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Summary 

In this paper, a systematic approach is proposed to deal with engineering problems containing circular 
boundaries. The mathematical tools, degenerate kernels and Fourier series, are utilized in the null-field integral 
formulation. The kernel function is expanded to the degenerate form and the boundary density is expressed in 
terms of Fourier series. By moving the null-field point to the boundary, the singularity is novelly eliminated. 
Three gains of singularity free, boundary-layer effect free and exponential convergence are achieved. By 
matching the boundary condition, a linear algebraic system is obtained. After obtaining the unknown Fourier 
coefficients, the solution can be obtained by using the integral representation. This systematic approach can be 
applied to solve the Laplace, Helmholtz, biharmonic and biHelmholtz problems. Besides, the circular inclusion 
as well as the electro-mechanical coupling of piezoelectricity are addressed. Finally, several examples, including 
Stokes flow and piezoelectricity, are demonstrated to show the validity of present formulation. 

 

Introduction 

Engineering problems with circular holes are 
often encountered, e.g, missiles, aircraft, naval 
architecture, etc., either to reduce the weight of the 
whole structure or to increase the range of inspection 
as well as piping purposes. Analytical approach using 
bi-polar coordinate [1] was developed for two-holes 
problems. Complex variable techniques were also 
employed for the annular case. For a problem with 
several holes, many numerical methods, e.g. finite 
element method (FEM) and boundary element method 
(BEM), were resorted to solve. To develop a 
systematic approach for engineering problems with 
circular boundaries is not trivial. 

Null field integral equation approach is used 
widely for obtaining the numerical solutions to 
engineering problems. Various names, e.g, T-matrix 
method [2] and extended boundary condition method 

(EBCM) [3] have been coined. A crucial advantage of 
this method consists in the fact that the influence 
matrix can be computed easily. Although many works 
for acoustic and water wave problems have been done, 
we focus on the solid mechanics here. 

In this paper, we review the recent development 
of the null-field integral equation approach [4-10] for 
boundary value problems (BVPs) with circular 
boundaries. The key idea is the expansion of kernel 
functions and boundary densities in the null-field 
integral equations. Vector decomposition technique 
using the adaptive observer system is required for 
nonfocal cases. Applications to the Laplace, 
Helmholtz, biHelmholtz and biharmonic problems are 
addressed. Not only interior problems but also 
exterior cases are solved. Emphases on the inclusion 
as well as piezoelectricity studies are done. Several 
examples were demonstrated to see the validity of the 
new formulation. 
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Null-field integral equation approach for 
boundary value problems 

Suppose there are N  randomly distributed 
circular cavities bounded in the domain D  and 
enclosed with the boundary, kB  ( 0, 1, 2, ,k N= " ) as 
shown in Fig. 1. We define 
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In mathematical physics, boundary value 
problems can be modelled by the governing equation, 

(x) 0u =L , x D∈ , (2) 
where L  may be the Laplace, Helmholtz, 
biHelmholtz or biharmonic operator, (x)u  is the 
potential function and D  is the domain of interest. 
The integral equation for the domain point can be 
derived from the third Green’s identity or Rayleigh 
Green identity, we have 
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where s  and x  are the source and field points, 
respectively, B  is the boundary, xn  denotes the 
outward normal vector at the field point x  and the 
kernel function (s, x)U , is the fundamental solution, 
and the other kernel functions, (s, x)T , (s, x)L  and 

(s, x)M , are defined in the dual boundary integral 
method (BIEM) [10]. It is noted that more potentials 
are needed in Eqs. (3) and (4) for biharmonic and 
biHelmholtz cases [6, 19]. 

By moving the field point to the boundary, the 
Eqs. (3) and (4) reduce to 
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where . . .C P V , . . .R P V  and . . .H P V  denote the Cauchy 
principal value, Riemann principal value and 
Hadamard principal value, respectively. Once the 
field point x  locates outside the domain, the null-
field integral equations yield 
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where cD  is the complementary domain. For the 
circular-inclusion problem, multi-domain approach by 
taking the free body of each inclusion should be 
introduced. The continuity of displacement and 
equilibrium of traction should be considered on the 
interface between the matrix and inclusions [8,9]. 

Expansions of the fundamental solution and 
boundary density 

Instead of directly calculating the CPV and HPV 
in Eqs.(5) and (6), we obtain the linear algebraic 
system from the null-field integral equations of (7) 
and (8) through the kernel expansion. 

Based on the separable property, the kernel 
function (s, x)U  can be expanded into the separable 
form by dividing the source and field point in the 
polar coordinate: 
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where the (x)A  and (x)B  can be found for the 
Laplace [4,7,8,9], Helmholtz [5], biharmonic [6] and 
biHelmholtz [19] operators and the superscripts “ i ” 
and “ e ” denote the interior ( s x> ) and exterior 
( x s> ) cases, respectively. To classify the interior 
and exterior regions, Fig. 2 shows for one, two and 
three dimensional cases. For the degenerate form of 
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T , L  and M  kernels, they can be derived according 
to their definitions. 

We apply the Fourier series expansions to 
approximate the potential u  and its normal derivative 
t  on the circular boundary 
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where k
na , k

nb , k
np  and k

nq  ( 0,1, 2,n= " ) are the 
Fourier coefficients and kθ  is the polar angle 
measured with respect to the x -direction. 

After collocating points in the null-field integral 
equation of Eq. (7), the boundary integrals through all 
the circular contours are required. The observer 
system is adaptively to locate the origin at the center 
of circle in the boundary integrals. Adaptive observer 
system is chosen to fully employ the property of 
degenerate kernels. Figure 1 shows the boundary 
integration for the circular boundaries in the adaptive 
observer system. It is worth noting that the origin of 
the observer system is located on the center of the 
corresponding circle under integration to entirely 
utilize the geometry of circular boundary for the 
expansion of degenerate kernels and boundary 
densities. 

By collocating the null-field point xk  on the kth  
circular boundary for Eq. (7) in Fig. 1, we have 
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where N  is the number of circles including the outer 
boundary and the inner circular holes. Therefore, a 
linear algebraic system is obtained 

[ ]{ } [ ]{ },=U t T u  (13)
where [ ]U  and [ ]T  are the influence matrices with a 
dimension of ( 1)(2 1)N m+ +  by ( 1)(2 1)N m+ + , { }u  

and { }t  denote the column vectors of Fourier 
coefficients with a dimension of ( 1)(2 1)N m+ +  by 1 
in which m  indicates the truncated terms of Fourier 
series. After the boundary unknowns are solved by 
using Eq. (13), the field potential can be easily 
obtained according to Eq. (3). 

Illustrative examples 

Case 1: Infinite medium with two circular holes under 
the anti-plane shear (Laplace equation) 

A hole centered at the origin of radius 1a  and the 
other hole of radius 2 12a a=  centered on x  axis at 

1 2a a d+ +  are shown in Fig. 3. In order to be 
compared with the Honein et al.’s results [11] 
obtained by using the Möbius transformation, the 
stress along the boundary of radius 1a  is shown in Fig. 
3 and good agreement is made. 
Case 2: A circular bar with three circular holes under 

torsion (Laplace equation) 
A circular bar with three equal circular holes 

removed is under torque at the end [12,13]. The 
contour plot of the axial displacement is shown in Fig. 
4. Good agreement is made after comparing with the 
Caulk’s data [13] . 
Case 3: A circular beam with two circular holes 

under bending (Laplace equation) 
Consider a circular beam with two circular holes 

under bending [14]. One of the holes is concentric, 
and the other lies on the x axis. The stress 
concentration for / 0.0625D d =  ( D is the distance 
between the two holes) is shown in Fig. 5. Our 
numerical results are well compared with the Bird and 
Steele’s data [15]. 
Case 4: Infinite medium with three circular inclusions 

under the anti-plane shear (Laplace equation) 
Figure 6 shows that three identical inclusions 

subjected to the uniform shear stress zyσ τ∞
∞=  at 

infinity. The three inclusions form an equilateral 
triangle and are placed at a distance 14d a=  apart. 
We evaluate the hoop stress zθσ  in the matrix around 
the boundary of the inclusion located at the origin as 
shown in Fig. 6. Good agreement is obtained between 
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the Gong’s results [16] and ours. It is obvious that the 
limiting case of circular holes 
( 1 0 2 0 3 0/ / / 0.0μ μ μ μ μ μ= = = ) leads to the 
maximum stress concentration at 0θ= D , which is 
larger than 2  of a single hole due to the interaction 
effect. 
Case 5: Piezoelectric problem with two circular 

inclusions under the anti-plane shear and 
in-plane electric field (Laplace equation) 

As the two circular inclusions are arrayed 
perpendicular to the coupled loadings of electrics and 
mechanics, the contour of shear stress zyσ  are plotted 
in Figs.7. The contour of shear stress matches very 
well with the Wang and Shen’s results [17]. 
Case 6: Eigensolution for an eccentric membrane 

(Helmholtz equation)  
  An eccentric case with radii 1a  and 2a  

( 1 0.5a = , 2 2.0a = ) is considered as shown in Fig. 8. 
The boundary condition is subject to the Dirichlet 
type. The result matches well with those of FEM and 
BEM [18] as shown in Fig. 8. 
Case 7: Eigensolution for an eccentric plate 

(biHelmholtz equation) 
An eccentric plate with radii 1a  and 2a  

( 1 0.25a = , 2 1.0a = ) is considered as shown in Fig. 9. 
The plate is fixed on the outer boundary and free 
inside. The result matches well with those of FEM 
and BEM [19] as shown in Fig. 9. 
Case 8: Five scatters of cylinders (Helmholtz 

equation-exterior acoustics).  
Plane wave scattering by five soft circular 

cylinders is solved by using the present method. The 
real-part solution in Fig.10 agrees well with that of 
multiple DtN method [20]. 
Case 9: A semi-cylindrical alluvial valley for the 

incident SH-wave (Helmholtz equation - half 
plane problem) 

A semi-cylindrical alluvial valley for the incident 
SH-wave is considered. Figure 11 shows the surface 
displacement for vertical incidence ( 0γ = ) of SH-
wave versus the dimensionless frequency η . 
Agreement with the Trifunac’s result [21] is obtained. 

Case 10: Stokes’ problem (biharmonic equation) 
An eccentric case of Stokes’ flow problem is 

considered. The inner cylinder is rotating with a 
constant angular velocity and the outer one is 
stationary. The stream function is shown in Fig. 12 
and matches well with that of BEM [22,23]. 

Conclusions 

A semi-analytical approach was proposed for 
solving BVPs with circular boundaries. Some recent 
results were reviewed. Although the BIE for the 
boundary point was employed, we need not to face 
the problems of CPV and HPV after introducing the 
degenerate kernel. Not only the singularity is 
transformed to the series sum but also the boundary-
layer effect is eliminated. In order to verify the 
formulation, applications to the Laplace, Helmholtz, 
biharmonic and biHelmholtz problems were done. 
Extension to other shapes, e.g. ellipse, as well as three 
dimensional problems is straightforward once the 
degenerate kernel is available. 
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Fig. 1. Sketch of null-field and domain points in conjunction with the adaptive observer system 

(left: boundary point, right: null-field point). 

 

Fig. 2. The degenerate kernel for the one, two and three dimensional problems. 
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Fig. 3. Stress around the hole of radius 1a . 

(Laplace equation) 
Fig. 4. Displacement for the circular bar weakened 

by three holes. (Laplace equation) 
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Fig. 5. Contour of stress concentration for 

/ 0.0625D d = . (Laplace equation) 

Fig. 6. Tangential stress distribution around the 
inclusion located at the origin. (Laplace 
equation) 

  
  

 
Fig. 7. Contour of shear stress /zyσ τ∞ . 

(Laplace equation) 
Fig. 8. The first mode of eccentric membrane. 

(Helmholtz equation) 
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Fig. 9. The first mode of eccentric   plate. 

(biHelmholtz equation) 
Fig. 10. Contour of the real-part solution. 

(Helmholtz-exterior acoustics) 
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Fig.11. Surface displacements for the vertical 

incidence plotted versus the dimensionless 
frequency η . 
(Helmhotlz equation-half plane   
problems) 

Fig. 12. Stream function of Stokes’ problem. 
(biharmonic equation) 

 
 
 

  
  
  
  



Proceedings of Symposium on Advances of Mechanics 
In Honor of President Robert R. Hwang 

May 12, 2006, Keelung, Taiwan 

  

ANECDOTES 

I began my teaching job in NTOU since August, 1994. I remembered at that time that 
Prof. Hwang was the Dean of the College of Engineering and Science. He invited the new 
members of the College to enjoy a delicious lunch on the ship of NTOU-Ocean 
Researcher No.2. He supported the new staff for the equipment fee. He left NTOU in 
1995. Eight years later in 2003, he returned NTOU to be the President. I was impressed 
that he always encouraged me as well as younger researchers to do a good job in teaching 
and research. Under the mechanism of encouragement in NTOU, I was promoted to be 
the Distinguished Professor in 2005 and won the Academic Achievement Award in 2006. 
Besides, it is a good memory for my families to swim in the pool with Prof. Hwang. He 
showed me his ambition in learning swimming even at the age over sixty. Finally, he can 
swim. I learned from him that no one is too old to learn and never give up. Hope that he 
will have a fruitful life after retirement. 
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Fig.1. Sketch of null-field and domain points in conjunction with the adaptive observer 
system (left: boundary point, right: null-field point). 

Fig.2. The degenerate kernel for one, two and three dimensional problems. 
Fig.3. Stress around the hole of radius 1a . (Laplace equation) 
Fig.4. Displacement for the circular bar weakened by three holes. (Laplace equation) 
Fig.5. Contour of stress concentration for / 0.0625D d = . (Laplace equation) 
Fig.6. Tangential stress distribution around the inclusion located at the origin. (Laplace 

equation) 
Fig.7. Contour of shear stress /zyσ τ∞ . (Helmholtz equation) 
Fig.8. The first mode of eccentric membrane. (Helmholtz equation) 
Fig.9. The first mode of eccentric   plate. (biHelmholtz equation) 
Fig.10. Contour of the real-part solution. (Helmholtz-exterior acoustics) 
Fig.11. Surface displacements for the vertical incidence plotted versus the dimensionless 

frequency η . (Helmhotlz equation-half plane problems) 
Fig.12. Stream function of Stokes’ problem. (biharmonic equation) 
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