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Abstract
Engineers usually adopt multilayered design for semiconductor and electron
devices, and an accurate electrostatic analysis is indispensable in the design
stage. For variable design of electron devices, the BEM has become a better
method than the domain-type FEM because BEM can provide a complete
solution in terms of boundary values only, with substantial saving in
modelling effort. Since dual BEM still has some advantages over
conventional BEM for singularity arising from a degenerate boundary, the
dual BEM accompanied by subregion technology, instead of tedious
calculation of Fourier–Bessel transforms for the spatial Green’s functions,
was used to efficiently simulate the electric effect of diverse ratios of
permittivity between arbitrarily multilayered domain and the fringing field
around the edge of conductors. Results show that different ratios of
permittivity will affect the electric field seriously, and the values of surface
charge density on the edge of conductors are much higher than those on the
middle part because of fringing effect. In addition, if using the DBEM to
model the fringing field around the edge of conductors, the minimum
allowable data of dielectric strength for keeping off dielectric breakdown
can be obtained very efficiently.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Electrostatics, as used here, is the term given to the study
of the interactions between electrically charged bodies.
Severely speaking electrostatics includes the study of the
forces which hold individual electrons and ions together
to form atoms, the chemical forces which bind the atoms
together and much of the science of plasma physics and

electrochemistry [1]. When device dimensions are much less
than the wavelength of electromagnetic radiation at a particular
frequency, then the response of the system at that frequency can
be considered quasistatic in that the emission, transmission,
or absorption of electromagnetic radiation can be ignored
[2]. For many microelectromechanical systems (MEMS) and
electron devices, knowledge of the electric potential (V ) and
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electric field intensity (E) are very important [3]. Therefore,
electrical engineers are familiar with electrostatic problems,
and diverse numerical methods have been regularly used in
MEMS and EM (electromagnetics) [4]. Among different
numerical approaches, finite element method (FEM), which
is based on the representation and approximate solution of
boundary value problems of engineering mathematics in terms
of partial differential equations [5], and boundary element
method (BEM) based on integral equations [6] have moved
from being research tools for scientists to become powerful
design tools for engineers. One of the main advantages of
BEM, when compared to FEM, is that discretizations are
restricted only to the boundaries, making data generation much
easier. The BEM is also ideally suited to the analysis of
external problems where domains extend to infinity, since
discretizations are confined to the internal boundaries with
no need to truncate the domain at a finite distance and impose
artificial boundary conditions, and to problems involving some
form of discontinuity or singularity, due to the use of singular
fundamental solutions as test functions. Especially for variable
design of electron devices, many laborious works of finite
element modelling compared to those of boundary element
model are needed because BEM can provide a complete
solution in terms of boundary values only, with substantial
saving in modelling effort. Therefore, there is no doubt that
BEM has become a very appealing approach in numerical
simulation of EM and MEMS [7–12] even if many engineers
still use commercial package and waste much time to set up
adverse FEM models in the design stage nowadays.

Because modern MEMS and electron devices design
usually contains very thin conducting plates (e.g. a parallel-
plate capacitor), the singularity problems arising from a
degenerate boundary (The degenerate boundary refers to a
boundary, two portions of which approach each other such that
the exterior region between the two portions becomes infinitely
thin.) are frequently formed, and it is well known that the
coincidence of the boundaries gives rise to an ill-conditioned
problem. The sub-domain technique in conventional BEM
with artificial boundaries for degenerate boundary has been
introduced to ensure a unique solution. The main drawback
of the technique is that the deployment of artificial boundaries
is arbitrary and, thus, cannot be implemented easily into an
automatic procedure. In addition, model creation is more
troublesome than in the single domain approach. To tackle
such degenerate boundary electrostatic problems, dual BEM
(DBEM) has been proposed in [13], and the above-mentioned
boundary value problems can be solved efficiently in the
original single domain if using DBEM.

The paper is organized as follows. Section 2 involves
the reviews of electrostatic Green’s functions in layered
dielectrics. In section 3, we briefly introduce the procedure
of dual boundary integral equation for electrostatic problems.
Numerical results are provided and compared in section 4
to establish the suitability and accuracy of the DBEM.
Some remarks based on the reported results were discussed in
section 5. Finally, there is a concise conclusion in section 6.

2. Reviews of electrostatic Green’s functions
in layered dielectrics

Generally the multilayered medium structure has been recently
developed and designed in many microwave circuits to provide

high-cost performance as commercial products, accurate and
expedient prediction of electric performance of high-speed
interconnects is critically dependent on efficient simulation of
capacitance and inductance of layered dielectric substrates.
While using the integral equation formulations formulated
by the boundary integral equation techniques for solving
electrostatic problems, how to search for a Green’s function is
seemed to be the first and most important thing.

For the case of layered substrates, commonly utilized
techniques use one of two types of Green’s functions. The
first one is used as kernel of the integral equation (the free-
space Green function), in which case, polarization charges on
the dielectric interfaces need to be introduced as unknowns
[14, 15]. In [14, 15], the spatial domain approach using the
free-space Green function has been developed to calculate
the capacitance and inductance matrices of multiconductor
transmission lines located arbitrarily in a multilayered medium
of finite extent. The potential in the medium is expressed in
terms of the free charge at the conductor–dielectric interfaces
and the total charge at the dielectric–dielectric interfaces.
The second one is called the spatial Green function which
is much more complicated than the free-space Green function
because it is consistent with the boundary conditions at the
dielectric interfaces [16–19]. Comparing the free-space Green
function with spatial Green’s function, one can see that:
(1) although the free-space Green’s function is simple, the
number of unknowns involved in the discrete problem is
large. (2) For spatial Green’s function, the only polarization
charges required as additional unknowns are those at any finite
dielectric boundaries and the number of unknowns in this
case is reduced significantly. (3) Even though closed-form
expressions in terms of an infinite series are available for the
cases of single-layer microstrip and stripline configurations,
the calculation of spatial Green’s functions for multilayered
substrates requires the computationally tedious calculation of
Fourier–Bessel transforms because it is necessary to relate the
Fourier coefficients in each layer to the boundary conditions
on the interfaces of the dielectric layers.

Because there are also many difficulties for irregular
geometrical design while using the afore-mentioned
conventional free-space and spatial Green’s functions, a
systematic and robust methodology is needed for solving
the arbitrarily multilayered electrostatic problems. However,
many difficulties will still be faced if using DBEM for the
multilayered domain because we also need more external
boundary conditions at the interface between two dielectric
media, which should be calculated. Since electromagnetic
problems often involve media with different physical
properties and require knowledge of the relation of the field
quantities at the interface between two media, the DBEM
accompanied by subregion technique was successfully used to
determinate how the E and D (D = εE, electric flux density)
vectors change in crossing the interface in this paper. For
electrical engineering practices, since the numbers of elements
and nodes for FEM are much higher than those of DBEM to
get a reasonable result, the present DBEM accompanied by
the subregion technique has great potential in multilayered
electrostatic problems for future industrial applications.
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3. Dual boundary integral equations

For a homogeneous medium, the governing equation of
electrostatics can be written in the following form,

∇2V = −ρ/ε (1)

where ∇2 is the Laplacian operator. Equation (1) is known as
Poisson’s equation; it states that the divergence of the gradient
of electric potential (V ) equals −ρ/ε for a simple medium,
where ε is the permittivity of the medium and ρ is the volume
density of free charges. At points in a simple medium where
there is no free charge, equation (1) is reduced to

∇2V = 0 (2)

which is known as Laplace’s equation. Equation (2) plays
a very important role in MEMS and EM. It is the
governing equation for electrostatic problems involving a set
of conductors, such as capacitors, maintained at different
potentials. Once V is found from equation (2), E can be
determined from −∇V , and the charge distribution on the
conductor surfaces can be determined from surface charge
density ρs = εEn.

The electrostatic problem consists of finding the unknown
potential function � (or V ) in the partial differential equation.
In addition to the fact that � satisfies equation (2) within
a prescribed solution region �, the potential function �

must satisfy certain conditions on B which is the boundary
of �. Usually these boundary conditions are the Dirichlet
and Neumann types. Therefore, the governing equation and
boundary conditions of electrostatic problems could be written
in the following form.

Governing equation:

∇2�(x) = 0, x in � (3)

Dirichlet boundary condition:

�(x) = f (x), x on B (4)

Neumann boundary condition:

∂�(x)/∂nx = g(x), x on B, (5)

where f (x) and g(x) denote the known boundary data, and nx

is the unit outer normal vector at the point x on the boundary.
Based on the dual boundary integral equation formulation

for electrostatic problem, we have

α�(x) = CPV
∫

B

T (s, x)�(s) dB(s)

− RPV
∫

B

U(s, x)[∂�(s)/∂ns] dB(s) (6)

α[∂�(x)/∂nx] = HPV
∫

B

M(s, x)�(s) dB(s)

− CPV
∫

B

L(s, x)[∂�(s)/∂ns] dB(s), (7)

where the kernel functions, U(s, x) = ln(r), T (s, x) =
∂U(s, x)/∂ns , L(s, x) = ∂U(s, x)/∂nx , M(s, x) =
∂2U(s, x)/∂nx∂ns , r = |s − x|, s and x being the position
vectors of the points s and x, respectively, and ns is the unit
outer normal vector at point s on the boundary (see figure 1).
In addition, RPV is the Riemann principal value, CPV is
the Cauchy principal value, HPV is the Hadamard principal

Figure 1. Boundary element discretization for degenerate boundary
and non-degenerate boundary.

Figure 2. A figure sketch of the multi-domain.

Figure 3. An interface between two media.

value, and α depends on the collocation point (α = 2π for
an interior point, α = π for a smooth boundary, α = 0 for
an exterior point). The commutativity property of the trace
operator and the normal derivative operator provides us with
alternative ways to calculate the Hadamard principal value

R49



Topical Review

analytically [12]. First, L’Hospital’s rule is employed in
the limiting process. Second, the normal derivative of the
Cauchy principal value should be taken carefully by using
Leibnitz’ rule, and then the finite part can be obtained.
The finite part has been termed the Hadamard principal
value or Mangler’s principal value. In the derivation of
dual equations, two alternatives can be applied to determine
the Hadamard principal value as presented in appendix A.
Generally, equation (6) is called singular boundary integral
equation, and equation (7) is called hypersingular boundary
integral equation. Since the hypersingular equation plays an
important role in the degenerate problems, many researchers
have paid much attention to this. After discretizing the
boundary into 2N boundary elements, equations (6) and (7)
are reduced to

[U ]2N×2N {t}2N×1 = [T ]2N×2N {u}2N×1 (8)

[L]2N×2N {t}2N×1 = [M]2N×2N {u}2N×1 (9)

where [U ], [T ], [L] and [M ] are the four influence matrices,
{u} and {t} are the boundary data for the primary and the
secondary boundary variables: {�} and {∂�/∂n}, respectively.
These above-mentioned four influence matrices for interior
and exterior fields are presented in appendix B. Generally
for electrostatic problems without degenerate scale, the
aforementioned influence matrix [U ] is nonsingular, either
equation (8) or equation (9) can be solved by Gaussian
elimination and LU decomposition very well. But for
degenerate scale problem, [U ] matrix is singular and the
rank is deficient, then the SVD (singular value decomposition)
technique need to be used [20]. For multilayered electrostatic
problems, the DBEM accompanied by subregion technique
for multi-domain is needed, and the methods are presented in
appendix C.

4. DBEM simulation of multilayered electrostatic
problems

In order to demonstrate the suitability and efficiency of DBEM
presented in this paper, two electrostatic problems were used.
Basically for the nondegenerate boundary problems like the
following case 1, either singular BEM ( just using the first
kind kernels of U(s, x) and T(s, x)), hypersingular BEM (the
second kind kernels of L(s, x), M(s, x)) or DBEM (using the
first kind kernels of U(s, x), T(s, x) and the second kind kernels
of L(s, x), M(s, x) in the meantime) accompanied by subregion
technology can be used. But for the multilayered electrostatic
problems with degenerate boundary like the following case 2,
the DBEM accompanied by subregion technology plays an
important role, and conventional BEM (singular BEM or
hypersingular BEM) without external artificial boundaries
cannot be used.

Case 1. Consider the potential problem shown in figure 4.
The potentials at x = 0, x = a and y = 0 sides are zero while
the potential at y = b side is V0. Try to find the potential
distribution in the multilayered domain.

Because it is not easy to obtain analytical data, FEM was
used to calculate the reference data [21]. For convenience,
the values of a, b and c are assumed to be 30, 20 and
10 µm. respectively. Four points will be analysed using
rough mesh discretization (72 elements and 72 nodes, see

Figure 4. Figure of case 1 (without degenerate boundary).

Figure 5. The related DBEM mesh discretization of case 1 (without
degenerate boundary).

Figure 6. The related FEM mesh discretization of case 1.

figure 5) of conventional DBEM (or BEM) accompanied
by subregion technology, and compared with reference data
computed from a larger FEM model (600 elements and
651 nodes, see figure 6). The results of electric potential
under diverse numerical methods were listed in tables 1 and
2 and shown in figures 7 and 8. Comparing the results of
electric potential field (equipotential lines) using DBEM and
FEM (see figures 7 and 8), one can see that the difference of
electric potential distribution is very little. Therefore, DBEM
(or BEM) accompanied by subregion technology used in this
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Figure 7. The results of electric potential (V ) (equipotential lines; ranging from +V0 at top (red in online edition) to 0 at bottom (dark blue
online)) of case 1 (R = 10) if using DBEM (left part) and FEM (right part).

Figure 8. The results of electric potential (V ) (equipotential lines; ranging from +V0 at top (red in online edition) to 0 at bottom (dark blue
online)) of case 1 (R = 0.1) if using DBEM (left part) and FEM (right part).

Table 1. The results of electric potential (V ) of case 1 (R = 10) if using the conventional BEM, DBEM and FEM.

Results from Results from Results from Difference
Locations singular BEM hypersingular BEM DBEM Results from between
(x, y) U, T kernels L, M kernels U, T, L, M kernels FEM DBEM and FEM

(18.0, 3.00) 0.173 02V0 0.184 90V0 0.173 02V0 0.174 3103V0 −0.74%
(4.00, 9.00) 0.274 48V0 0.283 12V0 0.274 48V0 0.280 9692V0 −2.31%
(25.0, 16.0) 0.596 07V0 0.637 56V0 0.596 07V0 0.600 0305V0 −0.67%
(5.00, 17.0) 0.674 92V0 0.712 73V0 0.674 92V0 0.679 071V0 −0.61%

Table 2. The results of electric potential (V ) of case 1 (R = 0.1) if using the conventional BEM, DBEM and FEM.

Results from Results from Results from Difference
Locations singular BEM hypersingular BEM DBEM Results from between
(x, y) U, T kernels L, M kernels U, T, L, M kernels FEM DBEM and FEM

(18.0, 3.00) 0.017 302V0 0.018 490V0 0.017 302V0 0.017 419 43V0 0.67%
(4.00, 9.00) 0.027 448V0 0.028 312V0 0.027 448V0 0.028 100 59V0 −2.32%
(25.0, 16.0) 0.480 640V0 0.511 030V0 0.480 640V0 0.488 333 13V0 −1.58%
(5.00, 17.0) 0.589 690V0 0.615 380V0 0.589 690V0 0.592 9200V0 −0.54%

paper seems to be a very efficiently numerical method for
the multilayered electrostatic problems without degenerate
boundary (e.g. thin strip conductors). From the results of
electric potential V(x, y) listed in tables 1 and 2, one can
see that the differences between FEM and DBEM are lower
than 2.4%. In addition, both singular BEM and hypersingular
BEM accompanied by subregion technology can deal with this
nondegenerate boundary problem well.

In order to investigate the effect of diverse ratios of
permittivity (R = ε1/ε2) between subdomains 1 and 2, the
results of electric potentials of Y = 10 µm interface line and
X = 15 µm lines from DBEM are shown in figures 9 and
10. From figures 9 and 10, one can see that the values of R
seriously affect the distribution of voltages and engineers can
adjust R according to their needs.

Case 2. Similar to case 1, but insert two thin strip conductors
(length = 10 µm) into the centre part of these two media
shown in figure 4. If the voltage of the upper strip conductor
is 0 and that of the lower one is V0, determine the electric field
and charge distributions.

Because these two strip conductors form a new degenerate
boundary and a closed contour formed by two lines C+ and C−

(see figure 1) for the degenerate boundary, the singular BEM or
hypersingular BEM without external artificial interface cannot
cope with this degenerate case, but the electric potential can
be calculated just in one run if using DBEM. Similar to
case 1, FEM was also used to calculate the reference data,
but the linear shape function of finite element model shown
in figure 6 was replaced by parabolic shape function in order
to model the fringing effect near the edge of these two strip

R51



Topical Review

0

0.15

0.3

0.45

0.6

0.75

0 5 10 15 20 25 30

X  Coordinate ( m)

E
le

ct
ri

c 
P

ot
en

tia
ls

 (
V

)

R=10.

R=5.

R=2.

R=1.

R=0.5

R=0.2

R=0.1

µ

Figure 9. Results of electric potentials (V ) of Y = 10 µm interface line under diverse ratios of permittivity (R) between subdomains 1 and
2—case 1 (unit: V0).
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Figure 10. Results of electric potentials (V ) of X = 15 µm line under diverse ratios of permittivity (R) between subdomains 1 and 2—case 1
(unit: V0).

conductors. Four points will also be analysed using more
dense mesh discretization (180 elements and 156 nodes, see
figure 11) of DBEM accompanied by subregion technology,
and compared with reference data computed from a larger
FEM model (600 elements and 1901 nodes). The results of
electric potential under diverse numerical methods were listed
in table 3 and shown in figure 12. Comparing the results
of electric potential field of DBEM with those of FEM (see
figure 12), one can see that the difference of electric potential
distribution is also very little and the fringing effect near the
edge of these two strip conductors can be modelled very well.

From the results of electric potential V(x, y) listed in table 3
and shown in figure 12, one can find that (1) the conventional
BEM without external artificial boundaries cannot solve the
electrostatic problem with degenerate boundaries such as this
case. (2) DBEM accompanied by subregion technology can
analyse the multilayered electrostatic problem with degenerate
boundary very efficiently. (3) The fringing effect near the edge
of these two strip conductors can be simulated very well using
DBEM. (4) The differences between FEM and DBEM are
lower than 5.0%. In addition, the results of electric potentials
of Y = 10 µm interface line and X = 15 µm lines from DBEM
are also shown in figures 13 and 14 in order to investigate the
effect of diverse ratios of permittivity (R) between subdomains
1 and 2. From figures 13 and 14, one can see that the values
of R also critically influence on the distribution of electric

Figure 11. The related DBEM mesh discretization of case 2 (with
degenerate boundary).

potentials like case 1 (see figures 9 and 10). Comparing with
the results of nondegenerate case, the electric potential field
of degenerate case is more complicated because of degenerate
boundary.

Besides electric potentials, the distributions of normal
electric field (En) on the top and bottom sides of upper
conductor under diverse R can be shown in figures 15 and
16. From figure 16, one can see that the values of En,2 on the
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Figure 12. The results of electric potential (V ) (equipotential lines; ranging from +V0 at top and lower middle area (red in online edition) to
0 at bottom and upper middle area (dark blue online)) of case 2 (R = 10) if using DBEM (left part) and FEM (right part).
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Figure 13. Results of electric potentials (V ) of Y = 10 µm interface line under diverse ratios of permittivity (R) between subdomains 1 and
2—case 2 (unit: V0).
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Figure 14. Results of electric potentials (V ) of X = 15 µm line under diverse ratios of permittivity (R) between subdomains 1 and 2—case 2
(unit: V0).

Table 3. The results of electric potential (V ) of case 2 (R = 10) if using the conventional BEM, DBEM and FEM.

Results from Results from Results from Difference
Locations singular BEM hypersingular BEM DBEM Results from between
(x, y) U, T kernels L, M kernels U, T, L, M kernels FEM DBEM and FEM

(24.0, 16.5) NA NA 0.521 81V0 0.514 489 8V0 1.42%
(6.50, 12.0) NA NA 0.238 01V0 0.230 1575V0 3.41%
(22.5, 6.00) NA NA 0.346 38V0 0.363 8855V0 −4.81%
(4.00, 3.50) NA NA 0.106 23V0 0.110 8643V0 −4.18%

bottom side of upper conductor are obviously dependent on
the values of R and the location to the left corner of conductor
(locx), and the smaller the R is, the larger the En,2 is. Unlike
En,2, the values of En,1 on the top side are only apparently
counting on the value of locx, and the effect of the values of

R can be ignored (see figure 15). Similar to the results of
upper conductor, the distributions of En on the top and bottom
sides of lower conductor under diverse R can also be shown
in figures 17 and 18. From figure 17, one can see that the
values of En,3 on the top side of lower conductor are obviously
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Figure 15. The distribution of normal electric field (En) on the top side of upper conductor under diverse ratios of permittivity (R) between
subdomains 1 and 2 (unit: V0/µm).
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Figure 16. The distribution of normal electric field (En) on the bottom side of upper conductor under diverse ratios of permittivity (R)
between subdomains 1 and 2 (unit: V0/µm).
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Figure 17. The distribution of normal electric field (En) on the top side of lower conductor under diverse ratios of permittivity (R) between
subdomains 1 and 2 (unit: V0/µm).
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Figure 18. The distribution of normal electric field (En) on the bottom side of lower conductor under diverse ratios of permittivity (R)
between subdomains 1 and 2 (unit: V0/µm).

dependent on the values of R and the locx, but the values of En,4

on the bottom side are only apparently counting on the value of
locx, and the effect of the values of R can be also neglected (see
figure 18). From figures 15 to 18, one can find that different
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Figure 19. The distribution of surface charge density (ρs) of upper conductor under diverse ratios of permittivity (R) between subdomains
1 and 2 (unit: ε1V0/µm2).
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Figure 20. The distribution of surface charge density (ρs) of lower conductor under diverse ratios of permottivity (R) between subdomains
1 and 2 (unit: ε2V0/µm2).
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Figure 21. The distribution of charge (Q) on both upper and lower conductors under diverse ratios of permittivity (R) between subdomains
1 and 2 (unit: upper conductor: ε1wV0; lower conductor: ε2wV0).

R will affect the electric field seriously, and the values of En

on the edge of conductors are much higher than those on the
middle part because of the fringing effect.

As we know the value of R can play a very important
role, let us investigate the effect of R for charge distribution.
Because the charge distribution on the conductor surfaces can
be determined from ρs = εEn (the normal component of the
electric field En at a conductor boundary is equal to the surface
charge density ρs on the conductor divided by the permittivity
ε [1, 2]) if ε is a constant. From figures 19 and 20, we can
see that the values of surface charge density (ρs) on the both
upper and lower conductors are obviously dependent on the
value of locx, but not very obvious for the value of R. As we
all know that the fringing effect around the edge of inserted
conductors is as clear as day like En. From these results, we
can see the ρs at the edges becomes much larger than that at

the centre for conductors because of fringing effect. If the
width of conductor is w, the distribution of charge (Q) on both
upper and lower conductors under diverse R can be shown in
figure 21. From figure 21, we can see that the larger the value
of R is, the larger the Q of lower capacitor is, but the larger the
value of R is, the less the Q of upper capacitor is.

5. Discussions

(1) For the electrostatic problems without degenerate
boundary like case 1, singular BEM, hypersingular BEM
and DBEM are all very usefully numerical tools. For
the electrostatic problems with singularity arising from
degenerate boundary such as case 2, it is well known
that the coincidence of the boundaries will give rise to
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an ill-conditioned problem if using conventional BEM.
Therefore DBEM presented in this paper became a very
efficient solver for modelling the fringing field around
the edge of electron devices and the conventional BEM
without external artificial boundaries cannot be used for
the electrostatic problem with degenerate boundaries.

(2) By way of DBEM, one can see that the values of normal
electric field (En) on the bottom side of upper and top
side of lower conductors are obviously dependent on the
values of ratios of permittivity (R) between subdomains
1 and 2 and the location to the left corner of conductor
(locx), but the values of En on the top side of upper and
bottom sides of lower conductors are only apparently
counting on the value of locx, and the effect of the values
of R can be neglected. Results also show that different
R will affect the electric potential (V ) and field seriously,
and the values of electric field and surface charge density
(ρs) on the edge of conductors are much higher than those
on the middle part because of fringing effect.

(3) As we know from the theory of electrostatics [1, 2], the
electrons will be pulled out of the molecules completely
if the E is very strong, and the electrons will accelerate
under the influence of the E, collide violently with
the molecular lattice structure, then cause permanent
dislocations and damage in the material. While avalanche
effect of ionization due to collisions occurs, the material
will become conducting, and large currents (I ) may result.
This phenomenon is called a dielectric breakdown, and the
maximum electric field intensity that a dielectric material
can withstand without breakdown is the dielectric strength
of the material (e.g. for air is 3 × 106 V m−1). So
the accurate and efficient modelling for fringing effect
around the edge of electron devices is very important
for performance because we need to know the minimum
allowable data of dielectric strength for keeping off
dielectric breakdown. Therefore, we recommend our
DBEM here because it is more simple and efficient than
other conventional BEMs.

(4) For the arbitrarily multilayered electrostatic problems
with singularity arising from degenerate boundary,
DBEM accompanied by subregion technology can
efficiently model the physical behaviour of interface
between subdomains 1 and 2. In addition, for variable
design of electron devices, the DBEM has become a
better method than the domain-type FEM because DBEM
can provide a complete solution in terms of boundary
values only, with substantial saving in modelling effort.
Especially for calculating the ρs and charge (Q) of
conductors according to diverse design, only the part of
En on the surface of conductors needed to be known, then
the DBEM can work very well.

6. Conclusions

The dual boundary integral formulation accompanied by
subregion technology for arbitrarily multilayered electrostatic
problems has been presented in this article. Comparisons of
the electric potentials between the FEM and DBEM analyses
were discussed with respect to degenerate and non-degenerate
designs in order to demonstrate the suitability and efficiency

of computational method presented in this paper. It has been
shown that the DBEM accompanied by subregion technology
in the context of the present formulation is particularly suitable
for the multilayered electrostatic problem with singularity
arising from a degenerate boundary. For electrical engineering
practices, since the major effort is model creation, the present
DBEM, free from the development of an artificial boundary,
has great potential for industrial applications.

Appendix A

In the derivation of dual equations, two alternatives can be
applied to determine the Hadamard principal value as follows
[12]:

(1) Trace operator first and differential operator second

HPV
∫

B

M(s, x)u(s) dB(s)

= ∂

∂nx

{
CPV

∫
B

T (s, x)u(s) dB(s)

}
. (A1)

For simplicity, constant element is adopted, i.e. u(s) = 1, and
(A1) reduces to

d

dx

{
CPV

∫ c

a

−1

(x − s)
ds

}

= d

dx

{∫ x−ε

a

−1

(x − s)
ds +

∫ c

x+ε

−1

(x − s)
ds

}

= 1

a − x
− 1

c − x

after using the Leibnitz rule.
(2) The differential operator first and trace operator second

HPV
∫

B

M(s, x)u(s) dB(s) = lim
y→x

∫
B

M(s, y)u(s) dB(s).

(A2)

Similarly, constant element scheme can simplify (A2) into

lim
y→0

∫ c

a

1

(x − s)2 + y2
ds

= lim
y→0

1

y

[
tan−1

(
y

a − x

)
− tan−1

(
y

c − x

)]

= 1

a − x
− 1

c − x

after using

lim
α→0

tan−1 α

α
= 1

and

tan−1 α + tan−1 1

α
= π

2
.

Appendix B

In dual BEM, the linear algebraic equations for an interior
electrostatic problem discretized from the dual boundary
integral equations can be written as [12, 13][

T i
pq

]{�q} = [
Ui

pq

]{∂�/∂n}q (B1)

[
Mi

pq

]{�q} = [
Li

pq

]{∂�/∂n}q (B2)
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where {�q} and {∂�/∂n}q are the boundary potential and
flux, and the subscripts p and q correspond to the labels of the
collocation point and integration element, respectively. For
the exterior electrostatic problem, we have [12, 13][

T t
pq

]{�q} = [
Ue

pq

]{∂�/∂n}q (B3)

[
Me

pq

]{�q} = [
Le

pq

]{∂�/∂n}q . (B4)

The influence coefficients of the four square matrices [U ], [T],
[L] and [M] can be represented as

Upq = RPV
∫

Bq

U(sq, xp) dB(sq) (B5)

Tpq = −πδpq + CPV
∫

Bq

T (sq, xp) dB(sq) (B6)

Lpq = πδpq + CPV
∫

Bq

L(sq, xp) dB(sq) (B7)

Mpq = HPV
∫

Bq

M(sq, xp) dB(sq) (B8)

where Bq denotes the qth element and δpq = 1 if p = q,
otherwise it is zero. The explicit form will be derived in the
following section. According to the dependence of the out-
normal vectors in these four kernel functions for the interior
and exterior electrostatic problems, their relationship can be
easily found:

Ui
pq = Ue

pq (B9)

Mi
pq = Me

pq (B10)

T i
pq = −T e

pq if p �= q; T i
pq = T e

pq if p = q.

(B11)

Li
pq = −Le

pq if p �= q; Li
pq = Le

pq if p = q.

(B12)

Appendix C

(1) Subregion technology of BEM. Before studying the
physical behaviour of interface between two media of
electrostatic problems, the concept of subregion technology
for singular BEM ([U ] and [T ]) or hypersingular BEM ([L] and
[M]) was introduced first. From figure 2, a figure sketch of the
multi-domain could be found, where

{
u1

c

}
is the boundary data

of degenerate boundary (C+ and C−), and
{
u1

f

}
,
{
u2

f

}
,
{
t1
f

}
,{

t2
f

}
are the unknowns of the interface between subdomains 1

and 2. Since the degenerate boundary on C+ and C− as shown
in figure 2 results in double unknowns, Equation (8) or (9)
can provide an additional equation by collocating the point x
on C+ and C−. By dividing the domain into two subdomains
(subdomains 1 and 2) and using singular BEM or hypersingular
BEM influence matrices for each subdomain, we have the two
equations from equation (8) or (9) as follows:[

T 1
cc T 1

cf

T 1
f c T 1

ff

]{
u1

c

u1
f

}
=

[
U 1

cc U 1
cf

U 1
f c U 1

ff

]{
t1
c

t1
f

}
(C1)

and

[
T 2

cc T 2
cf

T 2
f c T 2

ff

]{
u2

c

u2
f

}
=

[
U 2

cc U 2
cf

U 2
f c U 2

ff

]{
t2
c

t2
f

}
(C2)

where the superscripts 1 and 2 are the labels of the subdomains
and the subscripts c and f denote the complementary and
interface sets for u and t, respectively. Since the unknown pairs
of

{
u1

f

}
,
{
u2

f

}
,
{
t1
f

}
and

{
t2
f

}
are introduced in the artificial

boundary as shown in figure 2, two constraints of the continuity
and equilibrium conditions

({
u1

f

} = {
u2

f

}
and

{
t1
f

} = −{
t2
f

})
are necessary for the interface if ε1 = ε2. By assembling (C1)
and (C2) with two constraints of the continuity and equilibrium
conditions for the interface, we have




U 1
cc U 1

cf 0

U 1
f c U 1

ff 0

0 −U 2
cf U 2

cc

0 −U 2
ff U 2

f c







t1
c

t1
f

t2
c


 =




T 1
cc T 1

cf 0

T 1
f c T 1

ff 0

0 T 2
cf T 2

cc

0 T 2
ff T 2

f c







u1
c

u1
f

u2
c


 .

(C3)

After solving (C3), all the unknowns
{
t1
c

}
,
{
t2
c

}
,
{
t1
f

}
and

{
u1

f

}
can be obtained, and

{
u2

f

}
and

{
t2
f

}
also can be calculated

from the two constraints of the continuity and equilibrium
conditions for the interface.

(2) Boundary conditions for electrostatic fields of the interface
between two media. If there is an interface between two
general media shown in figure 3, the normal component of
D field is discontinuous across an interface where a surface
charge exists—the amount of discontinuity being equal to the
surface charge density. When two dielectrics are in contact
with no free charges at the interface, ρs = 0, we have

ε1E1n = ε2E2n. (C4)

In addition, the electric potential and the tangential component
of an E field are all continuous across an interface [1, 2].

(3) Subregion technology for multilayered electrostatic
problems. For multilayered domain (ε1 �= ε2) shown in
figure 3, by assembling (C1) and (C2) with two constraints of
the continuity and boundary conditions (C4) for the interface({

u1
f

} = {
u2

f

}
and

{
t1
f

} = −R
{
t2
f

}
, where R = ε1/ε2 is the

ratio of permittivity between subdomains 1 and 2
)
, we have




U 1
cc U 1

cf 0

U 1
f c U 1

ff 0

0 −RU 2
cf U 2

cc

0 −RU 2
ff U 2

f c







t1
c

t1
f

t2
c


 =




T 1
cc T 1

cf 0

T 1
f c T 1

ff 0

0 T 2
cf T 2

cc

0 T 2
ff T 2

f c







u1
c

u1
f

u2
c


 .

(C5)

After solving (C5), all the unknowns
{
t1
c

}
,
{
t2
c

}
,
{
t1
f

}
and

{
u1

f

}
can be obtained, and

{
u2

f

}
and

{
t2
f

}
also can be calculated from

the two constraints of the continuity and boundary conditions
for the interface.
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