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ABSTRACT

In this paper, analytical and semi-analytical
numerical solutions for Green’s functions are obtained
by using the image method which can be seen as a
special method of fundamental solutions (MFS). The
image method is employed to solve the Green’s
function for the annular, eccentric and half-plane
Laplace problems. In addition, an analytical solution is
derived for the fixed-free annular case. For the
half-plane problem with a circular hole and an eccentric
annulus, semi-analytical solutions are both obtained by
using the image concept after determining the strengths
of two frozen image points and a free constant by
matching boundary conditions. It is found that two
frozen images terminated at the two focuses in the
bipolar coordinates for the problems with two circular
boundaries. A boundary value problem of an eccentric
annulus without sources is also considered. Error
distribution is plotted after comparing with the
analytical solutions derived by Lebedev et al. using the
bipolar coordinates. The optimal locations for the
source distribution in the MFS are also examined by
using the image concept. It is observed that we should
locate singularities on the two focuses to obtain better
results in the MFS. Besides, whether the free constant is
required or not in the MFS is also studied. The results
are compared well with the analytical solutions.

Keywords: method of fundamental solutions, image
method, Green’s function, boundary value
problem.

1. Introduction

Method of fundamental solutions (MFS) has been
developed for more than 50 years. The method was
proposed by Kupradze and Aleksidze [1] in 1964 in
Russia. In the potential theory, it is well known that the
MFS can solve potential problems if fundamental
solutions of the partial differential equation are given.
The Green’s function has been studied and applied in

many fields by mathematicians as well as engineers [2]
in 1977. For the image method, Thomson [3] proposed
the concept of reciprocal radii to find the image source
to satisfy the homogeneous boundary condition. Chen
and Wu [4] proposed an alternative way to find the
location of image by employing the degenerate kernel.
The Green’s function of a circular ring has been solved
using the complex variable by Courant and Hilbert [5].
The Green’s function of Laplace equation was obtained
by using the image method for a simple case in the
Greenberg’s book [6]. To derive the Green’s function
for problems with circular boundaries by using the
image method is the main concern of this paper. Here,
we put singularities along the radial direction in the
method of image in stead of angular distributions for
the annular case.

In this paper, both analytical and semi-analytical
solutions for the Green’s functions of annular, eccentric
and half-plane problems are derived. The analytical
solutions for the fixed-free annulus are obtained by
using the MFS in conjunction with the addition theorem
or the so-called degenerate kernel. For the
semi-analytical solution, a half-plane problem with a
circular cavity and an eccentric annulus are considered
to demonstrate that the image method can capture the
optimal location of MFS sources. The agreement
between the semi-analytical solution and null-field
boundary integral equation method (BIEM) is examined.
Following the successful experiences on the derivation
of Green’s function, we extend to solve the boundary
value problem without sources by using the MFS.
Saavedra and Power [7] have discussed the role of free
constant in the MFS. As quoted by [7], “However,
usually it is necessary to add a constant term in
particular in two dimensions, where it is required for
completeness purposes. As can be observed a constant
value is always a solution of the Laplace’s equation.
“Whether it is necessary for adding the constant in the
MFS formulation is a nontrivial issue. It is interesting to
find that only the strengths at the two focuses for the
eccentric annulus are required, if the rigid body term is
considered in the MFS. When the conventional MFS
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without adding a constant term is used, how to
represent the constant field by superimposing the
singularities becomes an interesting issue. Error
distribution is plotted after comparing with the
analytical solutions of Lebedev et al.[8]. The optimal
location in the MFS highly correlates to the two focuses
for the problem of eccentric annulus. Numerical results
of eccentric case are compared with the analytical
solution using the bipolar coordinates.

2. An analytical solution for the Green’s
function of annular region by using the

image method
For a two-dimensional annular problem as shown in
Fig. 1, the Green’s function satisfies
VG (x,¢) =86(x—(), x€Q, (1)
where Q is the domain of interest and & denotes the
Dirac-delta function for the source at ¢ . For simplicity,

the Green’s function is considered to be subject to the
fixed-free boundary conditions

G(x,{)=0, xeB, (2

PO g xen
an L 2'

where B, and B, are the inner and outer boundaries,

respectively. As mentioned in Courant and Hilbert [5],
the interior and exterior Green’s functions can satisfy
the fixed-free boundary conditions if the image source
is correctly selected. The closed-form Green’s functions
for both interior and exterior problems are written to be
the same form

3)

X

G(X,C):In\xfdfln\xff’HlnaflnR<,er, (4)

where a is the radius of the circle, (=(R.,0), R is

the distance from the source to the center of the circle,
¢’ is the image source and its position is at

(a*/R, ,0) as shown in Fig. 2.

CSi <8i—4

Fig. 1 Sketch of an annular problem.

(b) Exterior problem

Fig. 2 Sketch of image location (a) Interior case, and

(b) Exterior case.

Figure 1 depicts a series of images for the annular
problems. We consider the fundamental solution
U(x,s) for each source singularity which satisfies

VU (X,8) = 2m6(x —5) . (5)
Then, we obtain the fundamental solution as follows:
U(x,s)=Inr, (6)
where r is the distance between s and x (r =| x—s|).

Based on the separable property of addition theorem or
degenerate kernel, the fundamental solution U(x,s)
can be expanded into series form by separating the field
point x(p,¢) and source point s(R,d) in the polar
coordinates [4]:

U'(p,#;R,0)=InR

Uxs) = Y Y oS- 0).R 2,
T UE(eiRO) =Inp "

=1 R
—» —(—)"cosm(0—¢),R < p,
where the superscripts of | and E denote the interior and
exterior regions, respectively.

—————

(a) Interior problem (b) Exterior problem
Fig. 3 An annular case composed of (a) Interior and
(b) Exterior cases.
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Now let us extend a circular case to an annular case.
An annular case can be seen as a combination of
interior and exterior problems as shown in Fig. 3. By
matching the fixed-free boundary conditions for the
inner and outer boundaries, we introduce image points
¢, and ¢, , respectively. Since ¢, results in the

nonhomogeneous boundary conditions on the outer
boundary, we need to introduce an extra image point ¢,.

Similarly, ¢ results in the nonhomogeneous boundary

conditions on the inner boundary and an additional
image point ¢, is also required. By repeating the same

procedure, we have a series of image sources locating at
b b*.,. b’R. b* .

CSi—7 :R_(_4)| 1! CSi—S :_26(_4)| 1:

.a a® ‘a

bt bt b4R o _ (8)
Coi_a :aZ_RC(a_) » Caia (a4) ,ieN,
a? a',_ a’R. a*.,.
Goig = (R_C)(b_4 . Caia :Tc(b_‘l g
at al a“R at 9)
Csifz = (ﬁ)(b <s| = b (b4) ,1eN.

Following the successive image process, it is found
that the final two image locations freeze at the origin
and infinity. There are two strengths of singularities to
be determined. Therefore, the total Green’s function is
rewritten as

G(x,¢) = {In|x C|+I|ml (In[x— ¢y 4

_In|x—(8i76|—In|x—g‘8i75|—ln|x—§8i74|) (10)

_In|X_C8i—3|+|n|X_<8i—2|+In|X_C8i—1|

+Inx— G| +e(N)In p+ e(N)]},
where c(N) and e(N) are the unknown coefficients
which may be analytically and numerically determined
by matching the inner and outer boundary conditions.

To match the outer free boundary condition, normal
boundary derivative of Eq. (10) yields

IG(x¢) 1 0

on, T om on,

_In‘X_CBi—G‘_In‘x_CSi—S‘_In‘X_CBi—4D (11)
*|n‘ngsifz‘+|n‘X*<8ifz‘+|n‘X*<si71‘

#Infx— [ [+ c(N) In p-+e(N) }.

—{[In|x~ Q+nm[(mv Coi 7

By substituting the inner and outer boundary conditions
into Eq. (10) and Eq. (11) and using the addition
theorem (degenerate kernel), the analytical forms of c(N)
and e(N) are obtained as

c(N)| -1
{e(N)}_ Ina—InR |’ (12)

-0.08

-0.12

c(N) and e(N)

analytic e(N)
<& & O numerical e(N)
_____ analytic c(N)

A A A numerical c(N)
-0.2 ‘ T ‘ T ‘ T
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Fig. 4 Values of c(N), d(N) and e(N). (a) annular
case, (b) half-plane case, (c) eccentric case.
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Numerically speaking, the values of unknown c(N)
and e(N) can be alternatively determined by matching
the inner and outer boundary conditions attwo selected
collocation points. The obtained numerical values of

¢(N) and e(N) agree well with the analytical result of Eq.

(12) as shown in Fig. 4(a).

3. Semi-analytical solutions for the
half-plane problem with a circular hole and
the eccentric ring by using the image

method

Following the success of annular case for the
iterative images, we now extend to the half-plane
problem with a circular hole as shown in Fig. 5. In a
similar way of finding the image for matching the inner
circular boundary condition as the annular case, an
image is found. Besides, the reflection image point is
given to match the ground surface. However, the two
additional images, one inside the hole and the other
under the ground line, result in new images to match
the boundary condition of ground surface and inner
circle, respectively. The iterative images and their
locations are shown in Fig. 5. Two frozen images are
found as the number of images becomes infinity. The
locations of two frozen images are governed by

2
RC:%—,Rdzzb—&, (13)
d
where a, b, R. and Ry are shown in Fig. 5. Therefore,
the Green’s function is represented by
N
G(x,():i{ln|x—§|— lim [ > (In|x—¢,_]
27 N=oot 4

Jrlan*CAile* InlxiCAi—lli |n|X*C4i|) (14)
+e(N)Infx— [+ d(N)In[x— [ +e(N)]},

where (. and (; are the location of the final two

images, ¢(N), d(N) and e(N) need to be determined by
matching the boundary conditions. Based on the idea of
MFS, we can say that not only some MFS sources are
optimally located by using the image method but also
the strengths except the two frozen images are also
determined. Only three unknown coefficients are
required to be determined by matching the boundary
condition. Numerical values for c(N), d(N), e(N) versus
N are shown in Fig. 4(b). The contour plots by using the
present method and the null-field BIE [9] are shown in
Fig. 6. It is found that good agreement is made after
comparing our result with that of the null-field BIE.

Instead of using the conventional MFS as shown in
Fig. 7, this image method can be seen as a special case
of MFS with optimal location of sources. Besides, the
strengths of all the singularities are determined in
advance except the singularity strengths of the two
frozen images and one free constant.

Similarly, we can extend the semi-analytical

approach to solve the Green’s function of eccentric case.

The final locations of two image points are governed by

b? a’
R = +e, R ——
° R,—e ‘R (19)

where a, b, e, R and Ry are shown in Fig. 8. The two
analytical frozen images (¢, and ¢, ) are shown in Fig.

8 and the numerical experiment also supports this
result.

Fig. 5 A half-plane problem with a circular hole and
its images.

(a) image method (b) null-field BIE
Fig. 6 Contour plots by using (a) image method and
(b) null-field BIE.

, @ source

| ;
i e - - !
o090 O®00 O o 00O

Fig. 7 Conventional MFS.

Frozen pout

Fig. 8 Sketch of an eccentric problem subject to a
concentrated load and the final two images at
¢, and ¢,.
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(-¢.0)

Fig. 9 Geometry relation of the bipolar
coordinates.

8 . 8

(a) image method (b) bipolar coordinates
Fig. 10 Contour plots for the eccentric solutions by
using (a) image method and (b) analytical
solution using the bipolar coordinates.

Numerical values for c¢(N), d(N), e(N) versus N are
shown in Fig. 4(c). The analytical solution of series
form in the bipolar coordinates was derived by Heyda
[10] as shown below:

i[ (7]1 77])(7]0 7772)
2w =1,

+2i sinh n(n, —n)sinhn(n, —n,)
n=1 nsinhn(r, —n,)

cosn(€ — &), m <n <,
G (&5 6.mp) = (16)
i[ (1 —m,)(m —15)
2r ="
=, sinhn(n, —n,)sinhn(n—n,)
+ZZ; nsinhn(n, —1,)
cosn(&—&)|, 1 <1<,

where (&,m) is the bipolar coordinates, n=m, and
n=m, denote the inner and outer circles, respectively
and (&,,7,) is the position of source point as shown in

Fig. 9. The contour plots by using the present method
and the analytical solution are shown in Fig. 10. Good
agreement is observed.

4. Numerical solutions for an eccentric

annulus without sources by using the MFS
In the foregoing section, we have derived the

Green’s function of an eccentric case. In this section,

we solve boundary value problems without sources by

using the MFS as shown in Fig. 11. The solution of
MFS is written as

N
u(x) =Y du(xs;), 17)
j=1

where N is the number of source points, d; is the jin
unknown coefficient. By matching the Dirichlet
boundary conditions for the inner and outer boundaries,
we can determine the unknown coefficients of d;.

Fig. 11 Sketch of an eccentric annulus without
sources.

(b) Including no
focuses

(@) Including two focuses

® Source
® Focus
(d) Including the right
(inner) focus

(c) Including the left
(outer) focus
Fig. 12 Sketch of the source distribution in the MFS
(a) including two focuses (b) including no
Focuses (c) including the left (outer) focus
(d) including the right (inner) focus.

In the above cases for deriving the Green’s function,
we find that there are two frozen points by using the
image method which locate on the two focuses in the
bipolar coordinates. We suppose that the two frozen
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locations may also be very important for problems
without sources. Here, we solve boundary value
problems of eccentric cases by using the MFS. The
pattern of source distribution is shown in Fig. 12 for (a)
including two focuses, (b) including no focuses, (c)
including the left (outer) focus and (d) including the
right (inner) focus, respectively. The solutions of the
MFS are compared with the analytical solution derived
by Lebedev et al.[8]. The analytical solution of
eccentric case obtained by using the bipolar coordinates
is given below:

u,n)=Ap+B=A(nr,-Inr,)+B, (18)
where
A= V1 _Vz
Too(cY .., .a(c)’ (19)
sinh (gj—smh (B)

Vv, -V, . ,1(c)
sinh™| =1,
sinh™ (E]—sinh‘l(gj a (20)
a b
Ja* —2a’h? +b* —2a%d? —2b%d? +d*

c= >4 . (2

B=V,—
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(@) Including the two focuses (-2,0), (- 0.5,0).
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(b) Including no the two focuses.
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(c) Includlng the left (outer) focus ( 2,0).

(d) Includlng the rlght (lnner) focus (-0.5,0).
Fig. 13 Error distribution of source locations
(a) including the two focuses (-2,0), (-0.5,0)
(b) including no the two focuses (c) including
the left (outer) focus (-2,0) (d) including the
right (inner) focus (-0.5,0).

Error distribution is defined by
&(x) = ”uN (x) —u®ect (x)“ ,XxeD, (22)

and is shown in Fig. 13 for source locations (a)
including the two focuses (-2,0), (-0.5,0) ,(b) not
including the two focuses, (c) including one focus only
(-2,0) and (d) including one focus only (-0.5,0),
respectively. When the locations of sources include two
focuses in Fig. 13(a), we find that the numerical result
best matches the analytical solution.

In the analytical solution of Eq. (18), there exists a
rigid body term, B. For the MFS, Saavedra and Power
[7] have pointed out that a free constant is needed in the
MFS for 2-D problems. Therefore, Eq. (17) is changed
to

N
u(x) = Y cU(x,5))+6, (23)
[

where ¢, is the free constant and c; is the unknown
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coefficient. When the singularities along the two rings
contain at the two focuses as shown in Fig. 12(a), we
find that only the two nonzero strengths (¢, and cy¢) of
singularities at the two focuses and the strength (co)
happen to be equal to the coefficient of analytical
solutions of Eqgs. (19) and (20) and other weightings are
all zeros, as shown in Fig. 14. The strengths of the two
nonzero singularities are opposite to each other (c; =
—-C15) as predicted by Eq. (18). This result can be
analytically predicted. It indicates that we can approach
the exact solution if the source locations of MFS are
geniously chosen.

‘ free constant
¢, =2.000
(2.000)

¢, =1.4426953893835
| (1.442695068254)

(—1.442695068254)

-2
\ ‘ \ ‘ \ \

0 10 - 20 30

Fig. 14 Coefficient of c; versus j by using Eq. (23)
with a free constant, data in (') denotes the
analytical solution.

2 —

d,, =1.441452056277
(1.442695068254)

\ N

N

. u(x):Zde(x,s.) pd A}
\ = d, #d, 8

®
1 d, =-1.250342510472 \‘o\
(~1.442695068254)

-2
\ ‘ \ ‘ \ \

0 10 - 20 30

Fig. 15 Coefficient of d; versus j by using Eq. (17)
without a free constant.

Unfortunately, the conventional MFS always
employed Eq. (17) instead of Eq. (23). The key
difference is a free constant. Figure 15 shows that all
singularities strengths in the inner sources are zeros
except the one on the inner focus. If we use Eq. (17)

free of a constant term, it is interesting to find the
strengths (d;-dis) of outer singularities are all nonzero
and only one nonzero singularity (dy¢) on the interior
focus for inner singularities. It is interesting to find that
the difference (dj-c;) of Fig. 14 (c;) and Fig. 15 (d;) can
represent a constant field of c,=2 as shown in Fig. 16.
This result indicates that a constant interior field (co)
can be superimposed by using outer instead of inner
singularities when the MFS solution of Eq. (17) does
not contain the constant term. In Fig. 17, error
distribution of Eq. (22) using MFS of Eq. (23) shows
more accurate result than that using Eq. (17), because
Eg. (23) approaches the analytical solution better than
Eqg. (17) does.

¢, =1.4426953893835

d,; =1.441452056277

§
\
N

i 0.19236047

INSRRRESRNNNSRR,

, =-1.250342510472 1 ¢ =-1.442702295857
— — — B T —T

B

d-¢; - 0.19236047619

N

2
I I I
0 10 . 20 30

Fig. 16 Coefficient of d;j-c; versus j to represent the
constant field, u(x)=2.
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Fig. 17 Error distribution of source locations
including the two focuses (-2,0), (-0.5,0) by
using Eqg. (23).
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5. Conclusions

In this paper, the analytical and semi-analytical
solutions for the Green’s functions of annulus and
half-plane problems were obtained by using the image
method. The numerical solutions for boundary value
problems of an eccentric annulus were obtained by
using the MFS. For the analytical solution of annular
case, the image method (a special MFS) was employed
to solve the analytical Green’s function of fixed-free
annulus. For the half-plane problem with a circular
cavity, a semi-analytical solution was obtained by
determining only one free constant and two strengths of
singularities at the two frozen images. Agreement is
observed after comparing with the result of null-field
BIEM. Besides, the same idea of semi-analytical
approach was successfully extended to solve the
Green’s function in the eccentric annulus. The
semi-analytical results also agree well with the
analytical solution by using the bipolar coordinates. The
numerical solution of an eccentric annulus without the
source was compared with analytical solutions. The
MFS with and without adding a constant were
employed to solve the eccentric annulus without a
source. It is found that only two nonzero singularities at
the focuses and one constant are required to represent
the analytical solution of eccentric annulus if MFS with
an adding constant is used. Even though the MFS
without adding a constant is employed to solve the
solution, acceptable results can also be obtained. The
reason can be explained that a constant term can be
superimposed by using outer uniform singularities. In
the demonstrated example, the addition of free constant
is not absolutely necessary according to the numerical
experiments. However, the MFS including the free
constant yields the best solution in test example.
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