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ABSTRACT 
   In this paper, the true and spurious eigensolutions of 
elliptical membranes appearing in boundary element 
method are examined by using the null-field boundary 
integral equation. To analytically study the eigenproblems 
with elliptical boundaries, the elliptic coordinates and 
Mathieu functions are adopted. The fundamental 
solutions are expanded into the degenerate kernel by 
using the elliptic coordinates and the boundary densities 
are expanded by using the eigenfunction expansion. The 
Jacobian terms may exist in the degenerate kernel, 
boundary density and boundary contour integration and 
they can cancel each other out. Therefore, the orthogonal 
relations are reserved in the boundary contour integral. It 
is interesting to find that if we only apply the real or the 
imaginary-part kernel to deal with a simply-connected 
elliptical membrane, spurious eigensolutions may appear. 
Even though we employ the complex-valued kernel, the 
spurious eigensolutions also occur in the case of a 
confocal elliptical annulus. Spurious eigenvalues depend 
on the geometry of inner boundary and the approach used. 
These two findings agree with those corresponding to the 
circular and annular cases, respectively. To verify the 
findings, the boundary element method is also 
implemented. Furthermore, the commercial finite-element 
code ABAQUS is also utilized to provide eigensolutions 
for comparisons. It is found that good agreement is 
obtained. 
Keywords: eigensolutions, null-field boundary integral   

--equation, elliptic coordinates, Mathieu 
--functions, Jacobian, degenerate kernel. 

1. INTRODUCTION 
Eigenanalysis is very important for vibration and 

acoustics, because it can provide the fundamental 
information. In the recent years, many numerical methods 

were utilized to determine eigenvalues and eigenmodes 
such as the finite element method (FEM) or the boundary 
element method (BEM). Although the FEM is a popular 
method, it needs to generate the mesh over the whole 
domain. The BEM only generate the mesh on the 
boundary but it may face with the calculation of the 
principal value and the pollution of spurious eigenvalues 
while dealing with the simply-connected problems only 
using the real or the imaginary-part kernel [1, 2, 3]. Even 
though we employ the complex-valued kernel for the 
multiply-connected eigenproblems, the spurious 
eigensolutions also occur [4, 5]. 

Recently, Chen et al. [6] applied the null-field 
boundary integral equation method (BIEM) in 
conjunction with the degenerate kernel and the Fourier 
series to solve the eigenproblems with circular boundaries. 
The advantage of free of calculating principal value is 
gained. This approach is one kind of semi-analytical and 
meshless methods. Spurious eigenvalues appear for the 
multiply-connected problems since the integral equation 
is used. Chen et al. [4, 5] pointed out that the spurious 
eigenvalues depend on the inner boundary with an 
illustrated annulus case.  

However, all the previous examples [4, 5, 6] were 
focused on circular boundaries. Accordingly, we aim to 
extend this approach to deal with eigenproblems with 
elliptical boundaries. Regarding eigenproblems with 
elliptical boundaries, Troesch and Troesch [7] used the 
separation of variables to obtain the eigenfrequencies and 
nodal patterns of an elliptic membrane. Hong and Kim [8] 
also employed the separation of variables to determine 
the natural mode of hollow and elliptical annulus for 
cylindrical cavities. Both the elliptic coordinates and the 
Mathieu functions were used in the previous 
investigations [7, 8]. 

Following the successful experiences of employing  
the null-field BIEM to solve Laplace problems with 
elliptical boundaries [9], we extend the null-field BIEM 
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to study the spurious eigenvalue in BEM for 
eigenproblems with elliptical boundaries. The null-field 
BIEM is utilized in conjunction with the degenerate 
kernel and the eigenfunction expansion. To fully utilize 
the elliptical geometry for an analytical study, the elliptic 
coordinates and Mathieu functions [10] are used. The 
fundamental solution is expanded to the degenerate kernel 
by using the elliptic coordinates [11]. Also, the boundary 
densities are expanded by using the eigenfunction 
expansion in conjunction with a Jacobian term. The 
advantage of free of calculating principal value is gained. 
Finally, the true and spurious eigensolutions of an 
elliptical membrane and a confocal elliptical annulus are 
analytically derived by using the null-field BIEM and 
numerically verified by using the BEM and FEM, 
respectively. 

 
2. PROBLEM STATEMENT AND THE 
PRESENT APPROACH 
 
2.1 Problem statement 
    The governing equation for free vibration of a 
membrane is the Helmholtz equation as follows, 

2 2( ) ( ) 0,k u D   x x  (1)

where  is the Laplacian operator,  is the wave 
number,  is the displacement,  are the domain 

points and  is the domain of interest. 
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2.2 Dual boundary integral formulations － the 

conventional version 
Based on the Green’s third identity, the dual 

boundary integral equations for the domain point are 
shown below: 
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where  are the source points,  is the boundary of 
membrane,  is the normal derivative of displacement 
and  is the fundamental function which satisfies  
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where nx  and ns  denote the unit outward normal 

vector at the field point and t e source point, respectively. 

By moving the field point x  to the boundary, the dual 
boundary integral equatio
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obtained as follows: 
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where R.P.V., C.P.V. and H.P.V. denote the Riemann 
principal value (Riemann sum), Cauchy principal value 
and Hadamard (or so-called Mangler) principal value, 
respectively. By collocating the field point x  on the 
complementary domain, we obtain the dua

x s x s s
 (9)

l null-field 
boundary integral equations a  shown below: 
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here denote the com entary domain. 
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Dual null-field boundary 
formulations — the present version 
By introducing the degenerate kernels, the 

collocation point in Eqs. (2), (3), (10) and (11) can be 
located on the real boundary free of calculating principal 
value. Therefore, the dual boundary and dual null-field 
boundary integral equations can be rewritten in two parts 
as given in the following formulation of Eqs. (12) and 
(14), instead of three pa
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It is fo t Eqs. (12)-(15) can contain the boundary 
point ( )Bx  since the kern
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xpansions of fundamental solution and 
boundary density using the elliptic 
coordinates 

    The closed-
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 Figure 1 Elliptic coordinates. 
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where r  s x  is the distance between the source 

point and the field point, i  is the imaginary number 

with  and 2 1i   (1)
0H  is the zeroth-order Hankel 

function of the first kind. 
 
2.4.1 Elliptic coordinates and Mathieu function 

An elliptical membrane is considered in this work. In 
order to analytically study the problem with an elliptic 
boundary, the elliptic coordinates are used as shown in 
Fig. 1. The relation between the Cartesian coordinates 
( , )x y  and the elliptic coordinates ( , )   is linked by 

cosh( ) cos( ), sinh( )sin( ),x c y c      (17)
where the parameter  is the half distance between two 
focuses, the coordinates 

c
  and   are the radial and 

angular coordinates, respectively. The ranges of two 
coordinates are 0   and      , respectively. It 

follows that the curves  
)

constant are a family of 

ellipses with two focuses  and the curves ( ,0c

  constant are a family of hyperbolas with the same 

focuses as shown in Fig. 1. In the elliptic coordinate 
system, the elliptic boundary is represented by 1   

and its eccentricity is defined by 
2

1sech( ) 1 ( ) ,e b   a  (18)

where  and  are the half lengths of major and 
minor axes of the ellipse and can be described by 

a b

1cosh( ),a c   (19)

1sinh( ),b c   (20)
respectively and  can be determined by using the half 
lengths of major and minor axes as shown below: 

c

2 2c a b  . (21)

In the elliptic coordinates, the Eq.(1) is transformed to 
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By using the method of separation of variables, the 

displacement field  can be assumed as ( )u x
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Substituting the Eq.(23) to Eq.(22) and rearranging the 
terms, we have 
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where   is an arbitrary separation constant and the 
parameter  is defined by q
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Equations (24) and (25) are the so-called Mathieu and 
modified Mathieu equations, respectively. The solutions 
of Eqs. (24) and (25) are shown below: 
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respectively, where  and  are the nth-order 

even and odd Mathieu functions (angular Mathieu 
functions) of the mth-order, respectively, 

mSe mSo

mJe  and mJo  

are the mth-order even and odd modified Mathieu 
functions (radial Mathieu functions) of the first kind, 
respectively,  and  are the mth-order even and 

odd the modified Mathieu functions of the second kind, 
respectively, 

mYe

,m

mYo

  ,m  ,m  and m  are the unknown 

coefficients. The normal derivative on the boundary point 
in the elliptic coordinates is defined by 
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( ) ,

u u
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where Jx  is the Jacobian term of the field point  as 

shown below: 

x

   2 2
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2.4.2 Degenerate (separable) kernel for the fundamental 

solution using the elliptic coordinates 
To fully utilize the property of elliptic geometry, the 

degenerate (separable or finite-rank) kernel and 
eigenfunction expansion are utilized for the analytical 
integration of boundary integrals. In the elliptic 
coordinates, the field point  and source point  can 
be expressed as 

x
( ,

s
) x  and ( , ),s s s

( ,M

 

respectively. By employing the addition theorem [10] for 
separating the source point and field point, the kernel 
functions, and are 

expanded in terms of degenerate kernel as shown below 
[11]: 
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where Js  is the Jacobian term of the source point, , as 

shown below: 
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modified Mathieu functions (Mathieu-Hankel functions) 
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respectively, where ,ng    and  are the 

unknown coefficients of the eigenfunctions. The Jacobian 
term 

,nh np nq

Js  may occur in the kernels of Eqs. (32)-(34), 

boundary densities of the Eq. (42) and boundary contour 
integration ( ( )dB )J d s ss . However, the Jacobian 

terms can be cancelled each other out and the orthogonal 
relations can be fully utilized in the boundary integration. 
 
3. ANALYTICAL STUDY ON TRUE AND 
SPURIOUS EIGENSOLUTION OF 
ELLIPTICAL MEMBRANES 
 
3.1 A simply-connected elliptical membrane 
    Now, we consider an elliptic membrane subject to 
the Dirichlet and Neumann B.C.s as shown in Fig. 2, 

Equations (38)-(40) are also called the orthogonal 
relations of the angular Mathieu functions. It is noted that 

 and U M  kernels in Eqs. (31) and (34) contain the 
equal sign of    s  while  and  kernels do not 

include the equal sign due to the discontinuity. The 
contour plots of the closed-form fundamental solution and 
the degenerate kernel by using Eqs. (16) and (31), 
respectively, are shown in Table 1. 
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eigenfunction expansion to approximate the displacement, 

 and its normal derivative, ( ),u s
1 ( )

( )
u

t
J 




s s

s
s  along 

the elliptic boundary as 

 
Figure 2 An elliptical membrane subject to the  

         (a). Dirichlet and (b). Neumann B.C.s. 
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respectively, where Bx . The elliptical membrane is 
bounded by 1   a n below: s give

1tanh ( )b . 1 a (45)

First, we employ Eq. (14) to derive the eigensol . 
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for the Neumann problem. By employ the hypersingular 

3.2 An elliptical annulus 
experiences in annular 

  

of the multiply-connected problem depends on the 



formulation of Eq. (15), we also obtain the same true 
eigenequation of Eqs. (48)-(51). Since we employ the 
complex-valued BIEM, no spurious eigensolutions appear 
for the simply-connected problem. If we only apply the 
real or the imaginary-part kernel alone, spurious 
eigensolutions occur and the results are shown in Table 2.  

 

    Following successful 
membranes [4, 5], it has been revealed that the 
corresponding mechanism of the spurious eigensolutions

Figure 3 Sketch of a confocal elliptical annulus. 
 

geometry of inner boundary and the approach used. Now, 
we extend to study elliptical cases by using Eqs. (14) and 
(15) in conjunction with the elliptic coordinates and the 
Mathieu functions. An elliptical annulus is considered as 
shown in Fig. 3. In order to analytically formulate the 
problem, the same half distance between two focuses is 
used, i.e., the parameters of the confocal ellipse are 

0   and 1   for outer and inner boundaries, 

ively. onfocal membrane is subject to 
fixed-fixed BC as shown below: 
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By similarly collocating the field point of Eq. (55) exactly 
on the inner boundary, we have 
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According to Eqs. (51) and (60), we obtain the relation 
between   and   as follows: 0 ,mp 0

mq 1 ,mp 1
mq

0 11 0

0 0

( , ) ( , )
, 0,1,2

( , ) ( , )
m m

m m
m m

Je q He q
p p

Je q He q
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respectively. Combination of Eqs. (61)-(64), we obtain 
four possible eigenequations, 

0 1

1 0

( , ) ( , )

( , ) ( , ) 0, 0,1,2 ,
m m

m m

Je q Ye q

Je q Ye q m

 
    

 (65)

0 1

1 0

( , ) ( , )

( , ) ( , ) 0, 1, 2 ,
m m

m m

Jo q Yo q

Jo q Yo q m

 
   

 (66)

and 

1( , ) 0, 0,1, 2 ,mJe q m     (67)

1( , ) 0, 1, 2 .mJo q m     (68)
Based on Eq. (56), we similarly obtain four possible 
eigenequations, 

1( , ) 0, 0,1, 2 ,mJe q m     (69)

1( , ) 0, 1, 2 ,mJo q m     (70)
and the other two are the same with Eqs. (65) and (66). If 
we employ two different approaches to solve the same 
problem, we should obtain the same true solution. 
Therefore, it indicates that Eqs. (67)-(68) and Eqs. 
(69)-(70) are the spurious eigenequations by using Eqs. 
(55) and (56), respectively. The true and spurious 
eigenequations for problems with various boundary 
conditions (free-fixed, fixed-free and free-free) are shown 
in Table 3. It is interesting to find that the spurious 
eigenequations depend on the geometry of inner boundary 
and the approach used. This conclusion agrees well with 
the annular case [4, 5]. 
 

4. NUMERICAL EXAMPLES 
In the following case studies, we consider an elliptic 

membrane and a confocal elliptical annulus in cases 1 and 
2, respectively, subject to the Dirichlet boundary 
conditions. The eigensolutions obtained by using the 
analytical derivations, the BEM and the FEM are 
compared for validations. Note that, the second-order 

acoustic elements AC2D8 of ABAQUS are applied to 
mesh the finite-element models. 

 
Case 1. An elliptical membrane  

In the first case, an elliptical membrane subject to 
the Dirichlet boundary condition is considered as shown 
in  Fig. 2(a). The half lengths of major and eccentricity 

are 1a   and 0.75,e   respectively. The results of 
the analytical derivations, BEM and FEM are shown in 
Tables 3 and 4, respectively. Imaginary-part BEM yields 
spurious multiplicities in Table 3(c). Good agreement is 
made. True and spurious solutions are analytically 
classified and found numerically. 
 
Case 2. A confocal elliptical annulus  

In this case, a confocal ellipse is considered. The 
outer and inner boundary conditions are both Dirichlet 
types. The half lengths of major and eccentricity for the 

inner boundary are 1 1a   and 1 0.75,e   respectively. 

The parameter   of inner boundary is 

1 1
1

1
tanh ( )b

a   and the outer boundary is described by 

0 2 .1   The results of the analytical derivations, BEM 

and FEM are shown in Tables 5 and 6. Good agreement is 
made. True and spurious solutions are analytically 
predicted and numerically verified by using the BEM. 
 

5. CONCLUSIONS 
    In this paper, we have successfully applied the 
null-field BIEM to deal with the eigenproblems with 
elliptical boundaries. True and spurious eigensolutions are 
analytically derived and numerically performed in the two 
examples. In a simply-connected case, the spurious 
eigenequations occur once we only employ the real-part  
or imag-part kernel alone in the null-field BIEM. 
Furthmore, the spurious eigenequations depend on the 
geometry of inner boundary in the doubly-connected 
domain and the approach used for the confocal case, even 
though the complex-valued BIEM is employed. These 
two findings are the same with those corresponding to the 
circle and the annular cases, respectively. 
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Table 1 Sketch of contour plots of the closed-form fundamental solution and the degenerate kernel. 
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Table 2 True and spurious eigenequations by using the real-part and imaginary-part BIEMs. 

 Dirichlet BC Neumann BC 

UT(real-part) 
0 0m mor YoJe Jo{ } }[{ ]=mYe[ ]

]= ]=
m = 0 0mm morJe JoYe Yo{ } { }[ ] [ ]¢ ¢= =

0mm YJ [{ }  (circular case) 
m  

0m mYJ [{ }¢  (circular case) 

LM(real-part) 
0 0m morY oo YJe ] }[ [ ]¢ =¢

]¢ =
mYe[ ]¢

0mY[ ]¢ =
m mJe{ } {=

0mm YJ [{ }  (circular case) 

0 0m morJe Jo Yo{ } { }[ ]¢¢ = =m¢  

mJ{ }¢  (circular case) 

UT(imaginary-part) 
0 0m mor JoJe Jo{ } }[{ ]=mJe[ ]

]= ]=
m = 0 0mm morJe JoJe Jo{ } { }[ ] [ ]¢ ¢= =

0mm JJ [{ }  (circular case) 
m  

0m mJJ [{ }¢  (circular case) 

LM(imaginary-part) 
0 0m morJ oo JJe ] }[ [ ]¢ =¢

m ]¢ =
mJe[ ]¢

0mJ[ ]¢ =
m mJe{ } {=

0m JJ [{ }  (circular case) 

0 0m morJe Jo Jo{ } { }[ ]¢¢ = =m¢  

mJ{ }¢  (circular case) 

 Notes: (a) the equation inside the brace and the square bracket denote the true and spurious eigenequation,-respectively. 
       (b) mJe  and ,  and mYe 0, 1, 2m   mJo  and , mYo 1, 2m   . 

http://msvlab.hre.ntou.edu.tw/paper/jca2007-3chen.pdf
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Table 3 True and spurious eigenequations for the confocal elliptical annulus subject to various boundary conditions. 
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Table 3(a) The former ten eigenvalues of an elliptical membrane subject to the Dirichlet boundary condition by 
using the complex-valued kernel. 

 1k  2k  3k  4k  5k  6k  7k  8k  9k  10k  

Present method 3.777 5.010 6.334 6.852 7.714 7.981 9.132 9.170 9.977 10.408

Complex-valued BEM 
 (No. elements=30)  

3.795 5.031 6.359 6.881 7.744 8.010 9.164 9.196 10.019 10.430

ABQUAS 
(No. elements=774) 3.777 5.010 6.333 6.852 7.714 7.981 9.132 9.170 9.977 10.408

Eigenvalue 
Method 

 
 

Table 3(b) The former ten eigenvalues of an elliptical membrane subject to the Dirichlet boundary condition by 
using the real-part kernel. 

 1k  2k  3k  4k  5k  6k  7k  8k  9k  10k  

Present method (1.220) (2.610) (3.756) 3.777 (4.033) (4.938) 5.010 (5.471) (6.187) 6.334 

Real-part BEM 
(No. elements=30) 

(1.225) (2.622) (3.774) 3.795 (4.052) (4.963) 5.032 (5.498) (6.221) 6.360 

Eigenvalue 
Method 

Note: the data inside parentheses denote the spurious eigenvalue. 
 
 
  Table 3(c) The former five eigenvalues of an elliptical membrane subject to the Dirichlet boundary condition by 

using the imaginary-part kernel. 

 1k  2k  3k  4k  5k  

Present method 3.777 5.010 6.334 6.852 7.714 

Imag-part BEM 
(No. elements=12) 

3.865 
3.911*

5.128 
5.186* 6.512 7.037 7.965 

Eigenvalue 
Method 

                   * spurious multiplicity 
 

Table 4 The former five modes for an elliptical membrane. 

 mode 1 mode 2 mode 3 mode 4 mode 5 

Present method 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

 
3.777k   
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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Complex-valued BEM 
 (No. elements=30) 
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Eigenmode 
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ABQUAS 
(No. elements=774)  

3.777k   5.010k   6.333k   
 

6.852k   7.714k   
 
 

Table 5 The former ten eigenvalues for a confocal elliptical annulus. 

 1k  2k  3k  4k  5k  6k  7k  8k  9k  10k  

Present method (3.777) (5.010) 5.104 5.104 5.699 5.709 6.251 6.306 (6.334) 6.716

Complex-valued BEM 
 (No. elements=100) 

(3.783) (5.018) 5.112 5.112 5.707 5.717 6.259 6.314 (6.343) 6.725

ABQUAS 
(No. elements=2460) 

- - 5.104 5.104 5.699 5.709 6.251 6.306 - 6.716

Eigenvalue 
Method 

Note: the data inside parentheses denote the spurious eigenvalue. 
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Table 6 The former five modes for a confocal elliptical annulus. 

 mode 1 mode 2 mode 3 mode 4 mode 5 
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摘要  

 
    本文使用零場邊界積分方程法來探討使用邊界元

素法求解橢圓形薄膜特徵值問題時所產生的真假根問

題。為了能夠解析橢圓形邊界的特徵值問題，則需採

用橢圓座標及 Mathieu 函數來分析。將基本解在橢圓

座標下展開成退化核，邊界密度則使用特徵函數展

開。Jacobian 項會存在於退化核、邊界密度和邊界積分

裡，但會互相對消。因此正交關係在邊界積分裡是被

保留的。有趣的是我們發現假若只使用實部或虛部核

函數處理單連通的橢圓形薄膜，亦會有假根的產生。

即使我們使用複數核函數，在共焦點的多連通橢圓薄

膜也是有假根的產生。假根的產生是取決於內邊界的

幾何形狀和所使用的方法。上述的兩個發現分別與圓

形和同心圓環薄膜的結論是相同的。使用邊界元素法

與有限元素法的套裝軟體 ABAQUS 所得數值結果亦

驗證本文的正確性，且均可得到一致的結果。 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 關鍵詞：特徵解、零場邊界積分方程式、橢圓座標，

Mathieu 函數，Jacobian，退化核。  
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