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ABSTRACT

In this paper, the true and spurious eigensolutions of
elliptical membranes appearing in boundary element
method are examined by using the null-field boundary
integral equation. To analytically study the eigenproblems
with elliptical boundaries, the elliptic coordinates and
Mathieu functions are adopted. The fundamental
solutions are expanded into the degenerate kernel by
using the elliptic coordinates and the boundary densities
are expanded by using the eigenfunction expansion. The
Jacobian terms may exist in the degenerate kernel,
boundary density and boundary contour integration and
they can cancel each other out. Therefore, the orthogonal
relations are reserved in the boundary contour integral. It
is interesting to find that if we only apply the real or the
imaginary-part kernel to deal with a simply-connected
elliptical membrane, spurious eigensolutions may appear.
Even though we employ the complex-valued kernel, the
spurious eigensolutions also occur in the case of a
confocal elliptical annulus. Spurious eigenvalues depend

on the geometry of inner boundary and the approach used.

These two findings agree with those corresponding to the
circular and annular cases, respectively. To verify the
findings, the boundary element method is also
implemented. Furthermore, the commercial finite-element
code ABAQUS is also utilized to provide eigensolutions
for comparisons. It is found that good agreement is
obtained.
Keywords: eigensolutions, null-field boundary integral
equation, elliptic coordinates, Mathieu
functions, Jacobian, degenerate kernel.

1. INTRODUCTION

Eigenanalysis is very important for vibration and
acoustics, because it can provide the fundamental
information. In the recent years, many numerical methods

were utilized to determine eigenvalues and eigenmodes
such as the finite element method (FEM) or the boundary
element method (BEM). Although the FEM is a popular
method, it needs to generate the mesh over the whole
domain. The BEM only generate the mesh on the
boundary but it may face with the calculation of the
principal value and the pollution of spurious eigenvalues
while dealing with the simply-connected problems only
using the real or the imaginary-part kernel [1, 2, 3]. Even
though we employ the complex-valued kernel for the
multiply-connected  eigenproblems,  the  spurious
eigensolutions also occur [4, 5].

Recently, Chen et al. [6] applied the null-field
boundary integral equation method (BIEM) in
conjunction with the degenerate kernel and the Fourier
series to solve the eigenproblems with circular boundaries.
The advantage of free of calculating principal value is
gained. This approach is one kind of semi-analytical and
meshless methods. Spurious eigenvalues appear for the
multiply-connected problems since the integral equation
is used. Chen et al. [4, 5] pointed out that the spurious
eigenvalues depend on the inner boundary with an
illustrated annulus case.

However, all the previous examples [4, 5, 6] were
focused on circular boundaries. Accordingly, we aim to
extend this approach to deal with eigenproblems with
elliptical boundaries. Regarding eigenproblems with
elliptical boundaries, Troesch and Troesch [7] used the
separation of variables to obtain the eigenfrequencies and
nodal patterns of an elliptic membrane. Hong and Kim [8]
also employed the separation of variables to determine
the natural mode of hollow and elliptical annulus for
cylindrical cavities. Both the elliptic coordinates and the
Mathieu functions were wused in the previous
investigations [7, 8].

Following the successful experiences of employing
the null-field BIEM to solve Laplace problems with
elliptical boundaries [9], we extend the null-field BIEM
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to study the spurious eigenvalue in BEM for
eigenproblems with elliptical boundaries. The null-field
BIEM is utilized in conjunction with the degenerate
kernel and the eigenfunction expansion. To fully utilize
the elliptical geometry for an analytical study, the elliptic
coordinates and Mathieu functions [10] are used. The
fundamental solution is expanded to the degenerate kernel
by using the elliptic coordinates [11]. Also, the boundary
densities are expanded by using the eigenfunction
expansion in conjunction with a Jacobian term. The
advantage of free of calculating principal value is gained.
Finally, the true and spurious eigensolutions of an
elliptical membrane and a confocal elliptical annulus are
analytically derived by using the null-field BIEM and
numerically verified by using the BEM and FEM,
respectively.

2. PROBLEM STATEMENT AND THE
PRESENT APPROACH

2.1 Problem statement
The governing equation for free vibration of a
membrane is the Helmholtz equation as follows,

(V? +Kk*)u(x) =0, xeD, (1)
where V? is the Laplacian operator, k is the wave
number, u(x) is the displacement, x are the domain
pointsand D is the domain of interest.

2.2 Dual boundary integral formulations — the
conventional version
Based on the Green’s third identity, the dual
boundary integral equations for the domain point are
shown below:
27U(X) = j T(s, X)u(s)dB(s)
° )
—J.BU(S, x)t(s)dB(s), X e D,
27t(X) = j M (s, X)u(s)dB(s)
@)
- jB L(s, X)t(s)dB(s), x D,
where s are the source points, B is the boundary of
membrane, t is the normal derivative of displacement
and U (s, x) isthe fundamental function which satisfies
(V2 +K*U (s, X) = 275(X —S5), (4)
where ¢ is the Dirac-delta function. The other kernel
functions T(s,x), L(s,x) and M(s,x) are defined
by

T(S, X) = M’ (5)

L(S, X) = M7 (6)
_0U(s, x)

M (s, X) = —6nsanx , @)

where n, and n, denote the unit outward normal
vector at the field point and the source point, respectively.

By moving the field point x to the boundary, the dual
boundary integral equations for the boundary point can be
obtained as follows:

zu(x) = C.PV j _T (s, X)u(s)dB(s)

8
—RPV jBu (s, \)t(s)dB(s), x B, ®

7t(x) = H.PV [ M (s, x)u(s)dB(s)

9)
~C.PV|_L(s, \)t(s)dB(s), xeB,

where RP.V., C.P.V. and H.P.V. denote the Riemann
principal value (Riemann sum), Cauchy principal value
and Hadamard (or so-called Mangler) principal value,
respectively. By collocating the field point x on the
complementary domain, we obtain the dual null-field
boundary integral equations as shown below:

0= jBT(s, x)u(s)dB(s)

(10)
- jBu (s, X)t(s)dB(s), x e D°,
0= j M (s, X)u(s)dB(s)
’ (11)
—jBL(s, )t(s)dB(s), X e D°,
where D¢ denote the complementary domain.
2.3 Dual null-field boundary integral
formulations — the present version
By introducing the degenerate kernels, the

collocation point in Egs. (2), (3), (10) and (11) can be
located on the real boundary free of calculating principal
value. Therefore, the dual boundary and dual null-field
boundary integral equations can be rewritten in two parts
as given in the following formulation of Egs. (12) and
(14), instead of three parts using Egs. (2), (8) and (10) in
the conventional BEM

27U(X) = j T (s, )u(s)dB(s)

2
- jBu (s, X)t(s)dB(s), xe DU B, 12
27t(X) = j M (s, X)u(s)dB(s)
’ (13)
—jB L(s, X)t(s)dB(s), xeD U B,
and
0= j T(s, X)u(s)dB(s)
° (14)
—IBU (s, X)t(s)dB(s), x e D U B,
0= j M (s, X)u(s)dB(s)
° (15)

- jB L(s, X)t(s)dB(s), xe D UB.

It is found that Egs. (12)-(15) can contain the boundary
point (x — B) since the kernel functions are expressed

in terms of degenerate kernel.

2.4 Expansions of fundamental solution and
boundary density using the elliptic
coordinates
The closed-form fundamental solution as previously

mentioned is
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Figure 1 Elliptic coordinates.

_izHE (k)

U(s, x) = 5 (16)
where r=[s—x| is the distance between the source
point and the field point, i is the imaginary number

with i>=-1 and HY
function of the first kind.

is the zeroth-order Hankel

2.4.1 Elliptic coordinates and Mathieu function

An elliptical membrane is considered in this work. In
order to analytically study the problem with an elliptic
boundary, the elliptic coordinates are used as shown in
Fig. 1. The relation between the Cartesian coordinates
(x,¥) and the elliptic coordinates (&,7) is linked by

x = ccosh(&) cos(r), y = csinh(&)sin(n), 1n

where the parameter ¢ is the half distance between two
focuses, the coordinates & and 7 are the radial and

angular coordinates, respectively. The ranges of two
coordinates are £>0 and -z <n <7, respectively. It

follows that the curves & =constant are a family of
ellipses with two focuses (+c,0) and the curves
n =constant are a family of hyperbolas with the same

focuses as shown in Fig. 1. In the elliptic coordinate
system, the elliptic boundary is represented by &=¢

and its eccentricity is defined by

e=sech(&) = 1-(b/a)?, (18)

where a and b are the half lengths of major and
minor axes of the ellipse and can be described by

a=ccosh(&), (19)

b = csinh(&), (20)
respectively and ¢ can be determined by using the half
lengths of major and minor axes as shown below:

c=vVa’-h*. (21)

In the elliptic coordinates, the Eq.(1) is transformed to

1 o%u(x) . d%u(x)

¢ (sinh? (&) +sin*(p) )\ o&* o’ (22)
+k?u(x) =0.

By using the method of separation of variables, the

displacement field u(x) can be assumed as

u(x) = A(17)B(S). (23)
Substituting the Eq.(23) to Eq.(22) and rearranging the
terms, we have

d;';(zﬂ ), (o —2qcos(277)) A7) =0, (24)
d;Bé(f) — (o —2qcosh(2£))B(£) =0, (25)

where o is an arbitrary separation constant and the
parameter q is defined by

ck Y
g= (?j . (26)

Equations (24) and (25) are the so-called Mathieu and
modified Mathieu equations, respectively. The solutions
of Egs. (24) and (25) are shown below:

, , :0,1...,
A(n)={:“(((; :77)) :]:12“_ (27)
and
Je (q, £, m=0,1---,
B( g)z{ﬁm &0(6 )+ AV, (0 ). m=0Ley
a,J0,,(q, &) + B,Y0,(q, &), m=1,2---,

respectively, where Se, and So, are the nth-order

even and odd Mathieu functions (angular Mathieu
functions) of the mth-order, respectively, Je, and Jo,

are the mth-order even and odd modified Mathieu
functions (radial Mathieu functions) of the first kind,
respectively, Ye, and Yo, are the mth-order even and

odd the modified Mathieu functions of the second kind,
respectively, «,, B, @, and S, are the unknown

coefficients. The normal derivative on the boundary point
in the elliptic coordinates is defined by

ou(x) 1 ou(x)
A
where J, is the Jacobian term of the field point x as
shown below:

3, = c(sinh(£) cos(n) )’ +(cosh(&)sin(n))’ . (30)

t(x) = xeB, (29)

2.4.2 Degenerate (separable) kernel for the fundamental
solution using the elliptic coordinates

To fully utilize the property of elliptic geometry, the
degenerate (separable or finite-rank) kernel and
eigenfunction expansion are utilized for the analytical
integration of boundary integrals. In the elliptic
coordinates, the field point x and source point s can
be expressed as x=({,n) and s=(&, 7)),

respectively. By employing the addition theorem [10] for
separating the source point and field point, the kernel
functions, U(s, x), T(s,X), L(s,x) and M(s, x) are
expanded in terms of degenerate kernel as shown below
[11]:
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_zm{i{s‘%(“q”s)}%n(q e, (@ &)He, (.6)+S

e

$0,,(9,77,)

M®(a) }SOm(q,n)JOm(q,é)HOm(q,é)}5291

U(s,x) = , 31)
ol s Se,(9.72:) $0,(9,7,)
Zﬂ'[n;[ ME(q) }S&n(q 1)3€,(0, $)He, (a6, + Z{ M°(q) }Som(tM)JOm(qf)Hom(qei)}§<§s
—Z”ij[i S?A“(Czqz) S8, (07) J6,(0.£)He, (6.6) +Y S';\'A"(q(q’;) Som(q,n)Jo;n(q,fs)Hom(q,(f)J,§>§S
T(s,x) = 15 m:O_Sem: ): mﬂ:So: ): , (32)
27— N & N M ’
27 J(;} Me(a) _Seﬂ(q,n)Jem(qyé)Hén(q,és):Z:l_ M2 () _Som(q,n)Jom(q,g)Hom(q,gs) E<E,
_2ni;(i Sﬁ,l“(eiq(g];) S8, (A7), (0.6 He, (0.6 +Y %(z‘q’;s) $0,,(0.77)J0,,(0, &) HoL,(0,8) |, £> &
S I <[snan E
27— N & Y M ’
27i J[ng Me () _Sen(q,n)Jéﬂ(q,i)Hen(q,é)+mz=l_ M2 () _Som(q,n)Jom(q,g)Hom(q,;) E<E
—Z”iJlJ {Z{S:“A“(j ’;S)}San(q 17)Je(a,&,) He (0, €) Zﬁw(? ’; }Som(q,n)Jo;(q,gs)Ho;n(q,g)],5255
M) = - ": . S, v (34)
27 JSJXLZO{S?A“((]( T;S)}Sem(q 1)J€,(0,5)HEL(a.5,) mzl{ M(cz ’; }SOm(q,n)Jo;(q,g)Ho'm(q,gs)J,§<§S
where J, is the Jacobian term of the source point, s, as U(S):igSen(q )+ihn50 ), s<B )
shown below: n 7ls h (9 77), ,

3, = cyJ(sinh(£ ) cos(,))’ +(cosh(&)sin(n,))’ ,  (35)
He, and Ho, are the even and odd mth-order
modified Mathieu functions (Mathieu-Hankel functions)
of the third kind, respectively and are defined as

He,(a, &) = Je,(q, §) +iYe,(q, &), (36)

Ho,(a, &) = Jo,(q, &) +iYo,(q, &), @7
M; and M. are the normalized constants and can be
obtained by

Ma(a) =" Se,(a,7)Se (@ n)dn = {

,M=n,

0, m#n, (38)

m=n,
Mn(e) = | S0, (a.7)So, (a.n)d7 = {0 men G

J._: S,(9,7)%0,(0,77)dn =0. (40)

Equations (38)-(40) are also called the orthogonal
relations of the angular Mathieu functions. It is noted that
U and M kernels in Egs. (31) and (34) contain the
equal sign of &=¢ while T and L kernels do not

include the equal sign due to the discontinuity. The
contour plots of the closed-form fundamental solution and
the degenerate kernel by using Egs. (16) and (31),
respectively, are shown in Table 1.

2.4.3 Eigenfunction expansion for unknown boundary
densities
For the unknown boundary densities, we apply the

eigenfunction expansion to approximate the displacement,

u(s), and its normal derivative, t(s)=— L ouGs) along

S S

the elliptic boundary as

t(s)= (Z P.Se, (0. 775)+an80 (a,7, j seB, (42)

n=0
respectively, where g,, h, p, and q, are the
unknown coefficients of the eigenfunctions. The Jacobian
term J. may occur in the kernels of Egs. (32)-(34),
boundary densities of the Eq. (42) and boundary contour
integration (dB(s) = J.d7,) . However, the Jacobian

terms can be cancelled each other out and the orthogonal
relations can be fully utilized in the boundary integration.

3. ANALYTICAL STUDY ON TRUE AND
SPURIOUS EIGENSOLUTION OF
ELLIPTICAL MEMBRANES

3.1 A simply-connected elliptical membrane
Now, we consider an elliptic membrane subject to
the Dirichlet and Neumann B.C.s as shown in Fig. 2,

u(x) =u(¢, ) =0, (Dirichlet B.C.). (43)
t(x) =Ji%§’7) =0, (Neumann B.C.), (44)

=4

(a) u(x)=0,xeB

(b) t(x)=0,xeB

Figure 2 An elliptical membrane subject to the
(a). Dirichlet and (b). Neumann B.C.s.
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respectively, where xe B. The elliptical membrane is
bounded by &=¢ as given below:

& =tanh™ (%) : (45)
First, we employ Eq. (14) to derive the eigensolution.
Substituting Egs. (31) and (42) to the Eq. (14), and
employing the orthogonal relations, we have

—27i (i PnSen(0,77) I8, (0, 61 ) HE,, (0, &)
m-0 (46)

m=1

+i 0 S0, (0,7) Jo,, (0, &) Ho, (a, s‘i)j =0,

for the Dirichlet problem. Similarly, substitution of Eqgs.
(32) and (41) into Eq. (14) yields

—27i (Z 9.58,,(0,77) €, (a, &) He, (0, &)

(47)
32, (@) 0,4 £)H0,(014) | <0
m=1
for the Neumann problem. Since

0

Z(pm) +

(qm)2 =0 in Eq. (46) and

M

1

8 T

> (g.) +>(h,)' =0 in Eq. (47) imply a trivial

solution, we obtain only the true eigenequations as shown
below:

Je,(9.5) =0, (48)

Jo,(a,&,) =0, (49)
for the Dirichlet problem and

Je(9.6,) =0, (50)

Jo;,(a,5) =0, (51)

for the Neumann problem. Similarly, the eigensolutions
can be obtained by using the Eq. (15) as given below:

il [z Pn S8, (,7) 36, (0, &) He, (0,&)
> (52)
+ quSOm(q.n)JOm(q.51)H0r’n(q, é)] =
for the Dirichlet problem and
223 0,50, ) 0 HE, 018)
> (53)

+ 32,0100 )M, @) -0

for the Neumann problem. By employ the hypersingular
formulation of Eq. (15), we also obtain the same true
eigenequation of Egs. (48)-(51). Since we employ the
complex-valued BIEM, no spurious eigensolutions appear
for the simply-connected problem. If we only apply the
real or the imaginary-part kernel alone, spurious
eigensolutions occur and the results are shown in Table 2.

3.2 An elliptical annulus

Following successful experiences in annular
membranes [4, 5], it has been revealed that the
corresponding mechanism of the spurious eigensolutions

Figure 3 Sketch of a confocal elliptical annulus.

of the multiply-connected problem depends on the
geometry of inner boundary and the approach used. Now,
we extend to study elliptical cases by using Egs. (14) and
(15) in conjunction with the elliptic coordinates and the
Mathieu functions. An elliptical annulus is considered as
shown in Fig. 3. In order to analytically formulate the
problem, the same half distance between two focuses is
used, i.e., the parameters of the confocal ellipse are
&=¢, and &£=¢ for outer and inner boundaries,

respectively. The confocal membrane is subject to
fixed-fixed BC as shown below:

u(x)=0,xe B, UB,. (54)
Equations. (14) and (15) are written as

0= JiojBiT(sj, x)u(s, )dB(s,)

y (59)
_ZIB.U(SJ’ X)t(s;)dB(s;), xeD®UB,
0= iIB M (s;, X)u(s;)dB(s;)
wo (56)

1
3, Loy 05986, %207 U
j= ]
and boundary densities are expressed by

tO(S) [Z pn&n(q ’75)+an8) (q 775 J Se BOl (57)

n=0

tl(s) _(Z pn%(q 775)+2an0 (q US j Se Bll (58)
s \.n=0

where p! and g are the unknown coefficients of the
eigenfunctions on B, (j =0,1). Substituting Egs. (57),
(58) and (31) to Eq. (55) and collocating the field point
exactly on the outer boundary, we have

—27i [i poSe,(a.77)Jde,(a,&)He, (a,,)

+36%.50,, (0,730, (0, &) HO, (0, ;)
" (59)
+ Z prSe,(a,7)Je,(q,&)He, (9,&,)

+ iqil&m (ql U)Jom (qv él)Hom(q! go)j =

m=1
By similarly collocating the field point of Eq. (55) exactly
on the inner boundary, we have
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s (z 02Se, (0.7) 36 (. £ )Hen (6.5,)

+ 3 60,(0,7)30,(6.6)HO,(0.&)

- (60)
+ 2 PS8, (0,1) 38, (6.6 He, (,6)

3, @00, 5)H0, (0. 8) | <0

According to Egs. (51) and (60), we obtain the relation
between p’, q) and pr, g asfollows:

00 = Je, (g, &)He, (a.5)

" Jen(a,4)He,(a,4%)

o _J0,(9,6)H0,(a,5)

p:nlmzoilizl..' (61)

= m=12-.-.

o Jo,,(a,&)Ho,(a,&) m (62)
and

p?n —_ ‘Jem(qnézl)Hem(qaé:l) pﬁq, m=012-. (63)

Je,(a.6)He, (a.5)

qr(;z_"]om(qvégl)Hom(q7§1) ,1n|m=112”'1 (64)
Jo,,(9,&)Ho,,(a,5)
respectively. Combination of Eqgs. (61)-(64), we obtain

four possible eigenequations,
Je,(a,5,)Ye, (9. &)

e,(@2)Ve, (&) =0 m=012, (O
‘]Om (ql gO)YOm (q’ 51)
_‘]Om(qlgl)YOm(q!éjo) :O, m=1,2"', (66)
and
Je,(0,6)=0,m=01,2-, (67)
Jo,(q,&)=0,m=12---. (68)

Based on Eqg. (56), we similarly obtain four possible
eigenequations,

Je,'n(q,gl):O,mzo,l,Z---, (69)

‘]Or,n(qiézl)zol m:112"'1 (70)
and the other two are the same with Eqgs. (65) and (66). If
we employ two different approaches to solve the same
problem, we should obtain the same true solution.
Therefore, it indicates that Eqgs. (67)-(68) and Egs.
(69)-(70) are the spurious eigenequations by using Egs.
(55) and (56), respectively. The true and spurious
eigenequations for problems with various boundary
conditions (free-fixed, fixed-free and free-free) are shown
in Table 3. It is interesting to find that the spurious
eigenequations depend on the geometry of inner boundary
and the approach used. This conclusion agrees well with
the annular case [4, 5].

4. NUMERICAL EXAMPLES

In the following case studies, we consider an elliptic
membrane and a confocal elliptical annulus in cases 1 and
2, respectively, subject to the Dirichlet boundary
conditions. The eigensolutions obtained by using the
analytical derivations, the BEM and the FEM are
compared for validations. Note that, the second-order

acoustic elements AC2D8 of ABAQUS are applied to
mesh the finite-element models.

Case 1. An elliptical membrane

In the first case, an elliptical membrane subject to
the Dirichlet boundary condition is considered as shown
in Fig. 2(a). The half lengths of major and eccentricity
are a=1 and e=+/0.75, respectively. The results of
the analytical derivations, BEM and FEM are shown in
Tables 3 and 4, respectively. Imaginary-part BEM yields
spurious multiplicities in Table 3(c). Good agreement is
made. True and spurious solutions are analytically
classified and found numerically.

Case 2. A confocal elliptical annulus

In this case, a confocal ellipse is considered. The
outer and inner boundary conditions are both Dirichlet
types. The half lengths of major and eccentricity for the

inner boundary are @ =1 and € =+/0.75, respectively.
The parameter &  of inner boundary s

& = tanh‘l(%) and the outer boundary is described by

&, =2¢&,. The results of the analytical derivations, BEM

and FEM are shown in Tables 5 and 6. Good agreement is
made. True and spurious solutions are analytically
predicted and numerically verified by using the BEM.

5. CONCLUSIONS

In this paper, we have successfully applied the
null-field BIEM to deal with the eigenproblems with
elliptical boundaries. True and spurious eigensolutions are
analytically derived and numerically performed in the two
examples. In a simply-connected case, the spurious
eigenequations occur once we only employ the real-part
or imag-part kernel alone in the null-field BIEM.
Furthmore, the spurious eigenequations depend on the
geometry of inner boundary in the doubly-connected
domain and the approach used for the confocal case, even
though the complex-valued BIEM is employed. These
two findings are the same with those corresponding to the
circle and the annular cases, respectively.
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Table 1 Sketch of contour plots of the closed-form fundamental solution and the degenerate kernel.
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Degenerate kernel
using Eq. (31)

Table 2 True and spurious eigenequations by using the real-part and imaginary-part BIEMs.
Dirichlet BC Neumann BC

{Je,}Ye,]=0or {Jo,}[Yo,]=0 | {J&,}[Ye,]=0o0r {Jo}[Yo,]=0
{Im}Y,]1=0 (circular case) {3 }Y,,]=0 (circular case)
{Je,}[Ye,,1=0o0r {Jo,}[Yo,,]=0 | {Je,}[Ye,,]=0or {Jop,}[Yo,,]=0
{3,.}[Y.]=0 (circular case) {3/ }Y.]=0 (circular case)
{Je,}Je,]=00r {Jo,}[Jo,]=0 | {Je,}[J&,]=0o0r {Joy}[Jo,]=0
{I}HJ,,]=0 (circular case) {3, }J,,]=0 (circular case)
{3, }[Je},] = 0 or {Jo, }[Jo},]=0 | {Je,}[Je,]=0or {Jo[}[J0],]=0
{3,,}[3..]=0 (circular case) {3.}3.]=0 (circular case)

Notes: (a) the equation inside the brace and the square bracket denote the true and spurious eigenequation, respectively.
(b) Je, and Yg,, m=0,1,2--- and Jo, and Yo,, m=12-.-.

UT(real-part)

LM(real-part)

UT(imaginary-part)

LM(imaginary-part)
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Table 3 True and spurious eigenequations for the confocal elliptical annulus subject to various boundary conditions.

¢
Figure sketch (Fixed-fixed) (Free-fixed) (Fixed-free) (Free-free)
Je, (a.5,)Ye, (9. £,) Je(a.5,)Ye,(a.5) Je,(a.5,)Ye(a.5) Je(0,5,) Y€ (a.5)
- —J6,(0,4)Ye,(0,4,) =0 | —Je(a.5)Ye(a.5) =0 | —Je&(q.5)Ye, (9.5) =0 | —Jg,(a,5)Ye,(a,4,) =0
% Jo,,(9.£,)Yo, (0. &) Jo;, (9. £,)Yo,(a.£) Jo,, (9, £,)Y0, (0. &) Jo;, (9, &,)Y0,, (0. &)
% ¢4 —J0,(0,4)Y0,(a, &) =0 | -Jo,(9,£)Y0;,(a,&) =0 | —Jo,(9,5)Y0,(0,5) =0 | —Jo,(d,&)Yo,(a,&,) =0
g S F I (ko )Y, (kry) I (k1) Yy, (k) I (k1) Y (k1) I (k1) Y (kry)
g1 " @ =I5, (k)Y (kip) = 0 = (kn) Yy (ki) =0 =5 (k)Y (ki) = 0 =5 (k)Y (kry) = 0
g’ (annular case) (annular case) (annular case) (annular case)
g . Je, (0.4) =0 Je, (0.4) =0 Je,(0,4) =0 Je,(6.6) =0
g
o g /| =0 30,(6.) =0 30,(6.5) =0 30,(6.5) =0
5 @ 3,(kn) =0 3,(kn) =0 3,(kn) =0 3 (k) =0
n (annular case) (annular case) (annular case) (annular case)
Je,(a,5,)Ye, (a.£) Je,(a,5,)Ye, (9. £,) Je,(a.5,)Ye, (0. &) Je(a,5,)Ye, (0. £,)
- -J&,(9.5)Ye,(a,4) =0 | —Je,(a.5)Ye,(a.5) =0 | —J&,(a,8)Ye,(a.5) =0 | —Jg,(q.&)Ye,(a,5) =0
g Jo,,(9.5,)Y0,(a. &) Jo;,(a,£,)Y0,,(a. &) Jo,,(a,4,)Y0;, (9. &) Jo,,(a,4,)Y0,, (9. &)
2 t-5 —J0,(0,5)Y0,(0,5,) =0 | —Jo,(a.4)Y0;,(q.5) =0 | —Jof,(q,£5)Y0,(a,&) =0 | —Jo;,(a,&)Y0,(a.5) =0
g S z I (ko )Y, (kry) I (k1) Yy, (kry) I (k1) Yo (k) I (k1) Y (kry)
g7 @ —J 5 (kry)Y,, (kry) =0 —J, (k)Y (kiy) = 0 —J5, (k)Y (kry) = 0 —J5, (k)Y (kiy) = 0
E’ (annular case) (annular case) (annular case) (annular case)
g J,(,£) =0 J,(,£) =0 X, (0,6) =0 X,(0,£) =0
- g /| a@e)=0 30,(0£) =0 30,(0, ) =0 30,(0,£) =0
E] @ 3 (k) =0 3 (k) =0 3, (kn) =0 3 (k) =0
n (annular case) (annular case) (annular case) (annular case)
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Table 3(a) The former ten eigenvalues of an elliptical membrane subject to the Dirichlet boundary condition by
using the complex-valued kernel.

Method Eigenvalue k1 k2 ka k4 ks ke k7 ks k9 k10
Present method 3.777 5.010 6.334 6.852 7.714 7.981 9.132 9.170 9.977 | 10.408
Complex-valued BEM
(No. elements=30) 3.795 5.031 6.359 6.881 7.744 8.010 9.164 9.196 | 10.019 | 10.430
ABQUAS
(No. elements=774) 3.777 5.010 6.333 6.852 7.714 7.981 9.132 9.170 9.977 | 10.408

Table 3(b) The former ten eigenvalues of an elliptical membrane subject to the Dirichlet boundary condition by

using the real-part kernel.

Method ——ogenvale | k, K, K, K, K, k, ke K, Ko
Present method | (1.220) | (2.610) | (3.756) | 3.777 | (4.033) | (4.938) | 5.010 | (5.471) | (6.187) | 6.334
Real-part BEM

(No. elements=30) (1.225) | (2.622) | (3.774) | 3.795 | (4.052) | (4.963) | 5.032 | (5.498) | (6.221) | 6.360

Note: the data inside parentheses denote the spurious eigenvalue.

Table 3(c) The former five eigenvalues of an elliptical membrane subject to the Dirichlet boundary condition by
using the imaginary-part kernel.

Method ——2eMae |k, K, Ky K, K
Present method 3.777 5.010 6.334 6.852 7.714
Imag-part BEM 3.865 5.128

(No. elements=12) | 3.911" | 5.186 6.512 | 7.037 | 7.965

* spurious multiplicity

Table 4 The former five modes for an elliptical membrane.

Eigenmode
Method g

mode 1

Present method

mode 2

mode 3

‘

Complex-valued BEM
(No. elements=30)

ABQUAS (
(No. elements=774) | = _
k=3.777 k =5.010 k=6.333 k =6.852 k=7714
Table 5 The former ten eigenvalues for a confocal elliptical annulus.
Method Eigenvalue k1 kz ka k4 ks ke k7 ka ke k10
Present method (3.777) | (5.010) | 5.104 | 5.104 | 5.699 | 5.709 | 6.251 | 6.306 | (6.334) | 6.716
Complex-valued BEM
(No. elements=100) (3.783) | (5.018) | 5.112 | 5.112 | 5.707 | 5717 | 6.259 | 6.314 | (6.343) | 6.725
ABQUAS
(No. elements=2460) - - 5.104 | 5104 | 5.699 | 5709 | 6.251 | 6.306 - 6.716

Note: the data inside parentheses denote the spurious eigenvalue.
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Table 6 The former five modes for a confocal elliptical annulus.
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Eigenmode
Method

Present method

Complex-valued BEM
(No. elements=100)

ABQUAS | | | =
(No. elements=2460) o / =——

k = 5.104

k = 5.709
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