4-12). After locating boundary points to 

match the boundary conditions, all the unknown coefficients, qa(N), 1 ( )ac N  and 

2 ( )ac N , versus N can be determined as shown in Fig. 4-8. Similarly, we also found that 

the final frozen image points happen to be the focuses of the bispherical coordinates. 

The contour plots by using Eq. (4-12) in the image method and Eq. (4-19) of the 

analytical solution are shown in Fig. 4-9. The results of our approach are compared well 
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with the analytical solution by using the bispherical coordinates. Also, the static result 

for limiting solution of two-spheres radiation using the null-field BIEM [45] is provided 

for comparison. Good agreement is also made. 

Case 3: A non-concentric sphere (V1=0, V2=1) 

In this case, the two radii of inner and outer spheres are 1a =  and 2.5b = , 

respectively. The distance d between the two centers is equal to 1 as shown in Fig. 4-10. 

After successive images, the image solution can be obtained as shown below: 

1 2

2 1 2 1 2

1 2 1 2

( ) ( )1( ) lim ( ) ( )
N

i i

N i i i c c

w w c N c Nu x q N e N
r x s x s x s x s

−

→∞
= −

⎫−−⎧ ⎡ ⎛ ⎞⎤ ⎪= + + + + +⎨ ⎬⎜ ⎟⎢ ⎥− − − − ⎪⎩ ⎣ ⎝ ⎠⎦ ⎭
∑ . (4-20)

Since the center of outer sphere is in the domain, we only put an artificial source at the 

center of inner sphere to satisfy the governing equation. Similarly, two frozen images 

are found after successive images. The locations of two frozen images are governed by 
2 2

1 2
2 1

,c c
c c

b aR d R
R d R

= + =
−

, (4-21)

where Rc1 and Rc2 are the y coordinates for the left and right focuses , respectively, as 

shown in Fig. 4-11. The distance between the two focuses is denoted by 

1 2 2c cR R c− = . (4-22)

The parameter c is the half distance between two focuses in the bispherical coordinates 

which can be obtained by: 

4 2 2 4 2 2 2 2 42 2 2
2

a a b b a d b d dc
d

− + − − +
= . (4-23)

After matching the boundary conditions, the unknown coefficients, q(N), c1(N), c2(N) 

and e(N), versus N are shown in Fig. 4-12. The frozen images happen to be the two 

focuses in the bispherical coordinates. The analytical solution [12] obtained by using the 

bispherical coordinates is 
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Figures 4-13(a), (b) and (c) show the potential contours by using the image method, the 

bispherical coordinates and the method of fundamental solutions, respectively. It is 

found that the results of three approaches match well with each other. 

4.3.2 2-D problems 

Case 4: An infinite plane with two circular holes subject to anti-symmetric BCs 

(V1=-V=-1, V2=V=1) 

It is interesting to find that q(N) for 3-D case can be obtained in advance to fit the 

boundary condition. We may wonder whether the q(N) of the 2-D problem can be 

determined in the same way as 3-D case. The problem sketch for an infinite plane with 

two circular holes subject to anti-symmetric boundary conditions is shown in Fig. 4-14. 

The distance between the centers of two circular holes is 10, and the radii of two holes 

are both 1. The frozen images happen to be the two focuses in the bipolar coordinates. 

After matching the boundary conditions in Eqs. (4-14) and (4-15), the unknown 

coefficients of q(N), c1(N), c2(N) and e(N) versus N are shown in Fig. 4-15. It is 

interesting to find that the strengths of q(N) and e(N) are zero. Besides, we also observe 

that c1(N)=-c2(N) in numerical experiment and therefore the image solution of the 

anti-symmetrical case can be written as 

1 21( ) ( ) ln lnc cu x c N x s x s= − − −⎡ ⎤⎣ ⎦ , (4-25)

where the coefficient c1(N) is determined by matching the boundary condition 

2
( ( ) 1)x Bu x V∈ = =  as given below: 

1 2

1( )
ln lnc c

Vc N
x s x s

=
− − −

, 2x B∈ , (4-26)

in which c1(N) is found to be a constant and is independent of N. It indicates that the 

analytical solution by using the bipolar coordinates is the same as that of image method 

(special MFS) with only two sources as follows: 

1
( , )

sinh

Vu c
a

ξ η η
−

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 
(4-27)

Figures 4-16(a), (b) and (c) show the potential contours by using the image method, the 

bipolar coordinates and the null-field BIEM [16], respectively. Good agreement of the 
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three approaches is made. 

Case 5: An eccentric annulus [16] 

The problem sketch for an eccentric annulus is shown in Fig. 4-17 with V1=0 and V2=1. 

The two of inner and outer circular holes are 1a =  and 2.5b = , respectively. The 

distance d between the two centers is equal to 1. This problem has been solved by using 

several approaches and a unified point of view by using the conformal mapping was 

provided in [17]. By putting successive images, the image solution can be obtained as 

below: 

{ ( )

}
1 2

2 1 2
1

1 2

( ) lim ( )[ln ln ln ]

( ) ln ( ) ln ( ) .
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i iN i

c c

u x q N r x s x s

c N x s c N x s e N

−→∞
=

= + − − + −

+ − + − +

∑
 (4-28)

The coefficients of q(N), c1(N), c2(N) and e(N) versus N are shown in Fig. 4-18. The 

analytical solution obtained by using the bipolar coordinates is given below:  

( , )u A Bξ η η= + , (4-29)

where 

1 2

1 1sinh sinh

V VA c c
a b

− −

−
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⎝ ⎠ ⎝ ⎠
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(4-30)
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⎝ ⎠ ⎝ ⎠

. 
(4-31)

It is also found that the solution derived by the image method and the MFS with only 

two sources are the same as the analytical solution derived by using bipolar coordinates. 

Figures 4-19(a), (b) and (c) show the potential contours by using the image method, the 

bipolar coordinates and the null-field BIEM, respectively. The frozen images happen to 

be the two focuses in the bipolar coordinates. It is found that the results of three 

approaches match well. In this case, the optimal number of sources in the MFS is only 

two and the two positions are found to be exactly located on the focuses in the bipolar 

coordinates. The image method in this case can be seen as an optimal and simple MFS.  
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For the 3-D case, the successive strengths become smaller and the final strengths at the 

two frozen points approach zero for sufficiently large number of images. However, the 

2-D case is quite different, i.e., the strengths at the two centers are not 1/ln(a) which 

satisfies the boundary condition (u=ln(a)/ln(a)=1). Only two singularities at the two 

focuses are required. In the cases of 4 and 5, we found the equivalence between the 

image solution and the analytical solution derived by using the separation of variables in 

the bipolar coordinates. Table 4-1 shows the comparison of the anti-symmetric problem 

between two-dimensional and three-dimensional cases. The image method can be seen 

as a simple MFS in the 2-D case. For the five (2-D and 3-D) cases, all frozen images 

merge at the focuses. 

4.4 Conclusions  

In this chapter, five solutions for the two and three dimensional BVPs were obtained by 

using the image method. For the 3-D case, we have found the strengths of the two initial 

sources at the two centers that can be determined in advance to satisfy its own boundary 

condition. The strengths of successive images are then calculated and their values 

become smaller and smaller. The final strengths of frozen images approach zero for 

sufficiently large number of successive images. However, the finding in the 3-D case 

can not be directly applied to the 2-D case. Nonzero strengths at the frozen images are 

found and the initial strengths of sources at the centers are zero. The image method can 

provide optimal locations and specified weightings for the conventional MFS. The 

dimension of the matrix in the linear algebraic equation is at most four by four in the all 

examples. Agreement is made after comparing the image solution with those of the 

conventional MFS, the null-field BIEM, the analytical solutions by using the bipolar 

(2-D) and the bispherical (3-D) coordinates and the static result for limiting case of 

two-spheres radiation by using the null-field BIEM. 
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Table 4-1 Anti-symmetric problem of 2-D and 3-D. 

Domain 2-D problem 3-D problem 

Figure 
sketch 

 

Image 
solution 

{ ( )

}

1 2

4 3 4 2 4 1 4
1

1 1 2 2

( ) lim ( )[ ln ln

(ln ln ln ln )]

( ) ln ( ) ln

o oN
N

i i i i
i

c c

u x q N r r

x s x s x s x s

c N x s c N x s

→∞

− − −
=

= − +

+ − − − + − − −

+ − + −
∑

1 2

4 3 4 2

11 2 4 3 4 2

4 1 4 1 2

4 1 4

1 1( ) lim ( )

( ) ( )

N
a i i

N io o i i
a a

i i

i i c c

w wu x q N
r r x s x s

w w c N c N
x s x s x s x s

− −

→∞
= − −

−

−

−−⎧ ⎡⎛ ⎞ ⎛
= + + +⎨ ⎜ ⎟ ⎜⎢ − −⎩ ⎣⎝ ⎠ ⎝

⎫⎞⎤ ⎪− + + + ⎬⎟⎥− − − − ⎪⎠⎦ ⎭

∑
 

( ) 0q N =  ( )aq N aV=  

Value of 
coefficient 1 2

1 1
( ) , ( )

sinh ( ) sinh ( )

V Vc N c Nc c
a a

− −

−
= =  

1 2lim ( ) lim ( ) 0a a

N N
c N c N

→∞ →∞
= =  

Key images Focus dominant Pole dominant 

 

aa

2l

u V= u V= −

x

y

O
2c

u V=

2l

u V= −

yaa

z 



62 

Figure 4-1 An infinite space problem with two spherical cavities composed of (a) symmetric 
problem and (b) anti-symmetric problem. 
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Figure 4-2 Successive images for the (a) symmetric and (b) anti-symmetric cases. 
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Figure 4-3 Images locations for the 2-D anti-symmetric case. 
 
 
 

Figure 4-4 Problem sketch for the 3-D symmetric problem. 
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Figure 4-5 Coefficients of qs(N), 1 ( )sc N  and 2 ( )sc N  versus N for an infinite space with two 

spherical cavities subject to the symmetric boundary condition. 
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(a) an image solution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) an analytical solution using the bispherical coordinates 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) a limiting case of static solution using the null-field 
Figure 4-6 Potential contours (a) an image solution, (b) an analytical solution using 

the bispherical coordinates and (c) a limiting case of static solution using the 
null-field BIEM [45] (x-y plane). 
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Figure 4-7 Problem sketch for the 3-D anti-symmetric problem. 
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Figure 4-8 Coefficients of qa(N), 1 ( )ac N  and 2 ( )ac N  versus N for an infinite space with 

two spherical cavities subject to the anti-symmetry boundary condition. 
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(a) an image solution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) an analytical solution using the bispherical coordinates 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) a limiting case of static solution using the null-field 
Figure 4-9 Potential contours (a) an image solution, (b) an analytical solution using 

the bispherical coordinates and (c) a limiting case of static solution using the 
null-field BIEM [45] (x-y plane). 
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Figure 4-10 Sketch for the problem of non-concentric spheres. 
 

Figure 4-11 Image location for the problem of the non-concentric spheres. 
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Figure 4-12 Coefficients of q(N), c1(N), c2(N) and e(N) versus N for the non-concentric 

spherical problem. 
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(a) an image solution 
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(b) an analytical solution using the bispherical coordinates 
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(c) a solution by using the MFS 
Figure 4-13 Potential contours (a) an image solution, (b) an analytical solution using 

the bispherical coordinates [12] and (c) a solution by using the MFS (x-y plane). 
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Figure 4-14 An infinite plane with two circular holes in the bipolar coordinate system. 
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Figure 4-15 Coefficients of q(N), c1(N), c2(N) and e(N) versus N for an infinite plane with two 

circular holes. 
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(a) an image solution 
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(b) an analytical solution using the bipolar coordinates 
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(c) a solution by using the null-field BIEM 

Figure 4-16 Potential contours (a) an image solution (b) an analytical solution using 
the bipolar coordinates and (c) a solution by using the null-field BIEM [16]. 
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Figure 4-17 Problem sketch for an eccentric annulus. 
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Figure 4-18 Coefficients of q(N), c1(N), c2(N) and e(N) versus N for the eccentric annulus.
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(a) an image solution 
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(b) an analytical solution using the bipolar coordinates 
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(c) a solution by using the null-field BIEM 

Figure 4-19 Potential contours (a) an image solution, (b) an analytical solution using 
the bipolar coordinates and (c) a solution by using the null-field BIEM [17]. 
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Chapter 5 Conclusions and further research 
 

5.1 Conclusions 

The thesis is concerned with the derivation of Green’s function and boundary value 

problems (BVPs) for Laplace equation with circular holes or spherical cavities by using 

the image method and addition theorem. In the context of this thesis, we have 

demonstrated that our approach is efficient and effective. Based on the proposed 

formulation for solving the problems involving circular and/or spherical boundaries, 

some concluding remarks are drawn below: 

 

1. Numerically speaking, the image method can be seen as a special method of 

fundamental solution (MFS) since the image singularities locate outside the 

domain. The optimal location and the strength of source in the MFS can be easily 

determined by using the image method.  

 

2. In the chapter 2, two frozen images for the three cases, an eccentric annulus, a half 

plane with a circular hole and an infinite plane with two circular holes are found to 

be the focuses of the bipolar coordinate system passing the two circles. 

 

3. Regarding the exterior problem subject to the Neumann BC, an extra source at the 

center of hole is required and successive images also terminate at the two focuses. 

 

4. The dimension of the matrix in the linear algebraic equation is at most four by four 

in all the examples. Agreement is made after comparing with the results of MFS. 

 

5. In the 3-D case, the weighting of image source can be determined by using the 

degenerate kernel for interior and exterior problems as shown in Table 2-1. 

 

6. The Green’s functions of annular case and concentric sphere can be obtained by 
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using the image method and the Trefftz method. The mathematical equivalence 

between the solutions derived by using the Trefftz method and the MFS was 

proved in Chapter 3. 

 

7. It is found that the convergence rate of image method is better than those of Trefftz 

method and conventional MFS in the concentric sphere case. 

 

8. We derived the Green’s function for the 2-D and 3-D Laplace problems by using 

the image method and addition theorem. Also, the present approach can be utilized 

to construct boundary value problems (BVPs) without sources for problems with 

circular or spherical boundaries. The present method is seen as a “semi-analytical” 

approach since the unknown coefficient in the image method needs to be solved by 

using linear algebraic system.  

 

9. The symmetric and anti-symmetric solutions for the two and three dimensional 

BVPs were obtained by using the image method in Chapter 4. For the 3-D case, we 

have found the strengths of the two initial sources at the two centers that can be 

determined in advance. The final strengths at the two strengths of frozen images 

approach zero if the number of images becomes infinite. Nevertheless, the 2-D 

case is not the same as 3-D case. An example of only two frozen images can 

construct the exact solution of 2-D BVP. This solution happens to be the Lebedev 

et al.’s solution by using the bipolar coordinates. 

 

10. A program for deriving the Green’s function due to the concentrated source for 

problems with one or two circular or spherical boundaries involving the Dirichlet 

and Neumann boundary conditions was developed.  
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5.2 Further research 

In this thesis, our formulation has been applied to derive the Green’s function for the 

concentrated forces and BVPs with circular or spherical boundaries by using the 

addition theorem and the image method. However, several issues need further 

investigation as follows: 

 

1. Although the Green’s function for the concentrated source was solved by using the 

image method, we may also employ the image method to solve the screw 

dislocation problems in the future study. 

 

2. The degenerate kernels are expanded in the polar and spherical coordinates for 

problems with circular and spherical boundaries, respectively. For boundary value 

problems with an elliptical hole, further investigation should be done. 

 

3. According to our successful experiences in the image solution for Laplace 

problems, extension to the Helmholtz and Biharmonic problems may be possible. 

 

4. Whether the image method can be employed to solve the Green’s functions with 

inclusions is also future work. Extension to the Robin BC may be considered. 

 

5. In this thesis, we focus on Green’s function and boundary value problem of two 

circular boundaries. The image solution may be extended to more than three 

circular boundaries problem. The focuses of any two circular boundaries may 

provide the optimal location of MFS. 
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