

Null-field integral equation approach for boundary value problems with circular boundaries

J. T. Chen Ph.D. Taiwan Ocean University Keelung, Taiwan

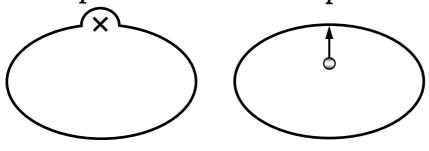
ICCES2005, India December, 3, 17:05-17:30, 2005 Room B (ICCES2005-JTCHEN.ppt)

- Motivation and literature review
- Mathematical formulation
- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Numerical examples
- Conclusions

Motivation and literature review

BEM/BIEM Improper integral Singular and hypersingular Regular Limit process

Bump contour

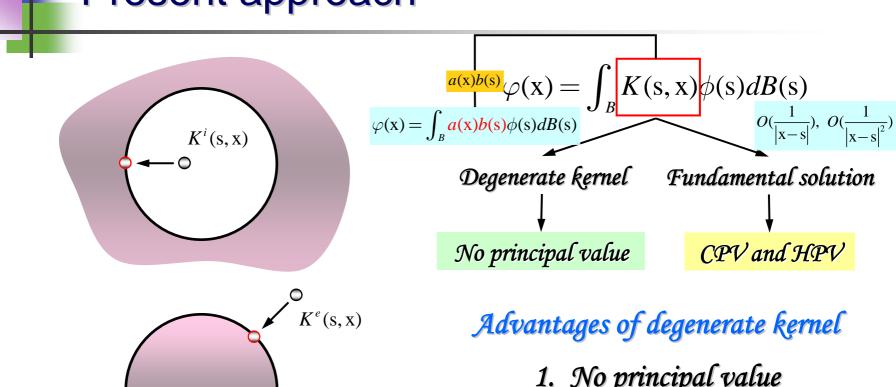


CPV and HPV



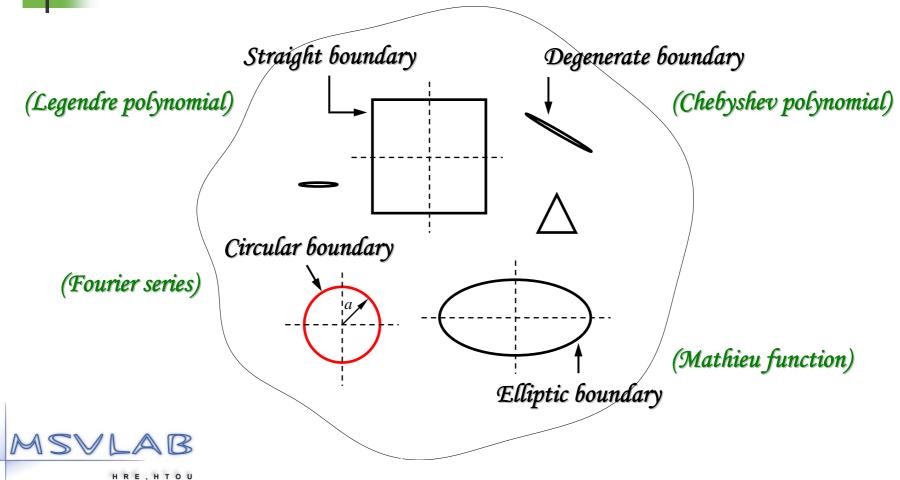
Present approach

HRE, HTOU



- 1. No principal value
- 2. Well-posed
- 3. No boundary-layer effect
- 4. Exponetial convergence

Engineering problem with arbitrary geometries



Motivation and literature review

Analytical methods for solving Laplace problems with circular holes

Conformal mapping

Chen and Weng, 2001, "Torsion of a circular compound bar with imperfect interface", ASME Journal of Applied Mechanics

Bipolar coordinate

Lebedev, Skalskaya and Uyand, 1979, "Work problem in applied mathematics", Dover Publications

Special solution

Honein, Honein and Hermann, 1992, "On two circular inclusions in harmonic problem", Quarterly of Applied Mathematics

Limited to doubly connected domain

Fourier series approximation

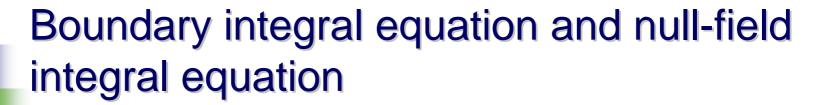
- Ling (1943) torsion of a circular tube
- Caulk et al. (1983) steady heat conduction with circular holes
- Bird and Steele (1992) harmonic and biharmonic problems with circular holes
- Mogilevskaya et al. (2002) elasticity problems with circular boundaries

Contribution and goal

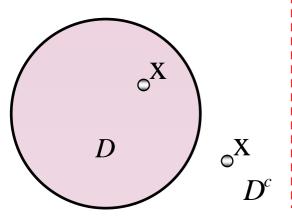
- However, they didn't employ the null-field integral equation and degenerate kernels to fully capture the circular boundary, although they all employed Fourier series expansion.
- To develop a systematic approach for solving Laplace problems with multiple holes is our goal.

Outlines (Direct problem)

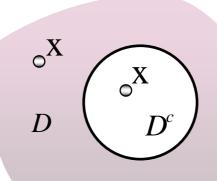
- Motivation and literature review
- Mathematical formulation
- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Numerical examples
- Conclusions



Interior case



Exterior case



$$U(s,x) = \ln|x-s| = \ln r$$

$$T(s,x) = \frac{\partial U(s,x)}{\partial \mathbf{n}_{s}}$$

$$t(s) = \frac{\partial u(s)}{\partial \mathbf{n}_{s}}$$

$$2\pi u(\mathbf{x}) = \int_{B} T(\mathbf{s}, \mathbf{x}) u(\mathbf{s}) dB(\mathbf{s}) - \int_{B} U(\mathbf{s}, \mathbf{x}) t(\mathbf{s}) dB(\mathbf{s}), \ \mathbf{x} \in D$$

$$0 = \int_{B} T(s, x)u(s)dB(s) - \int_{B} U(s, x)t(s)dB(s), x \in D^{c}$$

MSVLAB Null-field integral equation

Outlines (Direct problem)

- Motivation and literature review
- Mathematical formulation
- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Numerical examples
- Degenerate scale
- Conclusions

Expansions of fundamental solution and boundary density

Degenerate kernel - fundamental solution

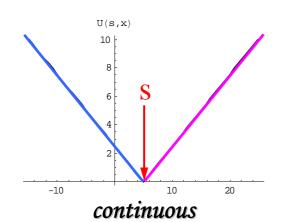
$$U(\mathbf{s}, \mathbf{x}) = \begin{cases} U^{i}(R, \theta; \rho, \phi) = \ln R - \sum_{m=1}^{\infty} \frac{1}{m} \left(\frac{\rho}{R}\right)^{m} \cos m(\theta - \phi), & R \ge \rho \\ U^{e}(R, \theta; \rho, \phi) = \ln \rho - \sum_{m=1}^{\infty} \frac{1}{m} \left(\frac{R}{\rho}\right)^{m} \cos m(\theta - \phi), & \rho > R \end{cases}$$

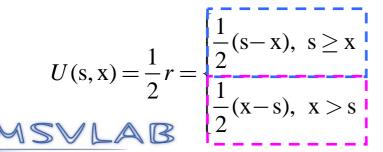
Fourier series expansions - boundary density

$$u(s) = a_0 + \sum_{n=1}^{M} (a_n \cos n\theta + b_n \sin n\theta), \ s \in B$$

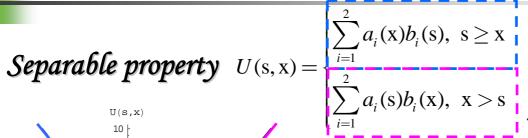
$$t(s) = p_0 + \sum_{n=1}^{M} (p_n \cos n\theta + q_n \sin n\theta), \ s \in B$$

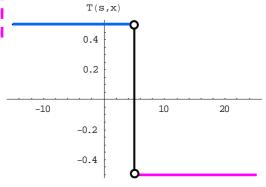
Separable form of fundamental solution





HRE, HTOU



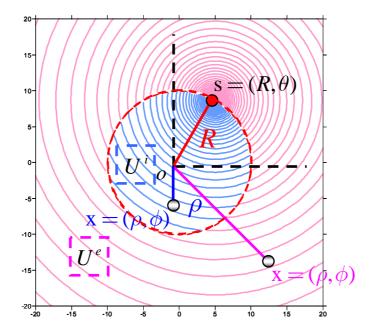


discontinuous

$$T(s, x) = \begin{cases} \frac{1}{2}, & s > x \\ \frac{-1}{2}, & x > s \end{cases}$$

Separable form of fundamental solution (2D)

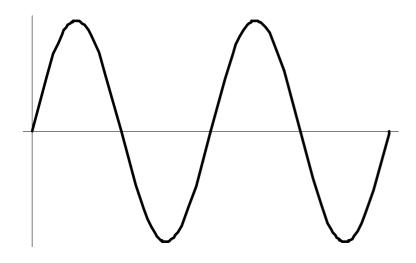
$$U(s,x) = \begin{cases} U^{i}(R,\theta;\rho,\phi) = \ln R - \sum_{m=1}^{\infty} \frac{1}{m} \left(\frac{\rho}{R}\right)^{m} \cos m(\theta - \phi), & R \ge \rho \\ U^{e}(R,\theta;\rho,\phi) = \ln \rho - \sum_{m=1}^{\infty} \frac{1}{m} \left(\frac{R}{\rho}\right)^{m} \cos m(\theta - \phi), & \rho > R \end{cases}$$



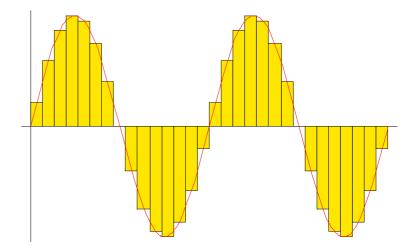
Boundary density discretization

Fourier series

Ex. constant element



Present method

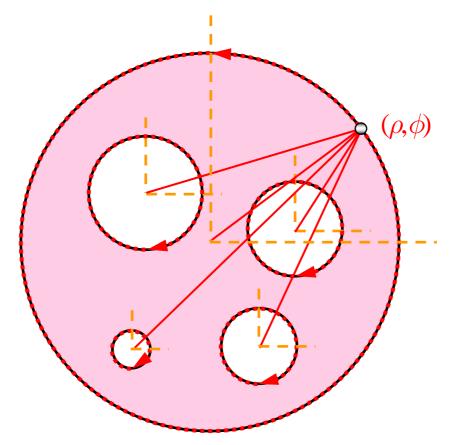


Conventional BEM

Outlines

- Motivation and literature review
- Mathematical formulation
- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Numerical examples
- Conclusions

Adaptive observer system

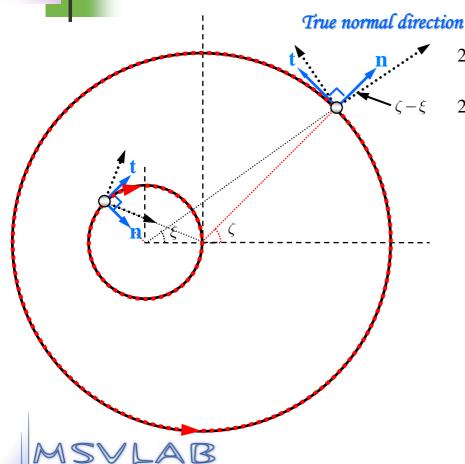


 \circ collocation point

Outlines

- Motivation and literature review
- Mathematical formulation
- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Numerical examples
- Conclusions

Vector decomposition technique for potential gradient



$$2\pi \frac{\partial u(\mathbf{x})}{\partial \mathbf{n}} = \int_{B} M_{\rho}(\mathbf{s}, \mathbf{x}) u(\mathbf{s}) dB(\mathbf{s}) - \int_{B} L_{\rho}(\mathbf{s}, \mathbf{x}) t(\mathbf{s}) dB(\mathbf{s}), \ \mathbf{x} \in D$$

$$\zeta - \xi \qquad 2\pi \frac{\partial u(\mathbf{x})}{\partial \mathbf{t}} = \int_{B} M_{\phi}(\mathbf{s}, \mathbf{x}) u(\mathbf{s}) dB(\mathbf{s}) - \int_{B} L_{\phi}(\mathbf{s}, \mathbf{x}) t(\mathbf{s}) dB(\mathbf{s}), \ \mathbf{x} \in D$$

$$2\pi \frac{\partial u(\mathbf{x})}{\partial \mathbf{t}} = \int_{B} M_{\phi}(\mathbf{s}, \mathbf{x}) u(\mathbf{s}) dB(\mathbf{s}) - \int_{B} L_{\phi}(\mathbf{s}, \mathbf{x}) t(\mathbf{s}) dB(\mathbf{s}), \ \mathbf{x} \in L$$

Non-concentric case:

$$L_{\rho}(\mathbf{s}, \mathbf{x}) = \frac{\partial U(\mathbf{s}, \mathbf{x})}{\partial \rho} \cos(\zeta - \xi) + \frac{1}{\rho} \frac{\partial U(\mathbf{s}, \mathbf{x})}{\partial \phi} \cos(\frac{\pi}{2} - \zeta + \xi)$$

$$M_{\rho}(\mathbf{s}, \mathbf{x}) = \frac{\partial T(\mathbf{s}, \mathbf{x})}{\partial \rho} \cos(\zeta - \xi) + \frac{1}{\rho} \frac{\partial T(\mathbf{s}, \mathbf{x})}{\partial \phi} \cos(\frac{\pi}{2} - \zeta + \xi)$$

Special case (concentric case): $\zeta = \xi$

$$L_{\rho}(\mathbf{s}, \mathbf{x}) = \frac{\partial U(\mathbf{s}, \mathbf{x})}{\partial \rho} \qquad M_{\rho}(\mathbf{s}, \mathbf{x}) = \frac{\partial T(\mathbf{s}, \mathbf{x})}{\partial \rho}$$

Outlines

- Motivation and literature review
- Mathematical formulation
- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Numerical examples
- Conclusions

Linear algebraic equation

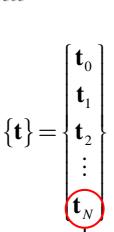
$$[U]\{t\}\!=\![T]\{u\}$$

where

Index of collocation circle

$$\begin{bmatrix} \mathbf{U}_{00} & \mathbf{U}_{01} & \cdots & \mathbf{U}_{0N} \\ \mathbf{U}_{10} & \mathbf{U}_{11} & \cdots & \mathbf{U}_{1N} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{U}_{N0} & \mathbf{U}_{N1} & \cdots & \mathbf{U}_{NN} \end{bmatrix}$$

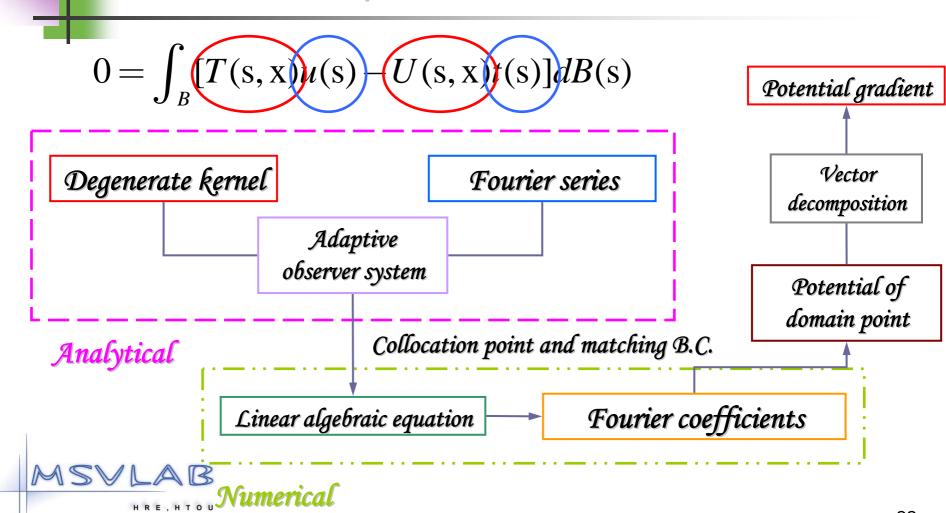
Index of routing circle -



Column vector of Fourier coefficients
(Nth routing circle)

HRE, HTOU

Flowchart of present method



Comparisons of conventional BEM and the present method

	Boundary				
	density	Auxiliary	Formulation	Observer	Singularity
	discretization	system		system	
	Constant,		Boundary	Fixed	
Conventional	Linear,	Fundamental	integral	observer	CPV, RPV
BEM	(Algebraic	solution	equation	system	and HPV
	Convergence)				
	Fourier series		Null-field	Adaptive	No
Present	Expansion	Degenerate	integral	observer	principal
method	Exponential	kernel	equation	system	value
н к в , н	.Convergence)				2

Outlines

- Motivation and literature review
- Mathematical formulation
- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Numerical examples
- Conclusions

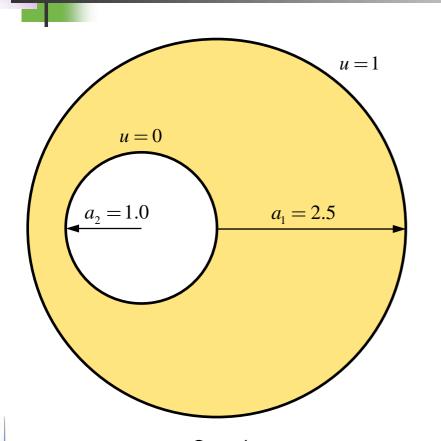
Numerical examples

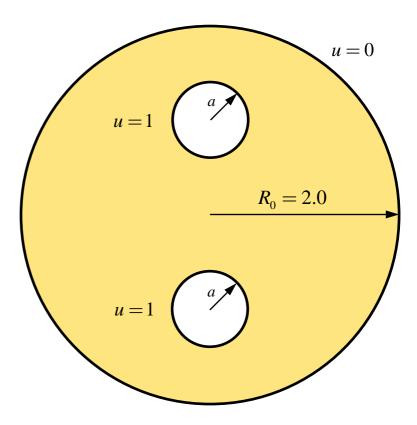
- Laplace equation (EABE 2005, CMES 2005)
- Eigen problem
- Exterior acoustics
- Biharmonic equation (JAM, ASME 2005)

Laplace equation

- Steady state heat conduction problems
- Electrostatic potential of wires
- Flow of an ideal fluid pass cylinders
- A circular bar under torque
- An infinite medium under antiplane shear
- Half-plane problems

Steady state heat conduction problems

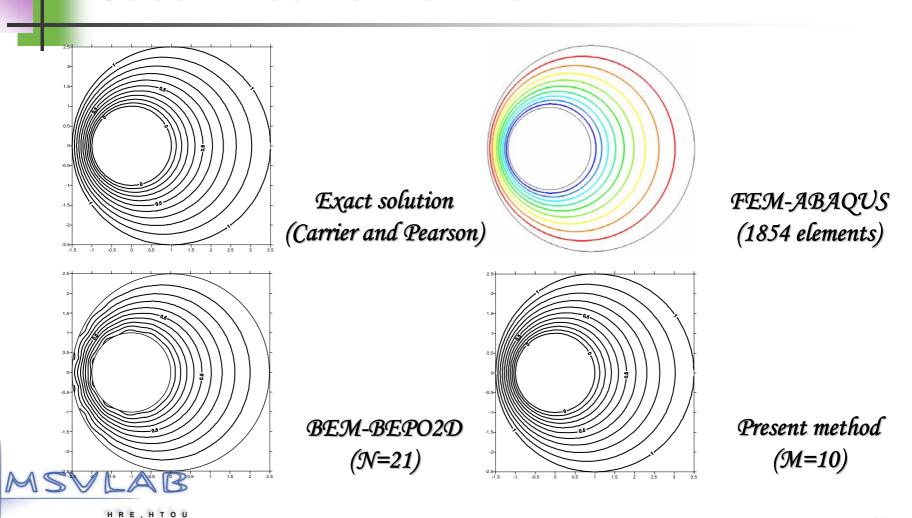




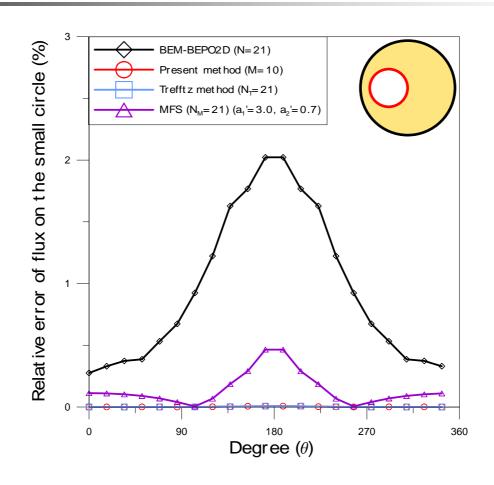
Case 2

HRE, HTOU

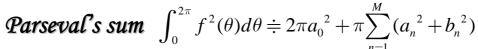
Case 1: Isothermal line

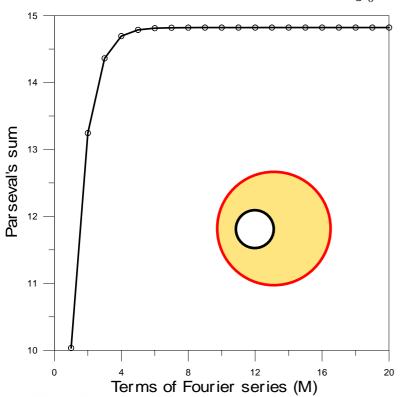


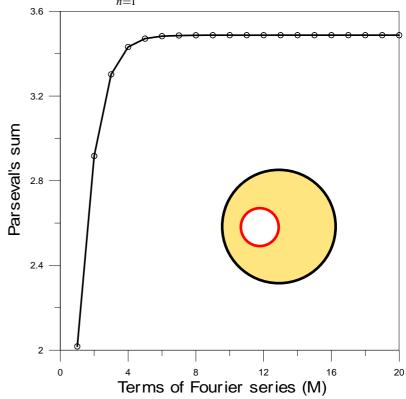
Relative error of flux on the small circle



Convergence test - Parseval's sum for Fourier coefficients





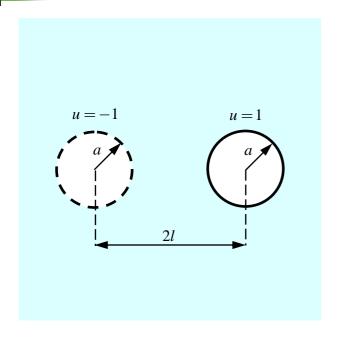


HRE, HTOU

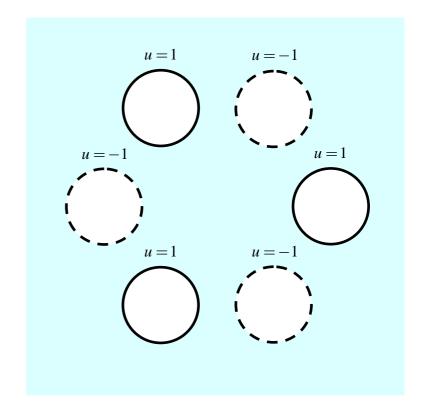
Laplace equation

- Steady state heat conduction problems
- Electrostatic potential of wires
- Flow of an ideal fluid pass cylinders
- A circular bar under torque
- An infinite medium under antiplane shear
- Half-plane problems

Electrostatic potential of wires

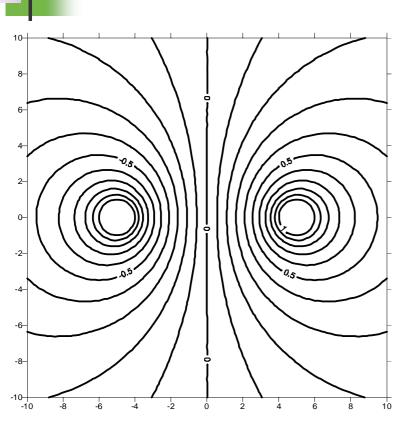


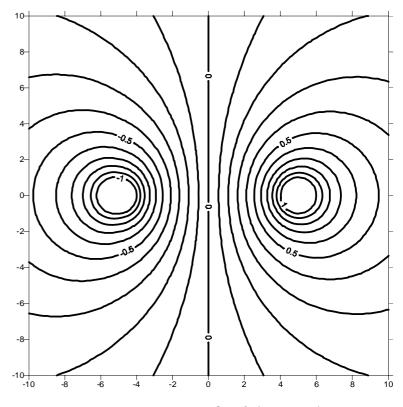
Two parallel cylinders held positive and negative potentials



Hexagonal electrostatic potential

Contour plot of potential



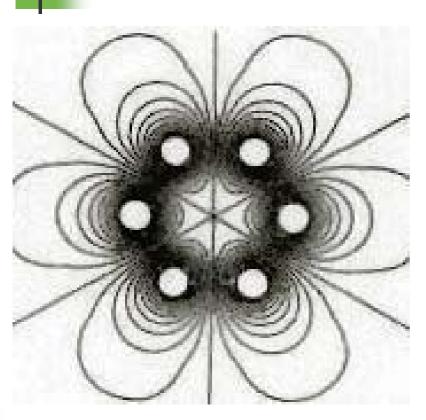


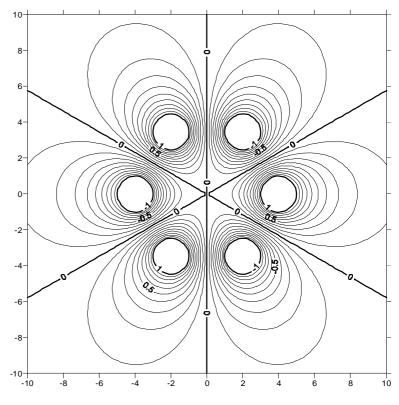
Exact solution (Lebedev et al.)

Present method (M=10)

HRE, HTOU

Contour plot of potential





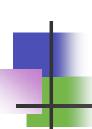
Present method (M=10)

MSV Onishi's data (1991)

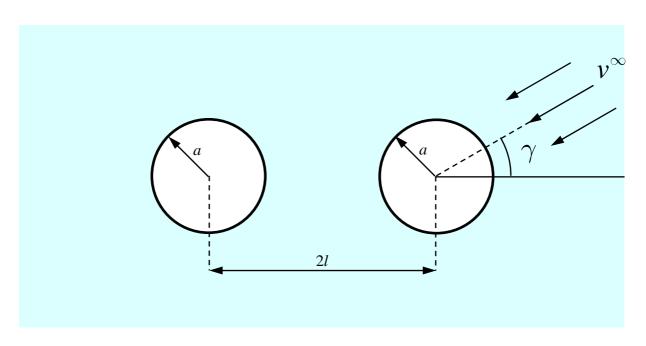
HRE, HTOU

Laplace equation

- Steady state heat conduction problems
- Electrostatic potential of wires
- Flow of an ideal fluid pass cylinders
- A circular bar under torque
- An infinite medium under antiplane shear
- Half-plane problems

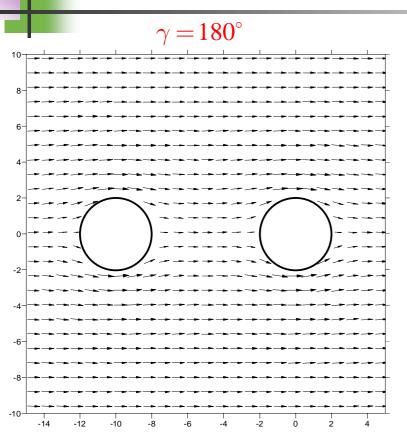


Flow of an ideal fluid pass two parallel cylinders



 v^{∞} is the velocity of flow far from the cylinders γ is the incident angle

Velocity field in different incident angle



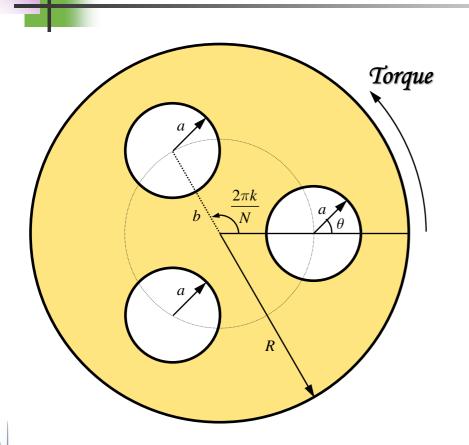


Present method (M=10)

Present method (M=10)

Laplace equation

- Steady state heat conduction problems
- Electrostatic potential of wires
- Flow of an ideal fluid pass cylinders
- A circular bar under torque
- An infinite medium under antiplane shear
- Half-plane problems



The warping function φ

$$\nabla^2 \varphi(x) = 0, \ x \in D$$

Boundary condition

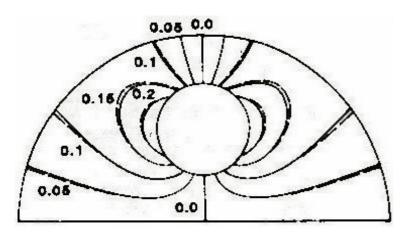
$$\frac{\partial \varphi}{\partial n} = x_k \sin \theta_k - y_k \cos \theta_k \quad on \quad B_k$$

where

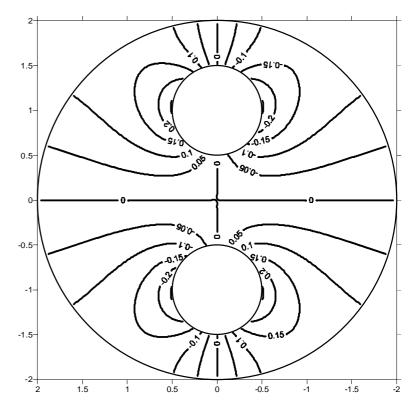
$$x_i = b\cos\frac{2\pi i}{N}, \ y_i = b\sin\frac{2\pi i}{N}$$

Axial displacement with two circular holes

Dashed line: exact solution Solid line: first-order solution



Caulk's data (1983)
ASME Journal of Applied Mechanics



Present method (M=10)

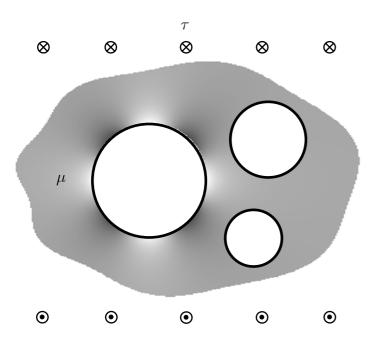
Torsional rigidity

	Case			
		N = 2, c/R = 0 a/R = 2/7, b/R = 3/7	N = 2, c/R = 1/5 a/R = 1/5, b/R = 3/5	N = 6, c/R = 1/5 a/R = 1/5, b/R = 3/5
$\frac{2G}{\left(\mu\pi R^4\right)}$	Caulk(First-order approximate)	0.8739	0.8741	0.7261
	Exact BIE formulation	0.8713	0.8732	0.7261
	Ling's results	0.8809	0.8093	0.7305
	The present method	0.8712	0.8732	0.7245

Laplace equation

- Steady state heat conduction problems
- Electrostatic potential of wires
- Flow of an ideal fluid pass cylinders
- A circular bar under torque
- An infinite medium under antiplane shear
- Half-plane problems

Infinite medium under antiplane shear



The displacement w^s

$$\nabla^2 w^s(x) = 0, \ x \in D$$

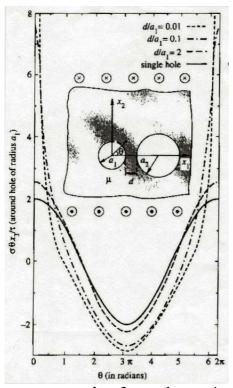
Boundary condition

$$\frac{\partial w^{s}(x)}{\partial n} = \frac{\tau}{\mu} \sin \theta \quad \mathbf{on} \quad \mathbf{B}_{k}$$

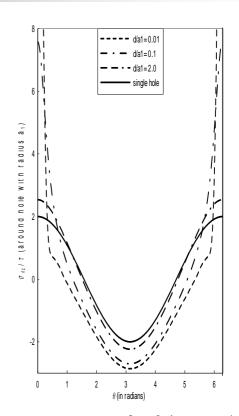
Total displacement

$$w = w^s + w^{\infty}$$





Honein's data (1992)
Quarterly of Applied Mathematics



Present method (M=20)

Ĺ

Shear stress $\sigma_{z\theta}$ around the hole of radius a_1

Stress approach

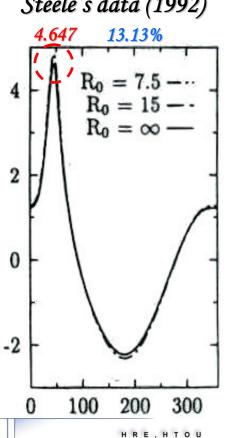
Analytical

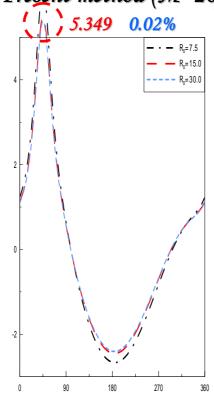
Displacement approach

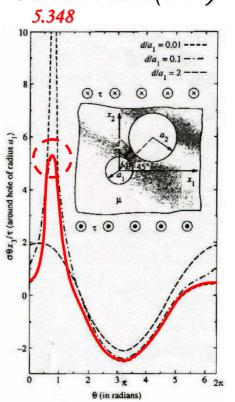
Steele's data (1992) Present method (M=20)

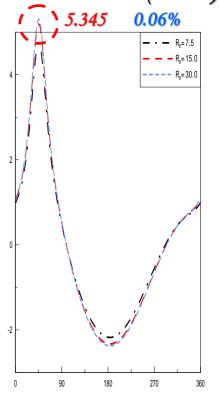
Honein's data (1992)

Present method (M=20)





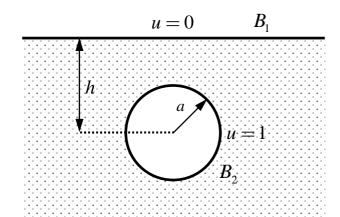


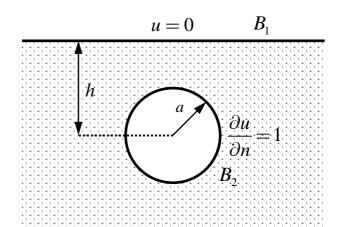


Laplace equation

- Steady state heat conduction problems
- Electrostatic potential of wires
- Flow of an ideal fluid pass cylinders
- A circular bar under torque
- An infinite medium under antiplane shear
- Half-plane problems

Half-plane problems



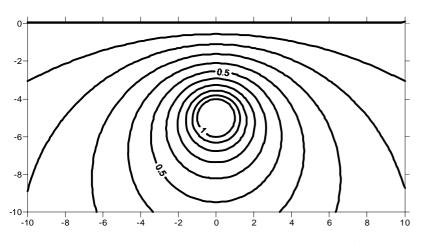


Dirichlet boundary condition (Lebedev et al.)

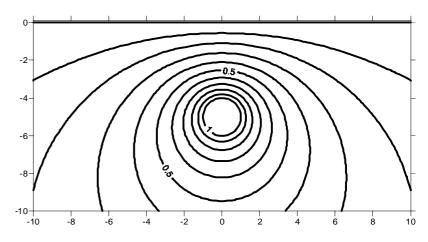
Mixed-type boundary condition (Lebedev et al.)

Dirichlet problem

Isothermal line



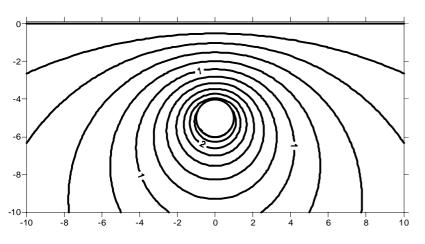
Exact solution (Lebedev et al.)



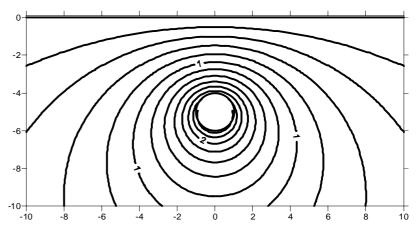
Present method (M=10)

Mixed-type problem

Isothermal line



Exact solution (Lebedev et al.)

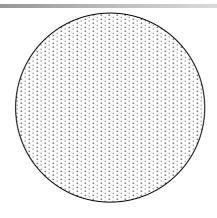


Present method (M=10)

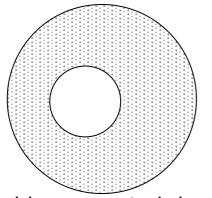
Numerical examples

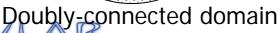
- Laplace equation
- Eigen problem
- Exterior acoustics
- Biharmonic equation

Problem statement

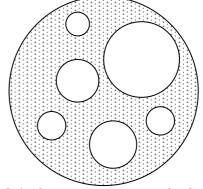


Simply-connected domain



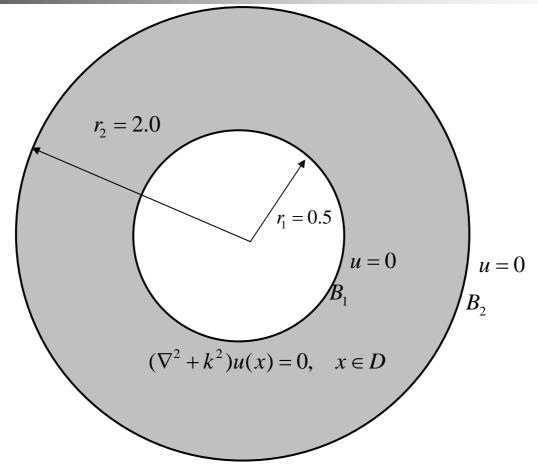


HRE, HTOU



Multiply-connected domain

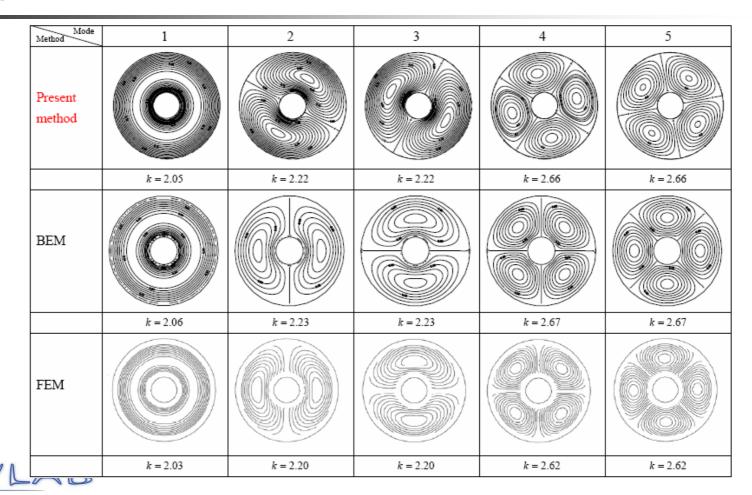
Example 1



The former five true eigenvalues by using different approaches

	k_1	k_2	k_3	k_4	k_5
FEM (ABAQUS)	2.03	2.20	2.62	3.15	3.71
BEM (Burton & Miller)	2.06	2.23	2.67	3.22	3.81
BEM (CHIEF)	2.05	2,23	2.67	3.22	3.81
BEM (null-field)	2.04	2.20	2.65	3.21	3.80
BEM (fictitious)	2.04	2.21	2.66	3.21	3.80
Present method	2.05	2,22	2.66	3.21	3.80
Analytical solution[19]	2.05	2.23	2.66	3.21	3.80

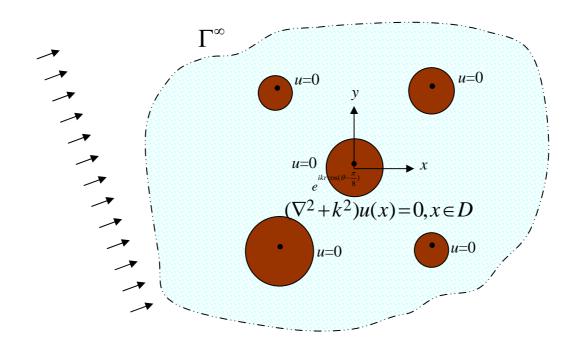
The former five eigenmodes by using present method, FEM and BEM



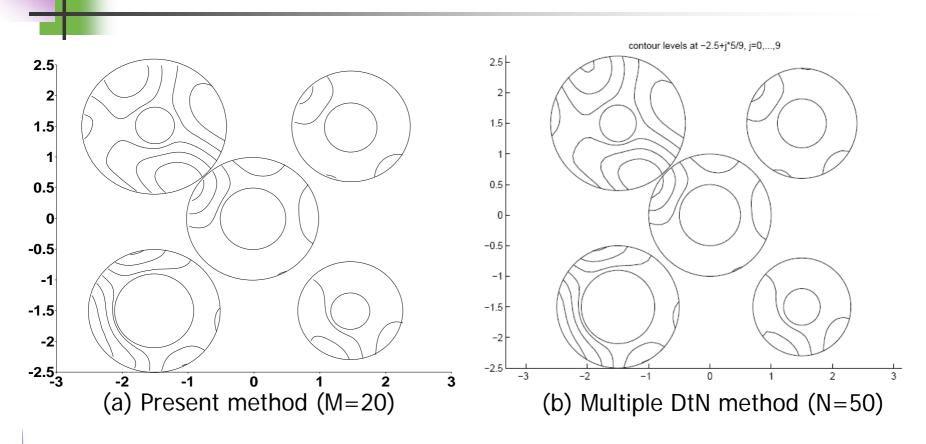
Numerical examples

- Laplace equation
- Eigen problem
- Exterior acoustics
- Biharmonic equation

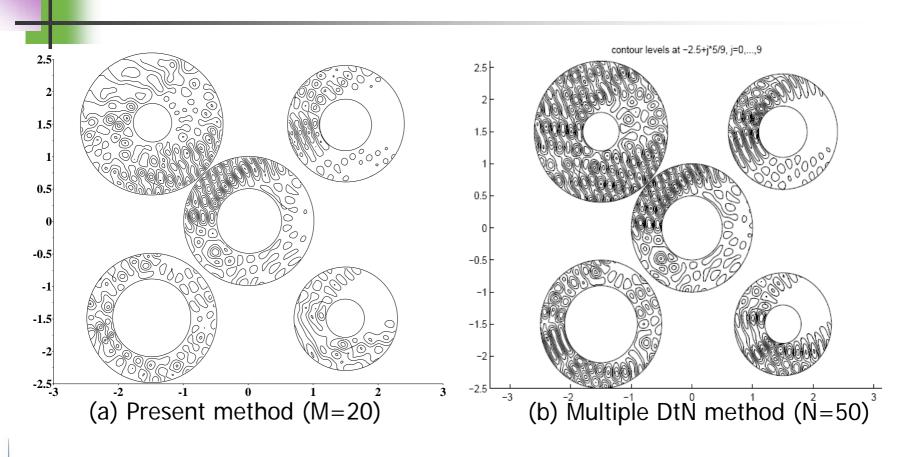
Sketch of the scattering problem (Dirichlet condition) for five cylinders



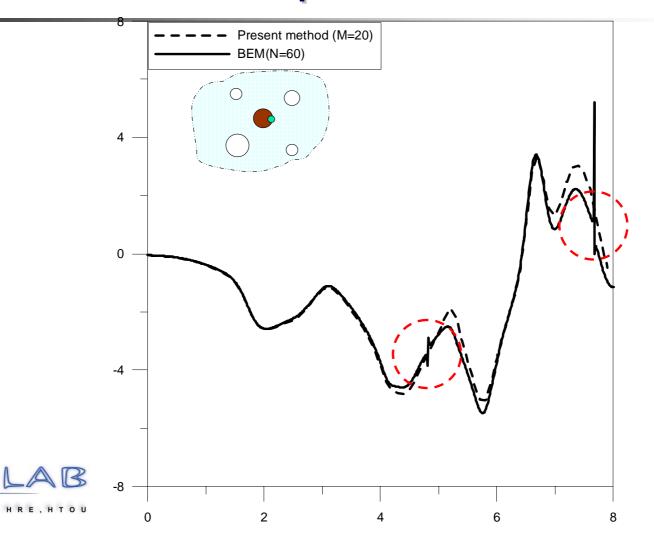
The contour plot of the real-part solutions of total field for $k = \pi$



The contour plot of the real-part solutions of total field for $k = 8\pi$



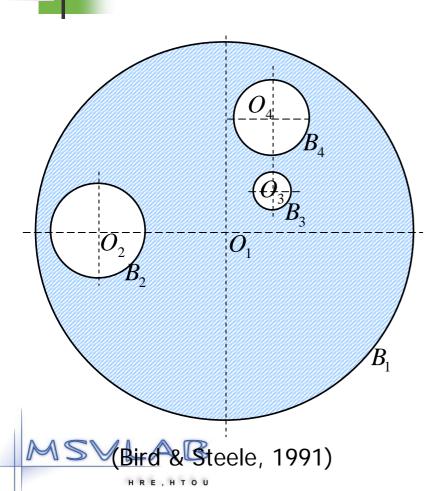
Fictitious frequencies



Numerical examples

- Laplace equation
- Eigen problem
- Exterior acoustics
- Biharmonic equation

Plate problems



Geometric data:

$$O_1 = (0,0), R_1 = 20; O_2 = (-14,0), R_2 = 5;$$

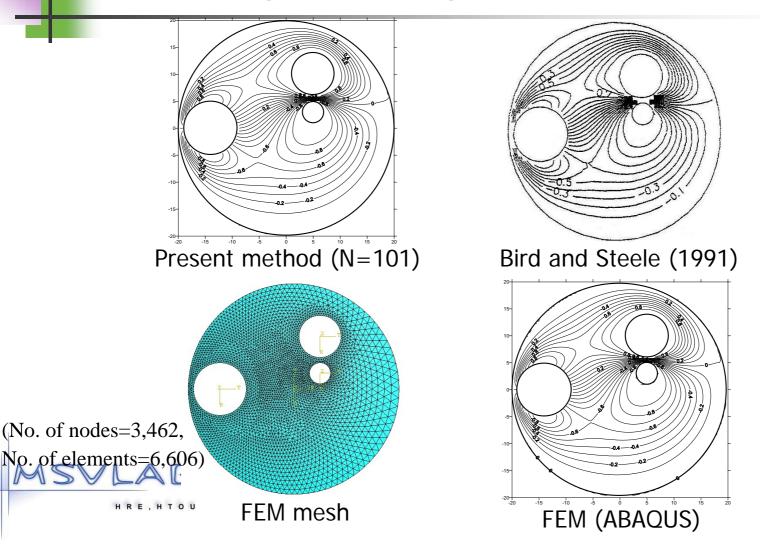
 $O_3 = (5,3), R_3 = 2; O_4 = (5,10), R_4 = 4.$

Essential boundary conditions:

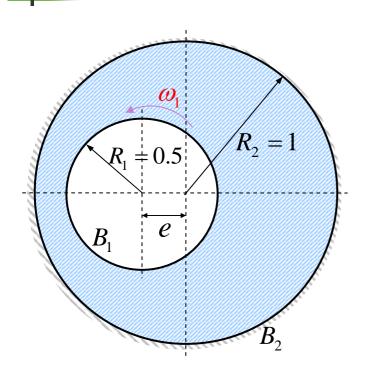
$$u(s) = 0$$
 and $\theta(s) = 0$ on B_1
 $u(s) = \sin \theta$ and $\theta(s) = 0$ on B_2
 $u(s) = -1$ and $\theta(s) = 0$ on B_3

u(s) = 1 and $\theta(s) = 0$ on B_4

Contour plot of displacement



Stokes flow problem



Governing equation: $\nabla^4 u(x) = 0$, $x \in \Omega$

Angular velocity: $\omega_1 = 1$

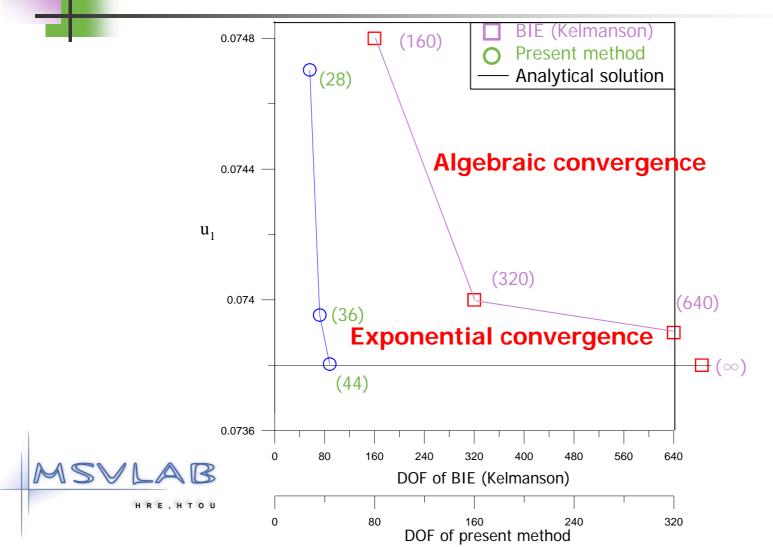
Boundary conditions:

$$u(s) = u_1$$
 and $\theta(s) = 0.5$ on B_1

$$u(s) = 0$$
 and $\theta(s) = 0$ on B_2 (Stationary)

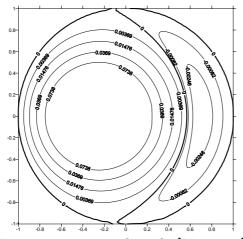
Eccentricity:
$$\varepsilon = \frac{e}{(R_2 - R_1)}$$

Comparison for $\varepsilon = 0.5$

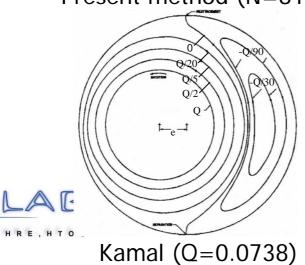


Contour plot of Streamline for

 $\varepsilon = 0.5$



Present method (N=81)



Kelmanson (Q=0.0740, n=160)

Outlines

- Motivation and literature review
- Mathematical formulation
- Expansions of fundamental solution and boundary density
- Adaptive observer system
- Vector decomposition technique
- Linear algebraic equation
- Numerical examples
- Conclusions

- A systematic approach using degenerate kernels, Fourier series and null-field integral equation has been successfully proposed to solve Laplace Helmholtz and Biharminic problems with circular boundaries.
- Numerical results agree well with available exact solutions, Caulk's data, Onishi's data and FEM (ABAQUS) for only few terms of Fourier series.

- Engineering problems with circular boundaries which satisfy the Laplace Helmholtz and Biharminic problems can be solved by using the proposed approach in a more efficient and accurate manner.
- Free of boundary-layer effect
- Free of singular integrals
- Well posed
- Exponetial convergence

The End

Thanks for your kind attentions.

Your comments will be highly appreciated.

URL: http://msvlab.hre.ntou.edu.tw/

Chinese Version English Version

如有任何問題,請與網頁管理者連絡 🞑

版權所有 All rights reserved. Copyright @ 2004