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ABSTRACT 
In this paper, analytical and semi-analytical 

numerical solutions for Green’s functions are obtained 
by using the image method which can be seen as a 
special method of fundamental solutions (MFS). The 
image method is employed to solve the Green’s 
function for the annular, eccentric and half-plane 
Laplace problems. In addition, an analytical solution is 
derived for the fixed-free annular case. For the 
half-plane problem with a circular hole and an eccentric 
annulus, semi-analytical solutions are both obtained by 
using the image concept after determining the strengths 
of two frozen image points and a free constant by 
matching boundary conditions. It is found that two 
frozen images terminated at the two focuses in the 
bipolar coordinates for the problems with two circular 
boundaries. A boundary value problem of an eccentric 
annulus without sources is also considered. Error 
distribution is plotted after comparing with the 
analytical solutions derived by Lebedev et al. using the 
bipolar coordinates. The optimal locations for the 
source distribution in the MFS are also examined by 
using the image concept. It is observed that we should 
locate singularities on the two focuses to obtain better 
results in the MFS. Besides, whether the free constant is 
required or not in the MFS is also studied. The results 
are compared well with the analytical solutions. 
 
Keywords: method of fundamental solutions, image 

method, Green’s function, boundary value 
problem. 

1. Introduction 
Method of fundamental solutions (MFS) has been 

developed for more than 50 years. The method was 
proposed by Kupradze and Aleksidze [1] in 1964 in 
Russia. In the potential theory, it is well known that the 
MFS can solve potential problems if fundamental 
solutions of the partial differential equation are given. 
The Green’s function has been studied and applied in 

many fields by mathematicians as well as engineers [2] 
in 1977. For the image method, Thomson [3] proposed 
the concept of reciprocal radii to find the image source 
to satisfy the homogeneous boundary condition. Chen 
and Wu [4] proposed an alternative way to find the 
location of image by employing the degenerate kernel. 
The Green’s function of a circular ring has been solved 
using the complex variable by Courant and Hilbert [5]. 
The Green’s function of Laplace equation was obtained 
by using the image method for a simple case in the 
Greenberg’s book [6]. To derive the Green’s function 
for problems with circular boundaries by using the 
image method is the main concern of this paper. Here, 
we put singularities along the radial direction in the 
method of image in stead of angular distributions for 
the annular case.  

In this paper, both analytical and semi-analytical 
solutions for the Green’s functions of annular, eccentric 
and half-plane problems are derived. The analytical 
solutions for the fixed-free annulus are obtained by 
using the MFS in conjunction with the addition theorem 
or the so-called degenerate kernel. For the 
semi-analytical solution, a half-plane problem with a 
circular cavity and an eccentric annulus are considered 
to demonstrate that the image method can capture the 
optimal location of MFS sources. The agreement 
between the semi-analytical solution and null-field 
boundary integral equation method (BIEM) is examined. 
Following the successful experiences on the derivation 
of Green’s function, we extend to solve the boundary 
value problem without sources by using the MFS. 
Saavedra and Power [7] have discussed the role of free 
constant in the MFS. As quoted by [7], “However, 
usually it is necessary to add a constant term in 
particular in two dimensions, where it is required for 
completeness purposes. As can be observed a constant 
value is always a solution of the Laplace’s equation. 
“Whether it is necessary for adding the constant in the 
MFS formulation is a nontrivial issue. It is interesting to 
find that only the strengths at the two focuses for the 
eccentric annulus are required, if the rigid body term is 
considered in the MFS. When the conventional MFS 
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without adding a constant term is used, how to 
represent the constant field by superimposing the 
singularities becomes an interesting issue. Error 
distribution is plotted after comparing with the 
analytical solutions of Lebedev et al.[8]. The optimal 
location in the MFS highly correlates to the two focuses 
for the problem of eccentric annulus. Numerical results 
of eccentric case are compared with the analytical 
solution using the bipolar coordinates. 
 

2. An analytical solution for the Green’s 

function of annular region by using the 

image method 
For a two-dimensional annular problem as shown in 

Fig. 1, the Green’s function satisfies 
2 ( , ) ( )G x xz d z = - , , x ÎW (1) 

where  is the domain of interest and  denotes the 
Dirac-delta function for the source at . For simplicity, 

the Green’s function is considered to be subject to the 
fixed-free boundary conditions 

W d
z

( , ) 0G x z = , 1x BÎ , (2) 

( , )
0

x

G x

n

z¶
=

¶
, 2x BÎ , (3) 

where  and  are the inner and outer boundaries, 

respectively. As mentioned in Courant and Hilbert [5], 
the interior and exterior Green’s functions can satisfy 
the fixed-free boundary conditions if the image source 
is correctly selected. The closed-form Green’s functions 
for both interior and exterior problems are written to be 
the same form 

1B 2B

( , ) ln ln ln ln ,G x x x a R xzz z z ¢= - - - + - ÎW , (4) 

where a is the radius of the circle, ,  is 

the distance from the source to the center of the circle, 
 is the image source and its position is at   

( ,0)Rzz = Rz

z ¢
2( ,0)a R as shown in Fig. 2. 

 

 
Fig. 1 Sketch of an annular problem. 

     

(a) Interior problem 

 

(b) Exterior problem 

Fig. 2 Sketch of image location (a) Interior case, and 

     (b) Exterior case.  
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Figure 1 depicts a series of images for the annular 

problems. We consider the fundamental solution 
 for each source singularity which satisfies ( , )U x s

2 ( , ) 2 ( )U x s x spd = - . (5)

Then, we obtain the fundamental solution as follows: 

( , ) lnU x s r= , (6)

where  is the distance between s and x ( ). 

Based on the separable property of addition theorem or 
degenerate kernel, the fundamental solution  

can be expanded into series form by separating the field 
point  and source point 

r
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where the superscripts of I and E denote the interior and 
exterior regions, respectively. z
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          (a) Interior problem (b) Exterior problem 
Fig. 3 An annular case composed of (a) Interior and  
     (b) Exterior cases. 
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   Now let us extend a circular case to an annular case. 
An annular case can be seen as a combination of 
interior and exterior problems as shown in Fig. 3. By 
matching the fixed-free boundary conditions for the 
inner and outer boundaries, we introduce image points 

1
 and 

2
, respectively. Since 

2
 results in the 

nonhomogeneous boundary conditions on the outer 
boundary, we need to introduce an extra image point . 

Similarly, 
1
 results in the nonhomogeneous boundary 

conditions on the inner boundary and an additional 
image point 

4
 is also required. By repeating the same 

procedure, we have a series of image sources locating at 

z z
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Following the successive image process, it is found 
that the final two image locations freeze at the origin 
and infinity. There are two strengths of singularities to 
be determined. Therefore, the total Green’s function is 
rewritten as 

[{ (

)

]}
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where c(N) and e(N) are the unknown coefficients 
which may be analytically and numerically determined 
by matching the inner and outer boundary conditions. 
To match the outer free boundary condition, normal 
boundary derivative of Eq. (10) yields 
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By substituting the inner and outer boundary conditions 
into Eq. (10) and Eq. (11) and using the addition 
theorem (degenerate kernel), the analytical forms of c(N) 
and e(N) are obtained as 

1( )

ln ln( )

c N

a Re N z

ì üì ü -ï ïï ïï ï ï=í ý íï ï ï -ï ïî þ ïî þ
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(b) half-plane case 
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Fig. 4 Values of c(N), d(N) and e(N). (a) annular  
      case, (b) half-plane case, (c) eccentric case. 
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Numerically speaking, the values of unknown c(N) 
and e(N) can be alternatively determined by matching 
the inner and outer boundary conditions attwo selected 
collocation points. The obtained numerical values of 
c(N) and e(N) agree well with the analytical result of Eq. 
(12) as shown in Fig. 4(a).  

 
3. Semi-analytical solutions for the 
half-plane problem with a circular hole and 
the eccentric ring by using the image 
method 

Following the success of annular case for the 
iterative images, we now extend to the half-plane 
problem with a circular hole as shown in Fig. 5. In a 
similar way of finding the image for matching the inner 
circular boundary condition as the annular case, an 
image is found. Besides, the reflection image point is 
given to match the ground surface. However, the two 
additional images, one inside the hole and the other 
under the ground line, result in new images to match 
the boundary condition of ground surface and inner 
circle, respectively. The iterative images and their 
locations are shown in Fig. 5. Two frozen images are 
found as the number of images becomes infinity. The 
locations of two frozen images are governed by 

2
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where a, b, Rc and Rd are shown in Fig. 5. Therefore, 
the Green’s function is represented by 
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where a, b, e, Rc and Rd are shown in Fig. 8. The two 
analytical frozen images (z  and ) are shown in Fig. 

8 and the numerical experiment also supports this 
result. 

c dz

 

 
Fig. 5 A half-plane problem with a circular hole and 

its images. 
 

-2 -1.5 -1 -0.5 0 0.5 1
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

1.5 2 2.5 3 3.5 4   

(a) image method  

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

 

(b) null-field BIE 
Fig. 6 Contour plots by using (a) image method and 
     (b) null-field BIE. 
 
         

          
 

Fig. 7 Conventional MFS. 

i
(14)

where  and  are the location of the final two 

images, c(N), d(N) and e(N) need to be determined by 
matching the boundary conditions. Based on the idea of 
MFS, we can say that not only some MFS sources are 
optimally located by using the image method but also 
the strengths except the two frozen images are also 
determined. Only three unknown coefficients are 
required to be determined by matching the boundary 
condition. Numerical values for c(N), d(N), e(N) versus 
N are shown in Fig. 4(b). The contour plots by using the 
present method and the null-field BIE [9] are shown in 
Fig. 6. It is found that good agreement is made after 
comparing our result with that of the null-field BIE. 

cz dz

source 

 

 
Fig. 8 Sketch of an eccentric problem subject to a  
     concentrated load and the final two images at 
      and z . 

cz d

Instead of using the conventional MFS as shown in 
Fig. 7, this image method can be seen as a special case 
of MFS with optimal location of sources. Besides, the 
strengths of all the singularities are determined in 
advance except the singularity strengths of the two 
frozen images and one free constant.  

Similarly, we can extend the semi-analytical 
approach to solve the Green’s function of eccentric case. 
The final locations of two image points are governed by 
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Fig. 9 Geometry relation of the bipolar  
       coordinates. 
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(a) image method 
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(b) bipolar coordinates 
Fig. 10 Contour plots for the eccentric solutions by  
      using (a) image method and (b) analytical  
      solution using the bipolar coordinates. 

 
Numerical values for c(N), d(N), e(N) versus N are 

shown in Fig. 4(c). The analytical solution of series 
form in the bipolar coordinates was derived by Heyda 
[10] as shown below: 
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where  is the bipolar coordinates, h  and 

 denote the inner and outer circles, respectively 

and  is the position of source point as shown in 

Fig. 9. The contour plots by using the present method 
and the analytical solution are shown in Fig. 10. Good 
agreement is observed. 

( , )x h
h

0 0( , )x h

1h=
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4. Numerical solutions for an eccentric 

annulus without sources by using the MFS 
In the foregoing section, we have derived the 

Green’s function of an eccentric case. In this section, 
we solve boundary value problems without sources by 

using the MFS as shown in Fig. 11. The solution of 
MFS is written as 

1

( ) ( , )
N

j j
j

u x d U x s


 , (17)

where N is the number of source points, dj is the jth 
unknown coefficient. By matching the Dirichlet 
boundary conditions for the inner and outer boundaries, 
we can determine the unknown coefficients of dj.  
 

 
Fig. 11 Sketch of an eccentric annulus without   
      sources. 
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Fig. 12 Sketch of the source distribution in the MFS 
      (a) including two focuses (b) including no  
      Focuses (c) including the left (outer) focus  
      (d) including the right (inner) focus. 
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locations may also be very important for problems 
without sources. Here, we solve boundary value 
problems of eccentric cases by using the MFS. The 
pattern of source distribution is shown in Fig. 12 for (a) 
including two focuses, (b) including no focuses, (c) 
including the left (outer) focus and (d) including the 
right (inner) focus, respectively. The solutions of the 
MFS are compared with the analytical solution derived 
by Lebedev et al.[8]. The analytical solution of 
eccentric case obtained by using the bipolar coordinates 
is given below: 

1 2( , ) (ln ln )u A B A r r B       , (18) 
where 

1 2
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(b) Including no the two focuses. 
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(c) Including the left (outer) focus (-2,0). 
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(d) Including the right (inner) focus (-0.5,0). 

Fig. 13 Error distribution of source locations  
      (a) including the two focuses (-2,0), (-0.5,0) 
      (b) including no the two focuses (c) including  
      the left (outer) focus (-2,0) (d) including the  
      right (inner) focus (-0.5,0). 

 

 
Error distribution is defined by 

( ) ( ) ( )N exactx u x u x   , x D , (22)

and is shown in Fig. 13 for source locations (a) 
including the two focuses , ,(b) not 

including the two focuses, (c) including one focus only 

( 2,0) ( 0.5,0)

( 2,0)  and (d) including one focus only ( 0.5,0) , 

respectively. When the locations of sources include two 
focuses in Fig. 13(a), we find that the numerical result 
best matches the analytical solution. 

In the analytical solution of Eq. (18), there exists a 
rigid body term, B. For the MFS, Saavedra and Power 
[7] have pointed out that a free constant is needed in the 
MFS for 2-D problems. Therefore, Eq. (17) is changed 
to 

0
1

( ) ( , )
N

j j
j

u x c U x s c


  , (23) 

where c0 is the free constant and cj is the unknown 
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coefficient. When the singularities along the two rings 
contain at the two focuses as shown in Fig. 12(a), we 
find that only the two nonzero strengths (c1 and  c16) of 
singularities at the two focuses and the strength (c0) 
happen to be equal to the coefficient of analytical 
solutions of Eqs. (19) and (20) and other weightings are 
all zeros, as shown in Fig. 14. The strengths of the two 
nonzero singularities are opposite to each other (c1 = 
-c16) as predicted by Eq. (18). This result can be 
analytically predicted. It indicates that we can approach 
the exact solution if the source locations of MFS are 
geniously chosen.  
 

Fig. 14 Coefficient of cj versus j by using Eq. (23)  
      with a free constant, data in ( ) denotes the  
      analytical solution. 
 

Fig. 15 Coefficient of dj versus j by using Eq. (17)  
      without a free constant. 
 

Unfortunately, the conventional MFS always 
employed Eq. (17) instead of Eq. (23). The key 
difference is a free constant. Figure 15 shows that all 
singularities strengths in the inner sources are zeros 
except the one on the inner focus. If we use Eq. (17) 

free of a constant term, it is interesting to find the 
strengths (d1 ~d15) of outer singularities are all nonzero 
and only one nonzero singularity (d16) on the interior 
focus for inner singularities. It is interesting to find that 
the difference (dj-cj) of Fig. 14 (cj) and Fig. 15 (dj) can 
represent a constant field of c0=2 as shown in Fig. 16. 
This result indicates that a constant interior field (c0) 
can be superimposed by using outer instead of inner 
singularities when the MFS solution of Eq. (17) does 
not contain the constant term. In Fig. 17, error 
distribution of Eq. (22) using MFS of Eq. (23) shows 
more accurate result than that using Eq. (17), because 
Eq. (23) approaches the analytical solution better than 
Eq. (17) does. 
 

Fig. 16 Coefficient of dj-cj versus j to represent the  
      constant field, u(x)=2. 
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Fig. 17 Error distribution of source locations  
      including the two focuses (-2,0), (-0.5,0) by  
      using Eq. (23). 
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5. Conclusions 
In this paper, the analytical and semi-analytical 

solutions for the Green’s functions of annulus and 
half-plane problems were obtained by using the image 
method. The numerical solutions for boundary value 
problems of an eccentric annulus were obtained by 
using the MFS. For the analytical solution of annular 
case, the image method (a special MFS) was employed 
to solve the analytical Green’s function of fixed-free 
annulus. For the half-plane problem with a circular 
cavity, a semi-analytical solution was obtained by 
determining only one free constant and two strengths of 
singularities at the two frozen images. Agreement is 
observed after comparing with the result of null-field 
BIEM. Besides, the same idea of semi-analytical 
approach was successfully extended to solve the 
Green’s function in the eccentric annulus. The 
semi-analytical results also agree well with the 
analytical solution by using the bipolar coordinates. The 
numerical solution of an eccentric annulus without the 
source was compared with analytical solutions. The 
MFS with and without adding a constant were 
employed to solve the eccentric annulus without a 
source. It is found that only two nonzero singularities at 
the focuses and one constant are required to represent 
the analytical solution of eccentric annulus if MFS with 
an adding constant is used. Even though the MFS 
without adding a constant is employed to solve the 
solution, acceptable results can also be obtained. The 
reason can be explained that a constant term can be 
superimposed by using outer uniform singularities. In 
the demonstrated example, the addition of free constant 
is not absolutely necessary according to the numerical 
experiments. However, the MFS including the free 
constant yields the best solution in test example. 
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摘要 
 

    本文使用可視為一種特別的基本解法的映像法

來推導格林函數的解析解與半解析解。求解問題包含

同心圓環、半平面含圓洞與偏心圓環的格林函數問

題，及偏心圓環的邊界值問題。在同心圓環例子中，

可用映像法推導出解析解。針對半平面含圓洞及偏心

圓環的格林函數問題，可利用映像法的觀念透過滿足

邊界條件就可決定最後兩個凝固點的源強度與常數

項大小進而推導出半解析解。我們發現映像點映射到

最後凝固的位置座落於雙極座標上的兩個焦點上。針

對偏心圓環不含集中力的邊界值問題，我們以基本解

法求解並與解析解比較作出誤差分佈圖，進而探討可

能的源最佳佈點位置。基本解法的源最佳佈點位置可

用映像法的觀念來尋找。而佈點位置如果包含到兩個

焦點時，我們可以得到比較準確的結果。除此之外，

基本解法中是否需要自由常數項也一併作討論。求解

的結果與解析解相比得到很好的結果。 
 
關鍵詞：基本解法、映像法、格林函數、邊界值問題。 
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